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Abstract 24 

Background: Assessment and quantification of skeletal muscle within the aging population is vital 25 

for diagnosis, treatment, and injury/disease prevention. The clinical availability of assessing 26 

muscle quality through diagnostic ultrasound presents an opportunity to be utilized as a screening 27 

tool for function-limiting diseases. However, relationships between muscle echogenicity and 28 

clinical functional assessments require authoritative analysis. Thus, we aimed to 1) synthesize the 29 

literature to assess the relationships between skeletal muscle echogenicity and physical function 30 

in older (≥60 years) adults, 2) perform pooled analyses of relationships between skeletal muscle 31 

echogenicity and physical function, and 3) perform sub-analyses to determine between-muscle 32 

relationships.  33 

Methods: CINAHL, Embase, MEDLINE, PubMed, and Web of Science databases were 34 

systematically searched to identify articles relating skeletal muscle echogenicity to physical 35 

function in older adults. Meta-analyses with and without sub-analysis for individual muscles were 36 

performed utilizing Fisher’s Z transformation for the most common measures of physical function. 37 

Fisher’s Z was back-transformed to Pearson’s r for interpretation. 38 

Results: Fifty-one articles (N=5095, female=~2759, male=~2301, 72.5±5.8 years [one study did 39 

not provide sex descriptors]) were extracted for review, with previously unpublished data obtained 40 

from the authors of 12 studies. The rectus femoris (n=32) and isometric knee extension strength 41 

(n=22) were the most accessed muscle and physical qualities, respectively. The relationship 42 

between quadriceps echogenicity and knee extensor strength was moderate (n=2924, r=-0.36 43 

[95%CI: -0.38 to -0.32], p<0.001), with all other meta-analyses (grip strength, walking speed, sit-44 

to-stand, timed up-and-go) resulting in slightly weaker correlations (r=-0.34 to -0.23, all p<0.001). 45 

Sub-analyses determined minimal differences in predictive ability between muscle groups, 46 
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although combining muscles (e.g., rectus femoris+vastus lateralis) often resulted in stronger 47 

correlations with maximal strength.  48 

Conclusions: While correlations were modest, the affordable, portable, and noninvasive ultrasonic 49 

assessment of muscle quality was a consistent predictor of physical function in older adults. 50 

Minimal between-muscle differences suggest that echogenicity estimates of muscle quality are 51 

systemic. Therefore, practitioners may be able to scan a single muscle to assess full-body skeletal 52 

muscle quality/composition, while researchers should consider combining multiple muscles to 53 

strengthen the model. 54 

Registration: The original protocol was prospectively registered at the National Institute of Health 55 

Research PROSPERO (CRD42020201841).  56 

 57 

Highlights: 58 

• Relationships between skeletal muscle echogenicity and physical function were small to 59 

moderate, but highly consistent.  60 

• Sub-analyses determined minimal between-muscle differences in predictive ability. 61 

• Ultrasonic echogenicity should be considered part of early detection screens for sarcopenia 62 

and other diseases. 63 

• Combining muscles tended to strengthen the model, although muscle quality appears 64 

systemic, allowing for a single scan to represent the total body. 65 

 66 

Keywords: correlations, echo intensity, elderly, intramuscular fat, muscle health, musculoskeletal, 67 

strength 68 

 69 
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1. Introduction 70 

Assessment and quantification of skeletal muscle morphology and function within the 71 

aging population is vital for diagnosis, treatment, and injury/disease prevention. Sarcopenia, 72 

defined as the reduction in muscle mass and strength,1 is a growing concern, with up to 25% of 73 

individuals over 70 years receiving the diagnosis.2 Early identification of the decline in skeletal 74 

muscle morphology and function can lead to appropriate therapies, such as exercise or nutritional 75 

interventions, that may improve patient outcomes.3 To date, screening measures to identify patients 76 

at risk for sarcopenic-related disability include patient-reported outcomes (such as the SARC-F), 77 

objective measurement of grip or strength, and functional tasks such as the chair stand or 6-meter 78 

walk tests.1,4 In addition to the size and strength of skeletal muscle, recent literature has proposed 79 

the addition of skeletal muscle quality due to its relationship with patient outcomes and clinical 80 

accessibility.5,6 81 

 82 

Muscle quality provides information on the morphology of the muscle, such as adipogenic, 83 

fibrotic, or contractile tissue.7 Literature has demonstrated increases in quadriceps intramuscular 84 

adipose and fibrous tissue with concurrent skeletal muscle atrophy with age, suggesting the 85 

potential replacement of contractile tissue.8 Fibrotic activity increases within aging muscle, which 86 

inhibits the ability to repair and regenerate.9 Clinical decisions made dependent solely on muscle 87 

size may fail to consider morphological characteristics of the muscle that impair physical function.  88 

 89 

 Changes in skeletal muscle morphology are traditionally assessed through invasive 90 

laboratory techniques – specifically by obtaining skeletal muscle biopsy to quantify the fibrotic or 91 

adipogenic tissue .10 Clinically accessible techniques to quantify intramuscular adipose tissue can 92 
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be obtained through MRI and CT imaging. Though common, these techniques are time-93 

consuming, cost-restrictive, and expose patients to radiation (CT scans). Diagnostic ultrasound 94 

quantifies muscle quality through echogenicity,7 which is defined as the pixel intensity of an 95 

image. Assessed through brightness mode (B-mode) ultrasound, the greyscale value (range: 0-255 96 

arbitrary units [AU]) represents the “quality” of the muscle, with a higher number representing a 97 

greater distribution of lighter pixels. A brighter pixel (higher greyscale value) represents lighter 98 

tissue, such as intramuscular adipocytes and fibrous tissue,11 while lower greyscale values have 99 

been related to greater lean body mass (e.g., contractile tissue, water).11 100 

 101 

The clinical availability of assessing echogenicity also presents an opportunity to be 102 

utilized as a screening tool for function-limiting diseases including sarcopenia, cachexia, and 103 

muscular dystrophy. Lower muscle quality assessed through echogenicity has been associated with 104 

lower measures of muscle strength.12 However, results are not uniform within the aging population 105 

as assessments and techniques to quantify muscle function are inconsistent. Compiling research 106 

findings on the functional associates of echogenicity can further progress the clinical utility of 107 

ultrasound with aging individuals.  108 

 109 

Early detection of muscle loss and strength is vital for early clinical diagnosis and 110 

treatment. Intramuscular adiposity has been shown to precede and accelerate the onset of 111 

sarcopenic functional impairments.13 As such, accessible clinical tools like diagnostic ultrasound 112 

may play an essential role in assessing muscle size and quality to predict loss of function. To date, 113 

relationships between muscle echogenicity and clinical and functional assessments are unclear due 114 

to the large variability in scanning location and assessment procedures. Therefore, the purpose of 115 
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this systematic review was to 1) qualitatively synthesize the literature assessing the relationships 116 

between skeletal muscle echogenicity and physical function in older adults, 2) perform a 117 

quantitative pooled analyses of relevant correlations where possible, and 3) examine between-118 

muscle relationships to determine differences in predictive ability.  119 

 120 

2. Methods 121 

2.1. Registration of systematic review protocol 122 

A systematic literature review was performed according to the guidelines in the Cochrane 123 

Handbook for Systematic Reviews of Interventions (version 6.0) and following the 2020 checklist 124 

for the Preferred Reporting Items for Systematic Reviews and Meta-Analyses. The original 125 

protocol was prospectively registered at the National Institute of Health Research PROSPERO 126 

(CRD42020201841).  127 

 128 

2.2. Eligibility criteria 129 

Studies evaluating the relationship of ultrasound echogenicity to assessments of skeletal 130 

muscle function were included. All studies had to include an older population (≥60 years), 131 

quantified skeletal muscle echogenicity through diagnostic ultrasound, quantified clinical 132 

measures of patient function, and analyze the relationship between skeletal muscle echogenicity 133 

and patient function. For studies that included multiple age populations (i.e., a younger and older 134 

cohort,) only the data for the older cohort were extracted. Studies must have reported relationships 135 

between echogenicity and function performed through linear regression or correlation coefficients. 136 

Exclusion criteria included pathologic study populations, echogenicity outcomes on non-skeletal 137 

muscle tissue, animal or cadaver studies, or review articles. Studies including participants from a 138 
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pathologic population (i.e., Parkinson’s, multiple sclerosis, muscular dystrophy, etc.) were 139 

excluded. Participants with age-related conditions, such as sarcopenia or osteoarthritis, were 140 

included.   141 

 142 

2.3. Information sources and search strategy 143 

Research articles were systematically searched through CINAHL, Embase, MEDLINE, 144 

