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Abstract

Multiplex panel tests identify many individual pathogens at once, using a set of
component tests. In some panels the number of components can be large. If the panel is
detecting causative pathogens for a single syndrome or disease then we might estimate
the burden of that disease by combining the results of the panel, for example
determining the prevalence of pneumococcal pneumonia as caused by many individual
pneumococcal serotypes. When we are dealing with multiplex test panels with many
components, test error in the individual components of a panel, even when present at
very low levels, can cause significant overall error. Uncertainty in the sensitivity and
specificity of the individual tests, and statistical fluctuations in the numbers of false
positives and false negatives, will cause large uncertainty in the combined estimates of
disease prevalence. In many cases this can be a source of significant bias. In this paper
we develop a mathematical framework to characterise this issue, present novel statistical
methods that adjust for this bias and quantify uncertainty, and use simulation to test
these methods. As multiplex testing becomes more commonly used for screening in
routine clinical practice, accumulation of test error due to the combination of large
numbers of test results needs to be identified and corrected for.

Author summary

During analysis of pneumococcal incidence data obtained from serotype specific
multiplex urine antigen testing, we identified that despite excellent test sensitivity and
specificity, the small error rate in each individual serotype test has the potential to
compound and cause large uncertainty in the resulting estimates of pneumococcal
prevalence, obtained by combining individual results. This limits the accuracy of
estimates of the burden of disease caused by vaccine preventable pneumococcal
serotypes, and in certain situations can produce marked bias.
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Introduction 1

Multiplex panel testing is a convenient and rapid diagnostic approach and is 2

increasingly being used in clinical practice to differentiate between viral and bacterial 3

causes of a range of disorders [1]. It has also been used in epidemiological studies to 4

identify pneumococcal subtypes targeted by vaccines [2] or monitor disease spread [3]. 5

Multiplex panel tests have been developed for a wide range of clinical syndromes caused 6

by different pathogens, or for specific diseases caused by different subtypes of the same 7

pathogen [1], and may be based on immunological [4, 5] or genetic techniques [6–11]. 8

The number of targets tested for in each multiplex are increasing, but range from a 9

handful, up to 48 different causative agents [3]. In this paper we demonstrate that when 10

large multiplex panels are used, even small errors in the component tests can cause 11

significant compound error and potential bias if the results are combined, usually 12

leading to an overestimate of the prevalence of the combined condition. 13

In the schematic in Fig 1, we distinguish between multiplex testing (subfigures A-D) 14

and other types of multiple testing (subfigures E-G). Subfigures A-D show two 15

component tests which identify each of two subtypes of disease. The disease subtypes 16

are present independently of each other and the disease super-type is present if any of 17

the subtypes is present (B-C). In panel A we see that a false positive in one component, 18

results in a false positive in the combined panel. In subfigure B one subtype is correctly 19

detected, in C the other subtype, and in subfigure D a false positive result for one 20

subtype and a false negative for the other results in an overall result which is correct for 21

the wrong reason. In all subfigures A-D, the combined test result would be interpreted 22

as positive. As described above, this design of test is usually extended to many more 23

than two subtypes to make a multiplex panel. 24

Figures 1 E-H show a different test design which is more related to multiple 25

modalities of testing [12]. In this situation, the multiple tests are looking for the same 26

underlying cause of disease which does not have subtypes. In Figure /reffig1 E, both 27

tests are true negatives and the overall result also a true negative. The interpretation of 28

the two tests can be: a) that any single test being positive infers disease, in which case 29

all subfigures F-H show positive combined results, or b) that both tests must be positive 30

to identify the disease, in which case only subfigure H represents a positive result. 31

These are not regarded as multiplex tests. 32

In more formal language, we define a multiplex test as consisting of a set of 33

independent components which test different independent hypotheses, the results of 34

which are combined to give a panel result where a positive test result in any component 35

implies a positive test result in the panel. From this point, only multiplex panel tests 36

will be discussed. 37

If a condition is composed of many subtypes, then each individual subtype must be a 38

fraction of the overall condition prevalence. The more subtypes in a multiplex panel, 39

the smaller that fraction will be, without loss of generality. If the prevalence of each 40

component is low, then each component test is operating at a level where the positive 41

predictive value of the test (i.e. the probability that a positive test result represents a 42

true positive rather than a false positive) is also relatively low. This leads to a high 43

probability of observing false positives in each component. We will also observe false 44

negatives depending on the sensitivity of the test, but if the prevalence of a subtype is 45

low, there are fewer true positives to be missed. 46

The effect of this can be seen in Fig 2 where we look at the theoretical distribution 47

of false negatives and false positives in 1000 tests for three hypothetical disease 48

subtypes, present at 2%, 0.5% and 0% prevalence, assuming a test with high specificity 49

of 99.75% and moderate sensitivity of 80%. At 2% prevalence, false positive test results 50

are likely to be balanced by the false negatives (Fig 2 A) and the expected test 51

positivity is expected to be lower than 2%, the true value of prevalence in this 52
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true positivetrue positive OR false negativetrue negative OR false positivetrue negative
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E F G H

true positive (incorrect subtype)true positive (blue subtype)true positive (red subtype)false positive 

COMBINATION TEST: Two tests, single target, combine with ANY test positive or ALL tests positive

MULTIPLEX PANEL TEST: Two tests, two independent targets, combine with ANY test positive

false positive

false positive

false positive

true negative true negative

true negative

true negative

true negative
true negative
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true positive
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false negative
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Fig 1. Two scenarios for multiple testing. Panels A-D depict a multiplex panel
test which is the subject of this analysis. It depicts the situation where multiple tests
are employed to detect multiple subtypes of disease which may be present separately or
together, the results of which are combined to give an overall result, such that if any
component test is positive, the combination is positive. An alternative, shown in panels
E-H, and not in scope of this paper concerns the situation where multiple tests are used
to identify a single condition. In this case two interpretations of the multiple test results
are possible, which either maximise test sensitivity or test specificity.

simulation, (Fig 2 B and C). When the prevalence of the subtype is lower, at 0.5%, this 53

pattern is reversed, and the false positives will tend to outweigh the false negatives 54

(Fig 2 D) leading to a higher test positivity than prevalence (Fig 2 E and F). In the 0% 55

scenario (Fig 2 G,H and I) all positives are by definition false positives, distributed with 56

high variance leading to a test positivity above 0. 57

If a multiplex panel which consists of 20 subtypes is applied to a disease which is 58

present at a prevalence of 10%, then it is reasonable to expect that the three patterns in 59

Fig 2 will be present in some combination. The components have a mix of false 60

positives and false negatives, in a manner dependent on the distribution of disease 61

subtypes. In this particular scenario (20 highly specific tests at 10% prevalence) the 62

balance of these will be towards false positives. Because any positive component results 63

in a positive panel result, the component false positive errors compound in combination. 64

In this example the error combines in such a way that the panel result will contain more 65

false positives than false negatives, and the resulting test positivity rate will be an 66

overestimate of true prevalence. 67

The compounding of error in numerous components is analogous to parallel testing 68

of multiple statistical hypotheses. In this situation, a Bonferroni correction is often used 69

to reduce the risk of over-interpreting the results of statistical tests of significance [13]. 70

In a similar way, results from parallel testing of disease sub-types are at risk of being be 71

over-interpreted without a clear understanding of the nature of test errors. 72

In the remainder of this paper we quantify this risk, and summarise the 73

mathematical properties of multiplex tests. We use a realistic simulation based on the 74
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example of pneumococcal serotypes to demonstrate the implications and study potential 75

mitigation strategies. In S1 Appendix we provide the detail of the mathematical 76

analysis, and validate our findings against a broad range of simulation scenarios. In S2 77