PubMed, and Web of Science databases. Studies were searched up to June 2023. The current 145 

manuscript was a subsection of larger systematic search on relationships between diagnostic 146 

ultrasound echogenicity and metabolic, imaging, and functional outcomes (PROSPERO ID 147 

CRD42020201841). Search keywords were: (echogenicity OR echo intensity OR greyscale) AND 148 

(muscle OR musculature) AND (ultrasound OR ultrasonography) AND (old OR older OR elderly). 149 

The current studies’ outcomes of interest were relationships between skeletal muscle echogenicity 150 

and objective functional assessments (i.e., strength, gait, functional testing, patient-reported 151 

outcomes, etc.). Secondary searches included: a) screening the reference lists of included studies; 152 

b) examining studies that cited the included studies (forward citation tracking through Google 153 

Scholar); c) search alerts to monitor any new search results; and d) contacting the most common 154 

authors of the included outputs. The database search was re-run in November 2023. 155 

 156 

2.4. Study appraisal and synthesis methods  157 

 Database results were downloaded and transferred to the Zotero reference manager (v6.0; 158 

Corporation for Digital Scholarship, Virginia, USA). Covidence (v2627; Melbourne, AUS) was 159 

used to import all selected articles from the initial search. Duplicate articles were removed for 160 

appraisal. Two authors independently screened the articles by titles and abstracts. The two 161 
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reviewers met and discussed disagreements of the initial review to determine inclusion, with a 162 

third reviewer being consulted if needed. Both assessors then independently screened the full-text 163 

studies based on the inclusion and exclusion criteria using the same methodologies for 164 

disagreements. The PRISMA flowchart of article inclusion can be found in Figure 1. Data were 165 

extracted and were stratified on the following functional assessment categories: strength, rate of 166 

force development, gait speed, timed up-and-go, sit-to-stand, postural stability, and others. The 167 

reviewers assessed outcome measures to determine if inter-study data could be pooled for a meta-168 

analysis.  169 

 170 

 171 
Figure 1. PRISMA flow chart  172 

 173 

2.5. Data extraction 174 

 Functional assessments, methods of collection and objective measures of the tests were 175 

extracted from each selected article. The transducer type, scanning plane, and muscle of interest 176 

were extracted for measures of muscle quality. Demographics, sample size, and relationship 177 

estimates (Pearson’s r correlation coefficients) were extracted for data synthesis.  178 

 179 
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2.6. Statistical analysis 180 

2.6.1. Correlation extraction and calculation  181 

Raw data, reported correlation coefficients, and p-values were extracted and entered into 182 

an Excel spreadsheet. When correlations were not provided in-text, extracted data were used to 183 

calculate Pearson’s correlation coefficients (r) using the following formula (r=Pearson’s 184 

correlation, n=number of pairs, ∑xy = sum of the pairs, ∑x = sum of the x scores, ∑y= sum of the 185 

y scores, ∑x2 = sum of the squared x scores, ∑y2 = sum of the squared y scores:  186 

𝑟 =
𝑛(∑(𝑥𝑦)  − (∑𝑥)(∑𝑦)

 √[𝑛 ∑ 𝑥2 − (∑ 𝑥)2][𝑛 ∑ 𝑦2 − (∑ 𝑦)2]
 187 

  188 

However, the above formula (and online calculators) often resulted in exceptionally strong 189 

correlations. Therefore, calculated correlations were not included in the meta-analyses. In several 190 

cases,14–24 contacted authors kindly provided de-identified raw data which allowed us to calculate 191 

exact correlations using SPSS (Version 29.0, IBM Corp; Armonk, NY, USA).  192 

 193 

2.6.2. Meta-analytical synthesis 194 

 As Pearson’s r correlation coefficients are a non-continuous variable (can never be greater 195 

than 1.0), all extracted and calculated correlations and standard errors were transformed to Fisher’s 196 

Z so that confidence intervals could be properly processed by the meta-analytical software. This 197 

transformation was completed using the following formula (Z=Fisher’s z, LN=natural log, 198 

r=Pearson’s r correlation coefficient: 199 

𝑍 = 𝐿𝑁((1 + 𝑟))/((1 − 𝑟))/2 200 

 201 
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 A random-effects model with restricted maximum likelihood was chosen due to inter-study 202 

variability regarding age, sex, racial/ethnic composition, and testing procedures. Pooled Fisher’s 203 

Z and 95% confidence intervals (95%CI) were back-transformed to Pearson’s r correlation 204 

coefficients and interpreted as: trivial ±0.10, small ±0.11-0.30, moderate ±0.31-0.50, large ±0.51-205 

0.70, very large ±0.71-0.90, and nearly perfect ±0.91-0.99.25 Including multiple effects from a 206 

single study violates the assumption of independence, as effects from the same study are likely to 207 

be more similar than effects from others and would influence statistical power. Therefore, effects 208 

from a single study examining several regions of the same muscle (e.g., vastus lateralis, rectus 209 

femoris), or both sexes were averaged and entered the statistical software as a single comparison. 210 

Sub-analyses were run to compare different muscles. To avoid superfluous results, meta-analyses 211 

focused on muscle groups and highly relevant functional assessments (e.g., knee extensor strength 212 

and quadriceps echogenicity). However, several commonly reported functional assessments were 213 

not accompanied by clearly relevant echogenicity measures (e.g., grip strength and wrist flexor 214 

echogenicity). Similarly, we avoided performing meta-analyses with fewer than five studies. 215 

Finally, only correlations with non-corrected echogenicity were analyzed since most studies did 216 

not utilize subcutaneous fat correction. Similar tests (i.e., time to target repetitions versus 217 

repetitions in a set time) can result in dichotomous (i.e., positive versus negative) correlational 218 

directions. Thus, the correlation direction was switched when required to represent ‘performance’. 219 

 220 

2.6.2. Meta-analytical heterogeneity 221 

The I2 statistic was used to evaluate heterogeneity and was interpreted as low (<50%), 222 

moderate (50–75%), and high heterogeneity (>75%). The statistical significance threshold was set 223 

at p<0.05. Funnel plots were used to examine publication bias potential.  224 
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 225 

3. Results 226 

3.1. Study characteristics 227 

The summary of studies selected for inclusion and their quality assessments are presented 228 

in Table 1. Fifty-one identified studies conformed to the inclusion criteria.7,11,12,14–24,26–62 However, 229 

17 studies did not report the relevant correlations.14–18,20,22,24,26,40,48,49,52,57,59,61,62 12 contacted 230 

authors provided previously unpublished de-identified raw data or relevant correlations.14–20,22–231 

24,40,48 In comparison, we calculated correlations for the remaining five studies using data supplied 232 

in published tables or supplementary information. The 51 included studies included 5095 (~2759 233 

females, ~2301 males) participants, aged 72.5±5.8 years of age.7,11,12,14–24,26–62 Twenty-seven 234 

studies included males and females,14,17,20,23,24,26,28–30,32,33,36–38,40,42,45–47,49,54,57–62 while 16 included 235 

only males,7,11,15,16,18,19,21,22,31,34,39,41,48,50,52,56 seven included only females,27,35,43,44,51,53,55 a single 236 

study did not report sex,12 while another did not delineate sex when reporting age or participant 237 

numbers;61 explaining the approximate values in the previous sentence. Two studies included 238 

participants with ‘metabolic syndrome’ or diabetes,20,33 and single studies included participants 239 

with chronic obstructive pulmonary disease,42 USA Veterans,11 ‘frail’,24 outpatients,63 nursing 240 

home residents,23 or regularly participated in competitive tennis.59  241 

 242 

 243 

 244 

 245 

 246 

 247 
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Table 1. Summary of studies reporting correlations between skeletal muscle echogenicity and functional measures in older (Mean ≥ 63 years) adults  

Study  Demographics  Plane  Muscle(s)  Functional Measures  Relationship Estimates  

Akagi et al., 

2018 1  

Elderly  
N=33 (14 F, 19 

M)  
F: 72±7 yrs  
M: 73±5 yrs  

Transverse  
  

Snap-shot  

Plantar-flexors (avg 

LG, soleus)  
  

Non-corrected EI  

ISO plantar-flexion force  Female:  
r=-0.74, p<0.05* ϰ  

Male:  
r=-0.35, p<0.05* ϰ  

Akazawa et al., 
2017 2  

Unable to walk  
66-101 yrs  

N=25 F  

Transverse  
  

Snap-shot  

Quadriceps (avg RF, 

VL, VI, VM)  
  

Non-corrected EI  

1) ISO knee extension force  

2) Functional independence measure gait 

score  

1) r=-0.64, p=0.001  
2) r=-0.34, p=0.03  

Akima et al., 

2017 3  

Healthy  

72.9±4.5 yrs  

N=64 (37 F, 27 

M)  

Transverse  
  

Snap-shot  

RF, VL, Quadriceps 

(avg RF, VL)  
  

Non-corrected EI  

1) Sit-up×30s  

2) Supine-to-stand  

3) Sit-to-stand×10  
4) 5-meter maximal walk  

5) 6-min walk  

RF (F):  

1) r=-0.11, p>0.05  
2) r=0.06, p>0.05  

3) r=0.51, p<0.001*  

4) r=0.26, p>0.05  

5) r=-0.16, p>0.05  
RF (M):  

1) r=-0.07, p>0.05  
2) r=0.47, p<0.05*  

3) r=0.40, p<0.05*  

4) r=0.16, p>0.05  
5) r=-0.36, p>0.05  

VL (F):  

1) r=-0.23, p>0.05  
2) r=-0.03, p>0.05  

3) r=0.17, p>0.05  

4) r=0.23, p>0.05  

5) r=0.01, p>0.05  
VL (M):  

1) r=-0.25, p>0.05  
2) r=0.53, p<0.05*  
3) r=0.52, p<0.05*  
4) r=0.48, p<0.05*  
5) r=-0.52, p<0.01*  

Quadriceps (F):  

1) r=-0.17, p>0.05  
2) r=0.02, p>0.05  

3) r=0.39, p<0.05*  

4) r=0.27, p>0.05  

5) r=-0.09, p>0.05  
Quadriceps (M):  

1) r=-0.17, p>0.05  
2) r=0.54, p<0.05*  

3) r=0.49, p<0.05*  

4) r=0.34, p<0.05*  
5) r=-0.47, p<0.05*  

Akima et al., 
2020 4  

‘Pre-old’  
69.3±2.7 yrs  

n=96 (51 F, 45 
M)  

  
‘Old’  

79±2.9 yrs  
n=36 (19 F, 17 

M)  

Transverse  
  

Snap-shot  

RF, VL, Quadriceps 

(avg RF, VL)  
  

Non-corrected EI  

1) Grip strength  
2) Sit-up reps  

3) Supine-to-stand   
4) Sit-to-stand×10  

5) 5-meter maximal walk  
6) 6-min walk  

RF:  
Pre-old  

1) r=-0.26, p<0.05*  
2) r=-0.13, p>0.05  

3) r=0.23, p<0.05*  

4) r=0.27, p<0.01*  
5) r=0.13, p>0.05  
6) r=-0.18, p>0.05  

Old  
1) r=-0.22, p>0.05  

2) r=-0.01, p>0.05  

3) r=0.11, p>0.05  
4) r=0.13, p>0.05  

5) r=0.43, p<0.05*  
6) r=-0.24, p>0.05  

VL:  
Pre-old  

1) r=-0.28, p<0.01*  
2) r=-0.13, p>0.05  

3) r=0.13, p>0.05  

4) r=0.10, p>0.05  
5) r=-0.05, p>0.05  
6) r=-0.12, p>0.05  

Old  
1) r=-0.30, p>0.05  

2) r=-0.21, p>0.05  

3) r=0.34, p>0.05  
4) r=0.18, p>0.05  

5) r=0.39, p<0.05*  
6) r=-0.18, p<0.05  

Quadriceps:  
Pre-old  

1) r=-0.30, p<0.05*  
2) r=-0.14, p>0.05  

3) r=0.20, p>0.05  

4) r=0.20, p<0.05*  
5) r=0.04, p>0.05  
6) r=-0.17, p>0.05  

Old  
1) r=-0.31, p>0.05  

2) r=-0.15, p>0.05  

3) r=0.29, p>0.05  
4) r=0.19, p>0.05  

5) r=0.47, p<0.01*  
6) r=-0.24, p>0.05  

Bali et al., 
2020 5  

71±5 yrs  

N=25 (15 F, 10 

M)  

Transverse  
  

Panoramic  

Quadriceps (avg RF, 
VL)  

  
Corrected & non-

corrected EI  

1) CON (120º·s-1) knee extension torque  
2) Specific torque  

3) %Δ torque (fatigue)  

Non-corrected EI:  

1) r=-0.53, p<0.001*  
2) r=-0.34, p=0.014*  

3) r=-0.08, p=0.565  

Corrected EI:  

1) r=-0.45, p<0.001*  
2) r=-0.34, p=0.014*  

3) r=0.02, p=0.864  

Cadore et al., 

2012 6  
65.5±5 yrs  
N=31 M  Not specified  

RF  
  

Non-corrected EI  

1) ISO knee extension torque  
2) CON knee extension (a: 60°·s−1, b: 

180°·s−1, c: 360°·s−1)  

1) r=-0.51, p<0.01*  
2a) r=-0.48, p<0.01*  

2b) r=-0.64, p<0.001*  
2c) r=-0.67, p<0.001*  
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Chang et al., 

2018 7  

71.6±5.3 yrs  

N=140 (79 F, 
61 M)  

Transverse  
  

Snap-shot  

RF, MG, BB, TB  
  

Non-corrected EI  

1) Grip strength  
2) Gait speed  

RF:  

1) r=-0.35, p<0.05*  
2) r=-0.13, p>0.05  

MG:  

1) r=-0.10, p>0.05  
2) r=-0.07, p>0.05  

BB:  

1) r=-0.25, p<0.05*  
2) r=-0.14, p>0.05  

TB:  

1) r=-0.31, p<0.05*  
2) r=-0.02, p>0.05  

Chang et al., 

2019 8  

Non-metabolic 
syndrome  

71.1±5.2 yrs  
N=103 (51F, 

52 M)  
Metabolic 

syndrome  
72.1±4.7 yrs  
N=26 (18 F, 8 

M)  

Transverse  
  

Snap-shot  

RF, MG, BB, TB  
  

Non-corrected  

1) Grip strength  
2) Gait speed  

RF:  
Combined  

1) r=-0.32, p<0.001*  

2) r=-0.18, p=0.045*  

MG:  
Combined  

1) r=-0.04, p=0.588  

2) r=-0.11, p=0.202)  

BB:  
Combined  

1) r=-0.30, p<0.001*  

2) r=-0.12, p=0.197  

TB:  
Combined  

1) r=-0.30, p<0.001*  

2) r=-0.08, p=0.353  

Farrow & 
Palmer, 2021 9  

73±4 yrs  
N=15 M  

Transverse  
  

Panoramic  

RF  
  

Non-corrected EI  

1) ISO hip flexion torque  
2) RTD 0-100 ms (a: absolute; b: 

relative)  

3) RTD 100-200 ms (a: absolute; b: 
relative)  

1) r=-0.26, p>0.05  
2a) r=0.25, p>0.05  
2b) r=0.40, p>0.05  

3a) r=-0.42, p>0.05  
3b) r=-0.42, p>0.05  

Fukumoto et 

al., 2012 10  
70.4±5.5 yrs  

N=92 F  

Transverse  
  

Snap-shot  

RF  
  

Non-corrected EI  
ISO knee extension force  r=-0.40, p<0.01*  

Fukumoto et 
al., 2023 11  

75.3±6.7 yrs  
N=92 (50 F, 42 

M)  

Transverse  
  

Snap-shot  

RF  
  

Non-corrected EI  

1) ISO knee extension torque  
2) Grip strength  

3) Walking speed  

Female:   
1) r=-0.43, p=0.003 Ф  
2) r=-0.23, p=0.110 Ф  
3) r=-0.22, p=0.133 Ф  

Male:   
1) r=-0.15, p=0.339 Ф  

2) r=-0.32, p=0.044* Ф  
3) r=-0.22, p=0.18 Ф  

Combined:   
1) r=-0.44, p<0.001* Ф  
2) r=-0.46, p<0.001* Ф  
3) r=-0.31, p=0.003* Ф  

Gerstner et al., 

2017a 12  
69.5±3.1 yrs  

N=20 M  

Transverse  
  

Panoramic  

MG, LG  
  

Corrected and non-
corrected Ф EI  

1) ISO plantar-flexion torque  
2) CON plantar-flexion torque (a: 30º·s-1; 

b: 120º·s-1)  
3) CON plantar-flexion peak power (a: 

30º·s-1; b: 120º·s-1)  
4) CON plantar-flexion mean power (a: 

30º·s-1; b: 120º·s-1)  

Non-corrected:   
MG:  

1) r=-0.50, p=0.030* Ф  
2a) r=-0.62, p=0.005* Ф  
2b) r=-0.38, p=0.114 Ф  
3a) r=-0.62, p=0.005* Ф  
3b) r=-0.38, p=0.114 Ф  
4a) r=-0.67, p=0.002* Ф  
4b) r=-0.43, p=0.066 Ф  