Appendix we provide specific detail on propagation of uncertainty associated with 78

combined multiplex panel testing, and validate this against a set of realistic simulations. 79

Supporting implementations of all methods described here are provided in S3 R package. 80

Materials and methods 81

In this section we describe the mathematical analysis, the methods used to adjust for 82

potential bias and uncertainty, and the simulations used to test and illustrate the 83

problem. The majority of the detailed methods are found in S1 Appendix and S2 84

Appendix. The equations presented here are for ease of reference and are not essential 85

to the remainder of the analysis presented in this summary paper. 86
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Fig 2. Error distributions of test results in low pre-test probability settings.
Distribution of false positives (cyan bars, with expected value as a blue vertical line)
and false negatives (orange bars, expected value red line) of 1000 hypothetical test
results with 0.9975 specificity and 0.8 sensitivity at different prevalence levels. (A), (D)
and (G) show the disaggregated distribution of false positives and false negatives and
(B), (E) and (H) show the combined error distribution of test positive observations (grey
bars), and expected test positivity (magenta line) compared to the true condition
positives (black line).
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Mathematical analysis and validation 87

Given a set of N multiplex panel component tests, the combined test result is defined as 88

positive if any of the panel component tests are positive. For a specific patient k this is 89

represented by the following expression, where I is an indicator function and O is 90

observed test positivity. 91

I(ON,k) = 1−
∏
n∈N

(1− I(On,k)) (1)

The test positivity rate (or apparent prevalence: ÂPN ) for the panel result of N 92

tests for a group of K patients is given by: 93

ÂPN =
1

|K|
∑
k∈K

(
1−

∏
n∈N

(1− I(On,k))

)
(2)

A panel result is positive if any component result is positive, and in S1 Appendix we 94

show that a true negative panel result can only be the result of a combination of true 95

negative component results. From this we go on to determine estimates of sensitivity 96

and specificity expressions for combined panels as shown below. In Eq 3 and 4, ÂPn is 97

the apparent prevalence (test positivity rate) for the component tests. sensn and sensN 98

is the sensitivity of the components and combined panel, with specN and specn as the 99

specificity. 100

specN =
∏
n∈N

specn

ŝensN ≈ 1−
∏

n∈N (1− ÂPn)−
∏

n∈N specn × sensn−ÂPn

specn+sensn−1

1−
∏

n∈N
sensn−ÂPn

specn+sensn−1

(3)

From this, we use the Rogan-Gladen estimator of true prevalence [14], to derive 101

expressions for the true prevalence of a combined panel based on the test positivity, 102

sensitivity and specificity of the components. 103

p̂revN ≈
∏

n∈N specn − (1− ÂPN )∏
n∈N specn −

∏
n∈N (1− ÂPn)

(
1−

∏
n∈N

sensn − ÂPn

specn + sensn − 1

)
(4)

In S1 Appendix these estimators are demonstrated to perform well in a broad range 104

of scenarios based on randomly generated synthetic multiplex panels, and the behaviour 105

of these estimators is analysed in detail. 106

Application to realistic situations 107

To illustrate the implications of multiplex test error for epidemiological studies, we have 108

constructed a simulation based on pneumococcal serotypes, to demonstrate uncertainty 109

and risk of bias that could occur in studies that investigate the overall burden of 110

pneumococcal disease using multiplex testing. 111

We previously published the frequency of the 20 pneumococcal serotypes contained 112

in the 20-valent pneumococcal conjugate vaccine (PCV20), that were identified in an 113

invasive pneumococcal disease (IPD) cohort in Bristol between January 2021 and 114
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December 2022 [15]. This IPD distribution was scaled to give a realistic distribution of 115