LG:  
1) r=0.09, p=0.702 Ф  

2a) r=-0.31, p=0.198 Ф  
2b) r=-0.46, p=0.046* Ф  
3a) r=-0.31, p=0.200 Ф  

3b) r=-0.46, p=0.046* Ф  
4a) r=-0.25, p=0.296 Ф  
4b) r=-0.33, p=0.167 Ф  

Corrected:   
MG:  

1) r=-0.36, p=0.132 Ф  
2a) r=-0.45, p=0.054 Ф  
2b) r=-0.40, p=0.087 Ф  
3a) r=-0.45, p=0.053 Ф  
3b) r=-0.40, p=0.087 Ф  
4a) r=-0.57, p=0.012* Ф  
4b) r=-0.43, p=0.065 Ф  

LG:  
1) r=0.15, p=0.530 Ф  

2a) r=-0.28, p=0.251 Ф  
2b) r=-0.39, p=0.098 Ф  
3a) r=-0.28, p=0.253 Ф  
3b) r=-0.39, p=0.098 Ф  
4a) r=-0.23, p=0.335 Ф  
4b) r=-0.27, p=0.273 Ф  

Gerstner et al., 

2017b 13  

Recreationally 
Active  

69.5±3.3 yrs  

N=20 M  

Transverse  
  

Panoramic  

MG  
  

Corrected and non-

corrected Ф EI  

1) ISO plantar-flexion a) peak torque; b) 

torque at 50 ms; c) torque at 100 ms; d) 

torque at 200 ms)  
2) Peak RFD Ф  

  

Non-corrected Ф:   
1a) r=-0.46, p<0.001* Ф  
1b) r=-0.04, p=0.779 Ф  
1c) r=-0.22, p=0.125 Ф  

1d) r=-0.39, p=0.005* Ф  
2) r=-0.34, p=0.014* Ф  

Corrected:  
1a) r=-0.36, p=0.008* Ф  
1b) r=0.00, p=0.976 Ф  

1c) r=-0.20, p=0.161 Ф   
1d) r=-0.36, p=0.008* Ф  
2) r=-0.34, p=0.013* Ф  
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Guadagnin et 

al., 2019 14  

75.4±5 yrs  
N=15 (9 F, 6 

M)  

Transverse  
  

Snap-shot  

RF, VL, BF, TA, 

MG  
  

Non-corrected EI  

1) Preferred walking speed (a: 
overground; b: obstacle)  

2) Maximal walking speed (a: 

overground; b: obstacle)  
3) Preferred walking step length  
4) Maximal walking step length   

RF:  

1a) r=0.07, p>0.05  
1b) r=-0.03, p>0.05  

2a) r=0.07, p>0.05  
2b) r=-0.01, p>0.05  
3) r=-0.004, p>0.05  
4) r=-0.05, p>0.05  

VL:  
1a) r=-0.40, p>0.05  
1b) r=-0.46, p>0.05  

2a) r=-0.41, p>0.05  
2b) r=-0.51, p<0.05  
3) r=-0.06, p>0.05  
4) r=-0.54, p<0.05*  

BF:  

1a) r=0.17, p>0.05  
1b) r=0.02, p>0.05  
2a) r=0.15, p>0.05  
2b) r=0.08, p>0.05  
3) r=-0.06, p>0.05  
4) r=-0.07, p>0.05  

TA:  

1a) r=-0.40, p>0.05  
1b) r=-0.31, p>0.05  

2a) r=-0.44, p>0.05  
2b) r=-0.35, p>0.05  
3) r=-0.31, p>0.05  
4) r=-0.36, p>0.05  

MG:  
1a) r=-0.08, p>0.05  
1b) r=-0.11, p>0.05  

2a) r=-0.13, p>0.05  
2b) r=-0.07, p>0.05  
3) r=-0.02, p>0.05  
4) r=-0.07, p>0.05  

Harris-Love et 
al., 2018 15  

US Veterans  
62.5±9.2  
N=30 M  

Sagittal  
  

Snap-shot  

RF  
  

Non-corrected  

1) Absolute and body-mass normalized 

CON knee extension torque (a: 60º.s-1; b: 
180º.s-1)  

2) Grip strength  

Absolute:   
1a) r=-0.38, p=0.038*  
1b) r=-0.41, p=0.025*  
2) r=-0.41, p=0.026*  

Normalized:  
1a) r=-0.47, p=0.008*  
1a) r=-0.49, p=0.006*  
2) r=-0.50, p=0.005*  

Harris-Love et 

al., 2019 16  

65.1±6.5  
N=17 (10 F, 7 

M)  

Sagittal  
  

Snap-shot  

RF  
  

Non-corrected  
Grip strength (body-mass normalized)  r=-0.48, p=0.031*  

Hill et al., 
2021 17  

Healthy   
community-

dwelling  
69.9±4.3 yrs  

N=21 (9 F, 12 

M)  

Transverse  
  

Snap-shot  

VL, gluteus medius  
  

Non-corrected EI  

1) Timed-up-and-go  

2) Sit-to-stand×5 reps  

3) Postural control (a: anteriorposterior 
eyes open; b: anteriorposterior eyes 

closed; c: mediolateral eyes open; d: 

mediolateral eyes closed; e: velocity 

eyes open; f: velocity eyes closed)  

Right VL:  
1) r=0.49, p<0.05*  

2) r=0.57, p<0.001*  
3a) r=0.26, p>0.05  
3b) r=0.32, p>0.05  
3c) r=0.22, p>0.05  
3d) r=0.29, p>0.05  
3e) r=0.09, p>0.05  
3f) r=0.13, p>0.05  

Left VL:  
1) r=0.52, p<0.05*  

2) r=0.64, p<0.001*  
3a) r=0.36, p>0.05  
3b) r=0.20, p>0.05  
3c) r=0.04, p>0.05  
3d) r=0.06, p>0.05  
3e) r=0.30, p>0.05  
3f) r=0.06, p>0.05  

Right gluteus medius:  
1) r=0.46, p<0.05*  

2) r=0.48, p<0.05*  

3a) r=0.52, p<0.05*  
3b) r=0.51, p<0.05*  
3c) r=0.15, p>0.05  
3d) r=0.19, p>0.05  
3e) r=0.22, p>0.05  
3f) r=0.08, p>0.05  

Left gluteus medius:  
1) r=0.52, p<0.05*  

2) r=0.59, p<0.05*  
3a) r=0.53, p<0.05*  
3b) r=0.45, p<0.05*  
3c) r=0.10, p>0.05  
3d) r=0.11, p>0.05  
3e) r=0.27, p>0.05  
3f) r=0.02, p>0.05  

Hirata et al., 

2022 18  
74±6 yrs  
N=32 M  

Transverse  
  

Snap-shot  

RF, VL  
  

Non-corrected EI  

1) ISO knee extension torque   
2) ISO knee extension specific strength  

3) CON isotonic peak power (a: 
absolute; b: relative)  

4) CON isotonic RPD 0-50 ms (a: 

absolute; b: relative)  
5) CON isotonic RVD  

RF:  
1) r=0.13, p=0.476  
2) r=-0.02, p=0.922  
3a) r=0.23, p=0.221  
3b) r=0.01, p=0.952  
4a) r=-0.21, p=0.272  
4b) r=-0.36, p=0.050  
5) r=-0.42, p=0.022*  

VL:  
1) r=0.13, p=0.494  
2) r=0.08, p=0.673  
3a) r=0.33, p=0.074  

3b) r=0.42, p=0.020*  
4a) r=0.25, p=0.183  
4b) r=0.32, p=0.089  
5) r=0.24, p=0.207  

Kawai et al., 

2018 19  

Community-

dwelling  
72.8±5.3 yrs  
N=1239 (728 

F, 511 M)  

Transverse  
  

Snap-shot  

RF  
  

Non-corrected EI  

1) ISO knee extension torque  
2) Timed-up-and-go  

3) Fast gait speed  
4) Normal gait speed  
5) One-leg balance  

Female:  
1) r=-0.27, p<0.01*  

2) r=0.16, p<0.001* Ф  
3) r=-0.14, p<0.001* Ф  
4) r=-0.10, p=0.006* Ф  
5) r=-0.17, p<0.001* Ф  

Male:   
1) r=-0.31, p<0.01*  

2) r=0.19, p<0.001* Ф  
3) r=-0.20, p<0.001* Ф  
4) r=-0.19, p<0.001* Ф  
5) r=-0.26, p<0.001* Ф  

Combined:   
1) r=-0.35, p<0.001* Ф   
2) r=0.19, p<0.001* Ф  
3) r=-0.20, p<0.001* Ф  
4) r=-0.13, p<0.001* Ф  
5) r=-0.18, p<0.001* Ф  

Komforti et al., 

2021 20  

Community-

dwelling  

74±6 yrs  
N=90 (57 F, 33 

M)  

Transverse  
  

Snap-shot  

RF, VL, MG, LG  
  

Corrected & non-

corrected EI  

1) Grip strength Ф  
2) Sit-to-stand×30s Ф  

3) Fast gait speed  
4) Normal gait speed Ф  

5) Heel-rise endurance Ф  

RF:  
Non-corrected Ф  

1) r=-0.03, p=0.754  
2) r=-0.16, p=0.134  
3) r=0.08, p=0.457  

VL:  
Non-corrected Ф  

1) r=-0.05, p=0.668  
2) r=-0.23, p=0.028*  
3) r=0.14, p=0.192  

MG:  
Non-corrected Ф  

1) r=-0.03, p=0.757  
2) r=-0.15, p=0.154  
3) r=0.17, p=0.121  

LG:  
Non-corrected Ф  
1) r=0.03, p=0.766  
2) r=-0.11, p=0.296  
3) r=0.06, p=0.579  
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6) Functional reach test Ф  4) r=0.07, p=0.497  
5) r=-0.19, p=0.081  
6) r=0.11, p=0.285  

Corrected  
1) r=-0.31, p=0.003*  
2) r=-0.27, p=0.010*  
3) r=-0.29, p=0.006*  
4) r=0.21, p=0.051  

5) r=-0.29, p=0.006*  
6) r=0.07, p=0.491  

4) r=0.16, p=0.145  
5) r=-0.22, p=0.042*  
6) r=0.13, p=0.227  

Corrected  
1) r=-0.41, p<0.001*  
2) r=-0.25, p=0.018  
3) r=-0.25, p=0.018  
4) r=0.21, p=0.051  

5) r=-0.24, p=0.022*   
6) r=0.09, p=0.376  

4) r=0.15, p=0.156  
5) r=-0.19, p=0.081  
6) r=0.23, p=0.032*  

Corrected  
1) r=-0.28, p=0.008*  
2) r=-0.33, p=0.002*  
3) r=-0.35, p<0.001*  
4) r=0.27, p=0.011*  
5) r=-0.30, p=0.005*  
6) r=0.18, p=0.086  

4) r=0.05, p=0.655  
5) r=-0.10, p=0.370  
6) r=0.19, p=0.079  

Corrected  
1) r=-0.22, p=0.040*  
2) r=-0.22, p=0.040*  
3) r=-0.18, p=0.086  
4) r=0.09, p=0.404  
5) r=-0.17, p=0.103  
6) r=0.20, p=0.055  

Lopez et al., 

2016 21  

Sedentary  
66±5.4 yrs  

N=50 M  

Transverse  
  

Snap-shot  

avg: RF, VL, VM, 

VI  
  

Non-corrected EI  

1) Sit-to-stand×30s  1) r=-0.56, p<0.001*  

Maddocks et 

al., 2014 22  

Healthy  
63±10 yrs  

N=18 (9 F, 9 
M)  

COPD  
68±10 yrs  

N=17 (7 F, 10 

M)  

Transverse  
  

Snap-shot  

TA  
  

Non-corrected EI  
1) ISO dorsiflexion force  r=-0.46, p=0.0004*  

Magrini et al., 

2018 23  
74.9±5.8 yrs  

N=18 F  

Transverse  
  

Panoramic  

RF  
  

Non-corrected EI  

1) ISO knee extension torque  
2) Sit-to-stand×60s (a: peak power; b: 

mean power; c: peak velocity; d: mean 
velocity)  

1) r=-0.34, p>0.05  

2a) r=-0.48, p>0.05  
2b) r=-0.37, p>0.05  
2c) r=-0.38, p>0.05  
2d) r=0.02, p>0.05  

Masaki et al., 

2016 24  
72.9±7.4 yrs  

N=35 F  

Transverse 

(multifidus)  
  

Sagittal (erector 

spinae, psoas major)  

Multifidus, erector 
spinae, psoas major  

  
Non-corrected EI  

1) Maximal gait speed  
2) Normal gait speed  

Multifidus:  
1) r=-0.01, p>0.05  
2) r=0.09, p>0.05  

Erector spinae:  
1) r=0.10, p>0.05  
2) r=0.06, p>0.05  

Psoas major:  
1) r=-0.30, p>0.05  
2) r=0.02, p>0.05  

Mateos-
Angulo et al., 

2021 25  

85±7 yrs  
N=20 (15 F, 5 

M)  

Sagittal  
  

Snap-shot  

UL: avg: BB, wrist 

flexors  
  

LL: avg: RF, VL, 
TA, MG  

  
Non-corrected EI  

1) CON knee extension force  
2) Grip strength  

3) Timed-up-and-go  
4) Gait speed  

5) Short physical performance battery  
6) Tinetti performance-oriented mobility 

test  

UL:   

1) r=-0.52, p<0.05*  
2) r=-0.04, p>0.05  
3) r=0.21, p>0.05  

4) r=-0.14, p>0.05  
5) r=-0.32, p>0.05  
6) r=-0.05, p>0.05  

LL:   
1) r=-0.68, p<0.01*  
2) r=-0.27, p>0.05  
3) r=0.34, p>0.05  

4) r=-0.56, p<0.05*  
5) r=-0.58, p<0.01*  
6) r=-0.44, p<0.05*  

Mirón 

Mombiela et 

al., 2017 26  

Outpatients  

63 ±15.8 yrs  
N=112 (51 F, 

61 M)  

Transverse  
  

Snap-shot  

RF  
  

Non-corrected EI  
Grip strength  Female:  

r=-0.52, p<0.01*  
Male:  

r=-0.36, p<0.01*  

Mota et al., 
2018 27  

Recreationally 

active  
69±3 yrs  

N=22 M  

Transverse  
  

Panoramic  

MG Ф, LG Ф, avg: 
MG, LG  

  
Corrected and non-

corrected Ф EI  

1: ISO Plantar-flexion peak torque Ф  
2: 30°·s−1 CON Plantar-flexion (a: peak 

torque; b) RVD) Ф  
3: 120°·s−1 CON Plantar-flexion (a: peak 

torque Ф; b) RVD)  

MG:  
Non-corrected:  

1) r=-0.05, p=0.834 Ф  
2a) r=-0.10, p=0.658 Ф  
2b) r=-0.01, p=0.953 Ф  
3a) r=-0.09, p=0.683 Ф  

3b) r=-0.44, p=0.043* Ф  

LG:  
Non-corrected:  

1) r=-0.26, p=0.243 Ф  
2a) r=0.01, p=0.970 Ф  
2b) r=0.05, p=0.823 Ф  
3a) r=-0.07, p=0.755 Ф  

3b) r=-0.53, p=0.012* Ф  

MG+LG:  
Corrected:  

1) r=-0.04, p=0.0.861 Ф  
2a) r=0.01, p=0.988 Ф  
2b) r=-0.13, p=0.562 Ф  

3a) r=-0.12, p=0.0.587 Ф  
3b) r=-0.49, p=0.020*  
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Corrected:  
1) r=-0.13, p=0.580 Ф  
2a) r=0.01, p=0.975 Ф  
2b) r=-0.20, p=0.365 Ф  
3a) r=-0.16, p=0.469 Ф  
3b) r=-0.33, p=0.139 Ф  

Corrected:  
1) r=-0.16, p=0.466 Ф  
2a) r=0.00, p=0.998 Ф  
2b) r=-0.03, p=0.895 Ф  
3a) r=-0.05, p=0.822 Ф  

3b) r=-0.48, p=0.026* Ф  

Mota & Stock, 

2017 28  
74±6 yrs  

N=13 M  

Sagittal  
  

Snap-shot  

RF  
  

Corrected & non-

corrected Ф EI  

1) ISO knee extension force (a: absolute; 

b: normalized)   
2) Time to task failure (50% MVIC)  

Non-corrected: Ф  
1a) r=-0.49, p=0.093 Ф  
1b) r=-0.10, p=0.745 Ф  
2) r=-0.47, p=0.102 Ф  

Corrected:   
1a) r=-0.52, p=0.068  

1b) r=-0.58, p=0.038*  

2) r=-0.35, p=0.246  

Nishihara et 

al., 2014 29  

73±3.2 yrs  

N=19 (5 F, 14 

M)  

Transverse  
  

Snap-shot  

RF, VI  
  

Non-corrected EI  

1) ISO knee extension torque  
2) Normal walking speed   

3) Fast walking speed   

4) Timed-up-and-go  

RF:  
1) r=-0.08, p>0.05  
2) r=-0.26, p>0.05  
3) r=-0.18, p>0.05  
4) r=-0.19, p>0.05  

VI:  
1) r=-0.12, p>0.05  
2) r=0.16, p>0.05  
3) r=-0.04, p>0.05  
4) r=0.06, p>0.05  