20 subtypes in a hypothetical population with an overall PCV20-type pneumococcal 116

prevalence of 10%. We simulate testing this population with a hypothetical multiplex 117

panel which detects the 20 individual serotypes. For illustration purposes, we assume all 118

component tests of the multiplex panel are moderately sensitive (80%) and highly 119

specific (99.75%), (these assumptions are loosely based on existing serotype specific 120

detection tests). The simulated test results for individual serotypes were aggregated into 121

a PCV7 group (any positive of serotypes 4, 6B, 9V, 14, 18C, 19F, 23F), a PCV13 group 122

(PCV7 groups plus 1, 3, 5, 6A, 7F, 19A), a PCV15 group (PCV13 plus 22F and 33F), 123

and a PCV20 group (all serotypes). This allows us to compare “true” simulation 124

prevalence to test positivity rates (apparent prevalence). Using the estimators for panel 125

sensitivity and specificity above, we use the synthetic data set to estimate the true 126

prevalence from test positivity, of both components and panels. With the same basic 127

simulation we vary component test sensitivity and specificity, and investigate how the 128

difference between “true” simulation prevalence (10%) and simulated test positivity 129

rates (apparent prevalence) depends on test performance in a realistic scenario. 130

Uncertainty propagation 131

Our mathematical analysis assumes precisely known values for the specificity and 132

sensitivity of component tests. However, these quantities can only be estimated as a 133

result of control-group testing. Because individual subtypes are usually present at low 134

levels when there are multiple subtypes, the number of positive disease controls for any 135

given subtype is typically small [2]. This places a limit on the precision of estimates of 136

component test sensitivity, which in turn makes interpretation of test positivity in both 137

components and panels challenging. 138

For single tests, there are approaches to estimating true prevalence from test 139

positivity, which incorporate uncertainty in sensitivity and specificity, in both 140

frequentist [16–18] and Bayesian frameworks [18–20]. In S2 Appendix we extend these 141

two frameworks to account for multiplex testing, and implement a third resampling 142

procedure combined with the Rogan-Gladen estimator to propagate uncertainty. We 143

test this against a synthetic data set that is based on the IPD distribution scaled to an 144

overall pneumococcal prevalence of 10% (further described in S2 Appendix). These 145

methods are implemented as an R package ”testerror“ in S3 R package. 146

Results 147

In the illustrative simulation motivated by IPD serotype distributions, the serotypes 148

range from having no observed cases to making up 25.6% of the total [15]. When this is 149

scaled to a synthetic population with 10% overall prevalence, the component prevalence 150

ranges from 0% to 3.8% and, as with the theoretical examples in Fig 2 D-I, the majority 151

of serotypes fall into the category where the apparent prevalence is higher than the true 152

prevalence due to false positives, despite assuming a highly specific test with 99.75% 153

specificity (Fig 3 A). The bias towards overestimation due to false positives is strongest 154

for subtypes with low, or zero, prevalence, whereas the underestimation due to low 155

sensitivity is strongest for subtypes with higher prevalence (also demonstrated in Fig 2 156

A-C). 157

In the synthetic but realistic scenario in Fig 3 A, with excellent test specificity 158

(99.75%) and moderate test sensitivity (80%), test positivity rate (apparent prevalence) 159

is expected to be higher than true prevalence under a threshold of 1.2%. When a set of 160

20 components are combined, that together result in a true panel prevalence of 10%, the 161

combined errors mean that the panel test positivity is higher than the true prevalence 162
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Fig 3. True versus apparent prevalence in multiplex test components and
panel results. The apparent prevalence as a function of true prevalence in a simulated
realistic scenario with excellent test specificity (99.75%) and moderate test sensitivity
(80%). (A) shows the individual component relationship and (B) shows the panel
relationship when 20 components are combined. Black lines show the relationship and
the grey transparent lines are a guide to the eye showing perfect agreement. Note that
(A) and (B) are on very different scales.