Nishihara et 

al., 2021 30  

F: 73.1±6.3 yrs  
M: 72.7±6.9 

yrs  
N=831 (474 F, 

351 M)  
Healthy: 293 F, 

430 M  
Diabetic: 44 F, 

58 M  

Transverse  
  

Snap-shot  

RF, VI  
  

Non-corrected EI  

1) ISO knee extension force  
2) Grip strength  

3) Timed-up-and-go  
4) Fast walking speed  

5) Normal walking speed  
6) One-leg balance  

Healthy:   
RF:  

1) r=-0.31, p<0.001* Ф  
2) r=-0.22, p<0.001* Ф  
3) r=-0.29, p<0.001* Ф  
4) r=-0.31, p<0.001* Ф  
5) r=-0.26, p<0.001* Ф  
6) r=-0.21, p<0.001* Ф  

VI:  
1) r=-0.34, p<0.001* Ф  
2) r=-0.25, p<0.001* Ф  
3) r=-0.26, p<0.001* Ф  
4) r=-0.28, p<0.001* Ф  
5) r=-0.24, p<0.001* Ф  
6) r=-0.20, p<0.001* Ф  

Diabetic:  
RF:  

1) r=-0.37, p<0.001* Ф  
2) r=-0.39, p<0.001* Ф  
3) r=-0.29, p=0.005* Ф  
4) r=-0.23, p=0.027* Ф  
5) r=-0.29, p=0.004* Ф  
6) r=-0.23, p=0.080 Ф  

VI:  
1) r=-0.43, p<0.001* Ф  
2) r=-0.40, p<0.001* Ф  
3) r=-0.23, p=0.026* Ф  
4) r=-0.21, p=0.043* Ф  
5) r=-0.29, p=0.003* Ф  
6) r=0.012, p=0.928 Ф  

Combined:  
RF:  

1) r=-0.32, p<0.001* Ф  
2) r=-0.24, p<0.001* Ф  
3) r=-0.29, p<0.001* Ф  
4) r=-0.31, p<0.001* Ф  
5) r=-0.27, p<0.001* Ф  
6) r=-0.22, p<0.001* Ф  

VI:  
1) r=-0.35, p<0.001* Ф  
2) r=-0.27, p<0.001* Ф  
3) r=-0.26, p<0.001* Ф  
4) r=-0.27, p<0.001* Ф  
5) r=-0.25, p<0.001* Ф  
6) r=-0.17, p=0.002* Ф  

Olmos et al., 

2019 31  

Un-trained  
65.3±3.2 yrs  

N=15 M  

Transverse  
  

Panoramic  

MG, LG  
  

Corrected and non-
corrected Ф EI  

1) ISO knee extension torque  
2) CON knee extension (60°·s−1) (a: peak 

torque; b: peak power)  
3) Grip strength  

Non-corrected EI Ф:   
MG:  

1) r=-0.10, p=0.734 Ф  
2a) r=-0.48, p=0.073 Ф  
2b) r=-0.31, p=0.261 Ф  
3) r=-0.48, p=0.073 Ф  

LG:  
1) r=0.05, p=0.864 Ф  

2a) r=-0.09, p=0.753 Ф  
2b) r=-0.04, p=0.902 Ф  
3) r=-0.10, p=0.737 Ф  

Corrected EI:  
MG:  

1) r=-0.03, p=0.908 Ф  
2a) r=-0.49, p=0.065 Ф  
2b) r=-0.39, p=0.146 Ф  
3) r=-0.56, p=0.029* Ф  

LG:  
1) r=0.11, p=0.704 Ф  

2a) r=-0.20, p=0.482 Ф  
2b) r=-0.26, p=0.353 Ф  
3) r=-0.07, p=0.807 Ф  

Olmos et al., 

2020 32  
65.3±3.3 yrs  

N=15 M  

Transverse  
  

Snap-shot  

avg: MG, LG  
  

Corrected EI  

ISO plantar-flexion  
1) Absolute torque (a: 50 ms; b: 100 ms; 

c: 200 ms)  
2) Normalized torque (a: 50 ms; b: 100 

ms; c: 200 ms)  
3) Specific torque (a: peak; b: 50 ms; c: 

100 ms; d: 200 ms)  

1a) r=-0.30, p>0.05  
1b) r=-0.22, p>0.05  
1c) r=-0.14, p>0.05  

2a) r=-0.44, p<0.05*  
2b) r=-0.38, p<0.05*  
2c) r=-0.38, p<0.05*  

3a) r=0.01, p>0.05  
3b) r=-0.25, p>0.05  
3c) r=-0.19, p>0.05  
3d) r=-0.15, p>0.05  
4a) r=-0.31, p>0.05  
4b) r=0.00, p>0.05  

5a) r=-0.45, p<0.05*  
5b) r=-0.06, p>0.05  
6a) r=-0.25, p>0.05  
6b) r=-0.06, p>0.05  
7a) r=-0.34, p>0.05  
7b) r=-0.18, p>0.05  
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4) Absolute RTD (a: 0-50 ms; b: 100-

200 ms)  
5) Normalized RTD (a: 0-50 ms; b: 100-

200 ms)  
6) Specific RTD (a: 0-50 ms; b: 100-200 

ms)  
7) Absolute impulse (a: 0-50 ms; b: 100-

200 ms)   

Osawa et al., 

2017 33  

88-92 yrs  
N=108 (45 F, 

52 M)  

Transverse  
  

Snap-shot  

avg: RF, VI  
  

Non-corrected EI  

1) Timed-up-and-go  
2) Sit-to-stand×30s  

1) r=-0.51, p<0.05* ϰ  
2) r=0.95, p<0.05* ϰ  

Palmer et al., 

2020 34  
73±4 yrs  

N=19 M  

Transverse  
  

Panoramic  

avg: BF, 

semitendinosus, 

semimembranosus  
  

Corrected EI  

1) Eyes closed postural stability (Sway 

Index)  1) r=0.47, p=0.040*  

Palmer & 
Farrow, 2022 

35  

Healthy  
67±4 yrs  

N=20 F  

Transverse  
  

 Panoramic  

VL  
  

Corrected & non-
corrected EI  

1) Timed-up-and-go  
2) 6 min walk test  

Non-corrected EI:  
1) r=0.55, p=0.012*  
2) r=-0.46, p=0.040*  

Corrected EI:  
1) r=0.43, p=0.105  
2) r=-0.37, p=0.126  

Palmer & 

Thompson 
2017 36  

Active  
72±5 yrs  
N=15 M  

Transverse  
  

Panoramic  

avg: BF, 

semitendinosus, 

semimembranosus  
  

Non-corrected EI  

ISO knee flexion torque (a: maximal; b: 

RFD)  
1a) r=-0.81, p<0.05* ϰ  
1b) r=-0.95, p<0.05* ϰ  

Paris et al., 

2022 37  

Community 

dwelling  
75.4±7.9 yrs  

N=32 M  

Transverse  
  

Snap-shot  

RF, LG, TA, BB, 

TB, rectus 
abdominis  

  
Non-corrected EI  

1) ISO knee extension torque  
2) ISO knee flexion torque  

3) ISO elbow extension torque  
4) ISO elbow flexion torque  

5) CON knee extension peak power (a: 

60º·s-1; b: 180º·s-1)  
6) Grip strength  

7) Sit-to-stand×30s  
8) 6-min walk distance  

RF:  
1) r=-0.41, p=0.038*  

2) r=-0.55, p=0.001* Ф  
3) r=-0.53, p=0.002* Ф  
4) r=-0.53, p=0.002* Ф  
5a) r=-0.47, p=0.025*  
5b) r=-0.48, p=0.028*  

6) r=-0.36, p=0.046* Ф  
7) r=-0.11, p=0.16 Ф  
8) r=-0.17, p=0.34 Ф  

LG:  
1) r=-0.05, p=0.804 Ф  
2) r=-0.05, p=0.798 Ф  
3) r=-0.16, p=0.387 Ф  
4) r=-0.20, p=0.265 Ф  
5a) r=0.04, p=0.828 Ф  
5b) r=0.04, p=0.848 Ф  
6) r=-0.08, p=0.685 Ф  
7) r=-0.25, p=0.323 Ф  
8) r=-0.03, p=0.859 Ф  

Tibialis anterior:  
1) r=-0.38, p= Ф  
2) r=-0.45, p= Ф  
3) r=-0.53, p= Ф  
4) r=-0.47, p= Ф  
5a) r=-0.26, p= Ф  
5b) r=-0.27, p= Ф  
6) r=-0.50, p= Ф  
7) r=-0.25, p= Ф  
8) r=-0.16, p= Ф  

BB:  
1) r=-0.08, p= Ф  
2) r=-0.40, p= Ф  
3) r=-0.44, p= Ф  

4) r=-0.49, p=0.040*  
5a) r=-0.11, p= Ф  
5b) r=-0.14, p= Ф  
6) r=-0.31, p= Ф  
7) r=-0.15, p= Ф  
8) r=-0.08, p= Ф  