(Fig 3 B, dashed black lines). In Fig 1 D and S1 Appendix we identify that false 163

positives in one test balance out false positives in another test, and this makes panel 164

test sensitivity a complex quantity that counter-intuitively depends on disease 165

prevalence, component distribution, sensitivity and specificity. As a result, the 166

relationship between true panel prevalence and apparent panel prevalence (test 167

positivity) is non-linear (Fig 3 B), and in this particular simulation, test positivity will 168

be an over-estimate of true prevalence, until true prevalence exceeds 22%. 169

Component sensitivity and specificity determine the difference between true and 170

apparent prevalence as shown in Fig 4. This considers the same scenario of 10% 171

prevalence, but shows the relative difference between true and apparent prevalence 172

when varying sensitivity and specificity. The previous assumptions are marked as a blue 173

cross in the figure, and at this high level of specificity (i.e. 99.75% - right dotted vertical 174

line in Fig 4) the ratio between apparent and true prevalence is mostly influenced by 175

test sensitivity. If sensitivity is low enough (less than 50%) the false negative rate 176

exceeds the combined false positive rate and apparent prevalence is smaller than true 177

prevalence. In any situation where the specificity is lower, the balance of error is most 178

influenced by test specificity, and test sensitivity becomes much less important as a 179

factor determining the difference between true and apparent prevalence. Even 180

marginally lower values of test specificity result in test positivity being a gross 181

overestimate of panel prevalence. If the component test specificity is only 98% (left 182

dotted line) the combined 2% false positive rate of 20 components is sufficient to drive 183

the overall panel test positivity to 4 times the level of the true prevalence set in this 184

simulation, regardless of the test sensitivity. 185

We have described that even low false positive rates in component tests lead to 186

overestimates of uncommon components. The converse is true for components with 187

comparatively high prevalence. In the scenario we have been using as an example, 188
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Fig 4. Bias in apparent prevalence as an estimator for true prevalence. A
simulated scenario of 20 components realistically distributed following patterns seen in
IPD, with a simulated true prevalence of 10%, and assuming the same sensitivity and
specificity for each of the component tests. Expected test positivity rates are calculated
for all combinations of sensitivity and specificity, and compared to the true prevalence
(10%) as a ratio. At sensitivity of 80% and specificity of 99.75% (the blue cross) the test
positivity rate will be about 1.26 times higher than true prevalence. Blue areas
represent parameter space where test positivity is an underestimate of true prevalence
due to excess of false negatives, and red areas where test positivity is an overestimate
due to excess of false positives.

despite the excellent specificity of the tests and 10% overall prevalence the balance of 189

the component estimates is such that test positivity will overestimate true prevalence. 190

This is seen more clearly in Fig 5 (left subfigure) in which simulated true prevalence 191

levels (blue) are lower than test positivity (red) for all but two of the components 192

(serotypes 3 and 8). In the right subfigure we see the effect of combining these into 193

groups of 7, 13, 15 and 20 components, representing combinations of serotypes targeted 194

by vaccines. As predicted, overestimates of prevalence are compounded and the size of 195

each overestimate depends both on the number and distribution of test components. 196

In S2 Appendix we describe methods for correcting this bias in both frequentist and 197

Bayesian frameworks using results from the mathematical analysis (S1 Appendix). In 198

Fig 5 the Bayesian correction is applied and we are able to correctly predict the true 199

prevalence (blue) allowing for uncertainty in our knowledge of test sensitivity and 200

specificity. This is examined in a broader range of scenarios in S2 Appendix but in 201

summary both Bayesian and Lang-Reiczigel (frequentist) approaches work well when we 202

have good prior information about test sensitivity and specificity, but if these 203

assumptions are very wrong, then we cannot expect either method to produce accurate 204