TB:  
1) r=-0.28, p=0.035* Ф  
2) r=-0.47, p=0.009* Ф  
3) r=-0.59, p=0.002* Ф  
4) r=-0.57, p=0.007* Ф  
5a) r=-0.27, p=0.146 Ф  
5b) r=-0.27, p=0.139 Ф  
6) r=-0.53, p=0.004* Ф  
7) r=-0.30, p=0.244 Ф  
8) r=-0.22, p=0.380 Ф  
Rectus abdominis:  

1) r=-0.28, p=0.120 Ф  
2) r=-0.20, p=0.270 Ф  
3) r=-0.07, p=0.708 Ф  

4) r=-0.38, p=0.033* Ф  
5a) r=-0.21, p=0.250 Ф  
5b) r=-0.21, p=0.260 Ф  
6) r=-0.15, p=0.404 Ф  

7) r=-0.47, p=0.005* Ф  
8) r=-0.30, p=0.097 Ф  

Rech et al., 
2014 38  

Healthy, 

Active  
70.3±6.2 yrs  

N=45 F  

Transverse  
  

Snap-shot  

RF, VI, VL, VM, 

Quadriceps (avg: 
RF, VI, VL, VM)  

  

1) ISO knee extension torque  
2) RTD (a: 0-50 ms; b: 0-100 ms; c: 0-

250 ms; d: 0-300 ms)  
3) Grip strength  

RF:  

1) r=-0.31, p<0.05*  
2a) r=-0.27, p>0.05  

2b) r=-0.31, p<0.05*  

VI:  

1) r=-0.45, p<0.01*  
2a) r=-0.20, p>0.05  
2b) r=0.30, p>0.05  

Quadriceps:  

1) r=-0.41, p<0.01*  
2a) r=-0.29, p>0.05  

2b) r=-0.35, p<0.05*  
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Non-corrected EI  4) Sit-to-stand×30s  

5) Usual gait speed  
  

2c) r=-0.31, p<0.05*  
2d) r=-0.31, p<0.05*  
4) r=0.51, p<0.01*  
5) r=-0.35, p<0.05*  

VL:  
1) r=-0.40, p<0.05*  
2a) r=-0.43, p<0.01*  
2b) r=-0.44, p<0.01*  
2c) r=-0.42, p<0.01*  
2d) r=-0.64, p<0.01*  
4) r=0.41, p<0.01*  
5) r=-0.21, p>0.05  

2c) r=0.36, p<0.05*  
2d) r=0.38, p<0.05*  
4) r=-0.28, p>0.05  
5) r=-0.15, p>0.05  

VM:  
1) r=-0.39, p<0.01*  
2a) r=-0.24, p>0.05  
2b) r=0.30, p>0.05  
2c) r=0.36, p<0.05*  
2d) r=0.38, p<0.05*  
4) r=-0.43, p<0.01*  
5) r=-0.20, p>0.05  

2c) r=-0.39, p<0.05*  
2d) r=-0.39, p<0.05*  
3) r=-0.33, p<0.05*  
4) r=-0.49, p<0.01*  
5) r=-0.27, p>0.05  

  
  

*Correlations with grip strength 
not reported for individual 

quadriceps muscle 

echogenicity*  
  

Stock et al., 
2018 39  

74±7 yrs  

N=23 (12 F, 11 

M)  

Transverse  
  

Panoramic  

RF  
  

Corrected & non-

corrected EI  

1) ISO knee extensor normalized torque  

2) RTD 0-200 ms  
3) 10 m gait speed  

4) 400 m gait speed  

Non-corrected EI:  

1) r=−0.12, p=0.593   

2) r=−0.21, p=0.349   

3) r=−0.05, p=0.844   
4) r=0.06, p=0.787  

Corrected EI:  
1) r=−0.50, p=0.018*  
2) r=−0.43, p=0.049*  
3) r=−0.41, p=0.066  
4) r=−0.41, p=0.065  

Strasser et al., 

2013 40  

67.8±4.8 yrs  

N=26 

(participant sex 
not provided)  

Transverse  
  

Snap-shot   

RF, VL, VI, VM  
  

Non-corrected EI  
ISO knee extension force   RF:   

r=0.30, p>0.05  
VL:   

r=-0.27, p>0.05  
VI:  

r=-0.34, p>0.05  
VM:  

r=-0.10, p>0.05  

Taniguchi et 

al., 2017 41  
74.1±4.9 yrs  

N=179 F  

Transverse  
  

Snap-shot  

RF  
  

Non-corrected EI  
ISO knee extension force   r=-0.32, p<0.05*  

Watanabe et 

al., 2013 42  
74.4±5.9 yrs  

N=184 M  

Transverse  
  

Snap-shot  

RF  
  

Non-corrected EI  
ISO knee extension torque   r=−0.33, p<0.001*   

Wearing et al., 

2019 43  

Nursing Home 

Residents   

85.6±7.1 yrs  
N=30 (23 F, 7 

M)  

Transverse  
  

Snap-shot  

RF, BB  
  

Non-corrected EI  

1) ISO knee extension torque Ф  
2) ISO elbow flexion torque Ф  

3) Grip strength Ф  
4) Sit-to-stand Ф  

RF:  
1) r=-0.16, p=0.434  
2) r=-0.47, p=0.11*  
3) r=-0.26, p=0.169  
4) r=0.01, p=0.976  

BB:  
1) r=-0.19, p=0.355  
2) r=-0.24, p=0.221  
3) r=-0.16, p=0.411  
4) r=0.15, p=0.598  

Wilhelm et al., 

2014 44  

Sedentary 
Healthy  

66.1±4.5 yrs  

N=50 M  

Transverse  
  

Snap-shot  

RF, VL, VI, VM, 

Quadriceps (avg: 

RF, VL, VI, VM)  
  

Non-corrected   

1) ISO knee extension torque   
2) RTD (a: 0-50 ms; b: 0-200 ms)  

3) CON knee extension (a: 1-RM; b: 

peak power; c: average power)  

4) Jump (a: peak power; b: average 

power)  

5) Sit-to-stand reps×30s   

RF:  

1) r=-0.46, p<0.05*  
2a) r=-0.45, p<0.05*  
2b) r=-0.23, p>0.05  
3a) r=-0.50, p<0.05*  
3b) r=-0.29, p<0.05*  
3c) r=-0.29, p<0.05*  
4a) r=-0.51, p<0.05*  
4b) r=-0.57, p<0.05*  
5) r=-0.30, p<0.05*  

VL:  

1) r=-0.55, p<0.05*  
2a) r=-0.30, p<0.05*  
2b) r=-0.39, p<0.05*  
3a) r=-0.56, p<0.05*  
3b) r=-0.36, p<0.05*  
3c) r=-0.52, p<0.05*  

VI:  

1) r=-0.48, p<0.05*  
2a) r=-0.19, p>0.05  

2b) r=-0.28, p<0.05*  
3a) r=-0.50, p<0.05*  
3b) r=-0.34, p<0.05*  
3c) r=-0.43, p<0.05*  
4a) r=-0.59, p<0.05*  
4b) r=-0.59, p<0.05*  
5) r=-0.43, p<0.05*  

VM:  

1) r=-0.64, p<0.05*  
2a) r=-0.39, p<0.05*  
2b) r=-0.57, p<0.05*  
3a) r=-0.66, p<0.05*  
3b) r=-0.44, p<0.05*  
3c) r=-0.52, p<0.05*  

Quadriceps:  
1) r=-0.63, p<0.05*  
2a) r=-0.32, p<0.05*  
2b) r=0.50, p<0.05*  
3a) r=-0.66, p<0.05*  
3b) r=-0.41, p<0.05*  
3c) r=-0.50, p<0.05*  
4a) r=-0.75, p<0.05*  
4b) r=-0.74, p<0.05*  
5) r=-0.50, p<0.05*  
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4a) r=-0.73, p<0.05*  
4b) r=-0.69, p<0.05*  
5) r=-0.41, p<0.05*  

  

4a) r=-0.64, p<0.05*  
4b) r=-0.65, p<0.05*  
5) r=-0.60, p<0.05*  

Wilson et al., 

2019 45  

Healthy  
F: 71 yrs; M: 

76 yrs  
N=39 (27 F, 

13M)  
Frail  

F: 85.5 yrs; M: 

77.5 yrs  
N=31 (17 F, 14 

M)  

Transverse  
  

Snap-shot  

RF  
  

Non-corrected EI  

1) Grip strength (body-mass 

normalized)  
2) Walk time  

3) Short Physical Performance Battery  

Healthy (n=31 Ф):   
1) r=-0.24, p=0.194 Ф  
2) r=0.03, p=0.882 Ф  
3) r=-0.11, p=0.558 Ф  