estimates. 205
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Fig 5. Correction of bias in a single IPD scenario. The relative frequency of the
20 pneumococcal serotypes contained in PCV20, and identified in Bristol within the last
2 years, informed a simulation of a serotype distribution with an overall PCV20
pneumococcal prevalence of 10% (blue lines) in a sample size of 1000 synthetic patients.
Test positivity was simulated assuming each serotype test had a sensitivity of 80% and a
specificity of 99.75% (red lines) resulting in underestimates of ’true‘ prevalence for
serotypes 3 and 8, and overestimates for the rest. In the right subfigure combined test
positivity for each PCV group (red lines) overestimate true prevalence (blue lines) for
this scenario. We estimate true prevalence from test positivity (red lines), incorporating
uncertainty in component sensitivity and specificity using a Bayesian model described in
S2 Appendix. These estimates are shown as point estimates and 95% credible intervals
(black), which accurately estimate the true prevalence (blue lines).

Discussion 206

Combining multiplex test results into a panel commonly results in test positivity that 207

significantly overestimates true prevalence. Multiplex testing simultaneously tests many 208

hypotheses, and by combining the result into a single panel result leads to compounding 209

of error. This error can be significant because of the low positive predictive value of 210

individual component tests operating at low pre-test probability. This is critically 211

dependent on component test specificity, and very high specificity is essential in tests 212

which are designed to be interpreted as a combined result. 213

Panel test sensitivity is difficult to characterise. When multiplex tests are combined, 214

components with a larger pre-test probability will generate more false negatives. In 215

panel tests, false negative results in one component are over-ridden by any positives in 216

other components. The specificity of the overall panel test is therefore a complicated 217

function of component test sensitivity, specificity and pre-test probability (component 218

prevalence), leading to higher panel sensitivity at higher prevalence. This is 219

counter-intuitive as test sensitivity is usually regarded as independent of prevalence. 220

This makes it challenging to compare panel test positivity rates in populations with 221
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different prevalence. 222

It remains possible to estimate true prevalence from test positivity, despite the 223

complexities around panel test specificity and sensitivity. Positivity estimates generated 224

by panel tests can be significantly biased and the expected value of test positivity is not 225

a binomially distributed quantity (as demonstrated in Fig 2) so we cannot infer 226

confidence intervals from an observation. The raw test positivity / apparent prevalence 227

of a panel test is therefore very hard to interpret. We recommend use of the techniques 228

described in this paper to produce modelled true prevalence estimates with confidence 229

limits. 230

Sensitivity and specificity assumptions that incorporate uncertainty are critical in 231

producing accurate modelled true prevalence estimates. Specificity estimates for 232

multiplex testing usually rely on a disease free control group, which may also be used to 233

determine cut points to achieve set specificity levels, and can usually give us a 234

reasonable estimate of component test specificity. Determining the sensitivity of the 235

components of a multiplex test is much harder as it needs proven cases of disease with 236

known subtype. These are difficult to find for rare disease subtypes, and gold standard 237

identification of disease subtypes is not always available, or free from error [21,22]. This 238

results in a great deal of uncertainty in estimates of component test sensitivity. In some 239

situations panel test sensitivity is estimated directly, however as we saw above, panel 240

test sensitivity is dependent on a range of factors including overall prevalence, and 241

component distribution. Any direct estimates of panel sensitivity are not generalisable 242

outside of the specific population tested. The methods presented here for modelling true 243

prevalence from multiplex tests do allow for the uncertainty in sensitivity and specificity 244

to be propagated appropriately. The accuracy of this correction, however, is dependent 245

on the quality of the estimates of specificity and sensitivity (see S2 Appendix), and 246

complete mis-specification of either quantity prevents correct estimation of true 247

prevalence. To improve accuracy and narrow the confidence intervals of estimates of 248

prevalence it is far more important to characterise the sensitivity and specificity of the 249

test than increase the sample size of testing. With a poorly understood test it is hard to 250

draw any conclusions from the results. 251

The bias in panel test positivity is an inevitable consequence of combining multiple 252

tests in environments with moderate to low prevalence. It can be mitigated in a number 253

of ways: a) the specificity of the component tests is increased, b) second line 254

confirmatory testing is performed, c) the multiplex test can only be applied to 255

populations with a very high overall disease prevalence. In the last case we may be able 256

to use a multiplex test to determine which subtype of disease is causative if we already 257

know the patient has the disease by using a different test, or using specific clinical 258

diagnostic criteria that select patients with high probability of disease. 259

There are analagous situations where multiplex panel tests are used with similar 260

potential risks. For example the Biofire FilmArray™respiratory panel 2.1 is one of a 261

number of multiplex panels directed at respiratory pathogens [1]. It detects 19 262

viruses [21,23]. We have trialled using this in Bristol to investigate co-infection of 263

respiratory pathogens. There are multiple comparative evaluations of the Biofire 264

FilmArray™panel [7, 21,22, 24–26] but there has not yet been a large scale evaluation of 265

test specificity using disease free controls for each individual panel. Identifying a patient 266

as having co-infection by any of the 19 viral diseases in the panel, requires similar 267

adjustment for the combined test uncertainty of all of the panel components to estimate 268

co-infection frequency. 269
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Conclusion 270

In this paper we have characterised the degree of uncertainty that results if multiplex 271

panel test results are combined to give an overall result. The principal example of this is 272

pneumococcal disease, in which specific component tests of a urine antigen detection 273

test (UAD) identify up to 24 individual pneumococcal serotypes [2, 4]. This is designed 274

to be highly specific with individual serotype tests being around 99.75%. The serotypes 275

are generally grouped together by the vaccines that target them, to determine vaccine 276

preventable disease, or all together as an estimate of pneumococcal disease burden [15]. 277

This use of multiplex UAD testing is susceptible to the uncertainty and biases described 278

in this analysis. Even considering the highly specific nature of the UAD tests [4], as the 279

number of components increases so does the risk of bias. Any seemingly minor decrease 280

in test specificity is expected to have a large impact on estimates of disease burden. 281

Despite excellent specificity, without correction, the large number of tests in the panel 282

creates uncertainty in prevalence estimates using UAD tests, and difficulty in comparing 283

results to those of other similar studies. In this analysis we present methods to correct 284

and quantify uncertainty in prevalence estimates using multiplex panels such as the 285

UAD. These methods are a useful tool but critically rely on estimates of test sensitivity 286

and specificity, and without these it is very hard to estimate disease burden using UAD 287

results. 288

Uncertainty in test results due to lower sensitivity and specificity result in more 289

noise at lower levels of prevalence [27,28]. In vaccine effectiveness studies using a test 290

negative design this phenomenon acts to mask the effect of a vaccine in the lower 291

prevalence vaccinated group. Hence test error always results in an underestimate of 292

vaccine effectiveness [28]. The less sensitive the test, the greater this underestimate. For 293

pneumococcal vaccination, the serotype of pneumococcal disease is determined using 294

urine antigen detection (UAD) test panels [2, 4]. Theory suggests that, because of the 295

issues identified here, conclusions on vaccine effectiveness based on the UAD tests are 296

an underestimate [28]. The underestimate of vaccine effectiveness helps mitigate any 297

bias resulting from test error in disease burden estimates, and hence the anticipated 298

impact of a vaccine in the real world may be relatively unaffected. Further work would 299

be needed to formally assess this. 300

Supporting information 301

S1 Appendix. Sensitivity and specificity of combined panel tests. Derivation 302

of the performance metrics and true prevalence adjustments for combination tests. 303

S2 Appendix. Propagation of uncertainty of combined panel tests. Bayesian 304

and frequentist approaches to estimating the uncertainty of panel test results. 305

S3 R package. testerror: Uncertainty in Multiplex Panel Testing. R package 306

providing methods to support the estimation of epidemiological parameters based on 307

the results of multiplex panel tests, doi:10.5281/zenodo.7691196. 308

https://bristol-vaccine-centre.github.io/testerror/. 309
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