Frail (n=16 Ф):   
1) r=0.21, p=0.436 Ф  

2) r=0.69, p=0.003* Ф  
3) r=0.15, p=0.584 Ф  

Combined (n=47 Ф):   
1) r=-0.33, p=0.025* Ф  
2) r=0.42, p=0.004* Ф  
3) r=-0.31, p=0.031* Ф  

Yamada et al., 

2017 46  

F: 79.7±6.9 yrs  
M: 81.6±7.4 

yrs  
N=347 (247 F, 

100 M)  
‘Normal’ 

n=126  
‘Presarcopenia’ 

n=38  
‘Dynapenia’ 

n=102  
‘Sarcopenia’ 

n=81  

Transverse  
  

Snap-shot  

RF, VI, Quadriceps 
(avg; RF, VI)  

  
Non-corrected EI  

1) ISO knee extension torque (a: 
absolute, b: normalized)  

2) Grip strength  
3) Timed-up-and-go  

4) Sit-to-stand×5  
5) Maximal walking speed  

6) One-leg balance  

Female:   
RF:  

1a) r=-0.27, p<0.05* ϰ  
1b) r=-0.94, p<0.05* ϰ  
2) r=-0.88, p<0.05* ϰ  
3) r=-0.91, p<0.05* ϰ  
4) r=-0.91, p<0.05* ϰ  
5) r=-0.94, p<0.05* ϰ  
6) r=-0.73, p<0.05* ϰ  

VI:  
1a) r=-0.47, p<0.05* ϰ  
1b) r=-0.86, p<0.05* ϰ  
2) r=-0.58, p<0.05* ϰ  
3) r=-0.76, p<0.05* ϰ  
4) r=-0.75, p<0.05* ϰ  
5) r=-0.86, p<0.05* ϰ  
6) r=-0.36, p<0.05* ϰ  

Quadriceps:  
1a) r=-0.13, p<0.05* ϰ  
1b) r=-0.93, p<0.05* ϰ  
2) r=-0.83, p<0.05* ϰ  
3) r=-0.90, p<0.05* ϰ  
4) r=-0.88, p<0.05* ϰ  
5) r=-0.93, p<0.05* ϰ  
6) r=-0.61, p<0.05* ϰ  

Male:   
RF:  

1a) r=-0.13, p>0.05 ϰ  
1b) r=0.95, p<0.05* ϰ  
2) r=-0.81, p<0.05* ϰ  
3) r=-0.91, p<0.05* ϰ  
4) r=-0.92, p<0.05* ϰ  
5) r=-0.95, p<0.05* ϰ  
6) r=-0.73, p<0.05* ϰ  

VI:  
1a) r=-0.54, p<0.05* ϰ  
1b) r=-0.86, p<0.05* ϰ  
2) r=-0.31, p<0.05* ϰ  
3) r=-0.74, p<0.05* ϰ  
4) r=-0.75, p<0.05* ϰ  
5) r=-0.86, p<0.05* ϰ  
6) r=-0.41, p<0.05* ϰ  

Quadriceps:  
1a) r=-0.37, p<0.05* ϰ  
1b) r=0.94, p<0.05* ϰ  
2) r=-0.71, p<0.05* ϰ  
3) r=-0.81, p<0.05* ϰ  
4) r=-0.90, p<0.05* ϰ  
5) r=-0.94, p<0.05* ϰ  
6) r=-0.61, p<0.05* ϰ  

Yamaguchi et 

al., 2019 47  

Community 

dwelling  
~75±9 yrs  

N=139 (74 F, 

65 M)  

Transverse  
  

Snap-shot  

Masseter  
  

Non-corrected EI  

1) Grip strength  
2) Normal walking speed  

1) r=-0.42, p<0.05*  
2) r=-0.27, p<0.05*  

Yoshiko et al., 

2018 48  

78±8 yrs  
N=22 (14 F, 8 

M)  

Transverse  
  

Snap-shot  

Appendicular (avg: 

RF, BF, TB), Axial 
(multifidus)  

  
Non-corrected EI  

1) ISO knee extensor torque  
2) Grip strength  

3) Timed-up-and-go  
4) Sit-to-stand  

5) 5 m normal speed walk  

6) 5 m maximal speed walk  
  7) Functional reach  

Appendicular:  

1) r=-0.19, p>0.05  
2) r=-0.11, p>0.05  
3) r=0.38, p>0.05  

4) r=-0.31, p>0.05  

5) r=-0.04, p>0.05  

6) r=-0.16, p>0.05  
7) r=-0.32, p>0.05  

Axial:  

1) r=-0.59, p<0.05*  
2) r=-0.44, p<0.05*  
3) r=0.57, p<0.05*  

4) r=-0.50, p<0.05*  

5) r=-0.27, p>0.05  

6) r=-0.42, p<0.05*  
7) r=-0.44, p<0.05*  

Yoshiko et al., 
2019 49  

Community 

dwelling  
73.7±2.8 yrs  

N=209 F & M  

Transverse  
  

Snap-shot  

avg: RF, VL  
  

Non-corrected EI  

1) Grip strength  
2) Sit-to-stand  

3) Timed-up-and-go  
4) Stand from floor  

5) Fast walking speed  

Low EI:   
1) r=-0.84 ϰ  
2) r=-0.99 ϰ  
3) r=-0.99 ϰ  
4) r=-0.99 ϰ   

Medium EI:   
1) r=-0.93 ϰ  
2) r=-0.99 ϰ  
3) r=-0.99 ϰ  
4) r=-0.99 ϰ   

High EI:   
1) r=-0.97 ϰ  
2) r=-0.99 ϰ  
3) r=-0.99 ϰ  
4) r=-0.99 ϰ   
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 248 

 249 

 250 

6) Normal walking speed  
7) 6-min walk distance  

5) r=-0.99 ϰ  
6) r=-0.99 ϰ  
7) r=-0.98 ϰ  

5) r=-0.99 ϰ  
6) r=-0.99 ϰ  
7) r=-0.98 ϰ  

5) r=-0.99 ϰ  
6) r=-0.99 ϰ  
7) r=-0.97 ϰ  

Yoshiko et al., 

2021 50    

72.5±5.4 yrs  

N=80 (43 F, 37 
M)  

Transverse  
  

Snap-shot  

RF, VL, Quadriceps 
(avg: RF, VL)  

  
Non-corrected EI  

1) Grip strength  
2) Sit-to-stand (a: time 10 reps; b: chair 

rise time; c: ground reaction force; d: 
RFD)  

3) 5 m maximal speed walk  

RF:   
1) r=-0.91, p<0.05* ϰ  

2a) r=0.12, p>0.05  
2b) r=-0.03, p>0.05  
2c) r=-0.12, p>0.05  
2d) r=-0.09, p>0.05  

3) r=-0.98, p<0.05* ϰ  

VL:   
1) r=-0.91, p<0.05* ϰ  

2a) r=0.21, p>0.05  
2b) r=-0.09, p>0.05  
2c) r=-0.15, p>0.05  
2d) r=-0.14, p>0.05  

3) r=-0.98, p<0.05* ϰ  

Quadriceps:   
1) r=-0.92, p<0.05* ϰ  

2a) r=0.19, p>0.05  
2b) r=-0.07, p>0.05  
2c) r=-0.15, p>0.05  
2d) r=-0.13, p>0.05  

3) r=-0.99, p<0.05* ϰ  

Yoshiko et al., 
2022 51  

Tennis players  
70.8±5.3 yrs  

N=38  
(16 F, 22 M)  

  
Healthy non-

active  
N=38  

71.6±5.1 yrs  
(16 F, 22 M)  

Transverse  
  

Snap-shot  

RF, VL, quadriceps 
(avg: RF, VL)  

  
Corrected and non-

corrected  

1) ISO knee extension torque  
2) Sit-to-stand×30s  

  

Corrected RF:  
Tennis  

1) r=-0.58, p<0.05* ϰ  
2) r=0.93, p<0.05* ϰ  

Control  
1) r=-0.38, p<0.05* ϰ  
2) r=0.93, p<0.05* ϰ  
Non-corrected RF:  

Tennis  
1) r=-0.77, p<0.05* ϰ  
2) r=0.78, p<0.05* ϰ  

Control  
1) r=-0.69, p<0.05* ϰ  
2) r=0.89, p<0.05* ϰ  

Corrected VL:  
Tennis  

1) r=-0.68, p<0.05* ϰ  
2) r=0.93, p<0.05* ϰ  

Control  
1) r=-0.59, p<0.05* ϰ  
2) r=0.91, p<0.05* ϰ  
Non-corrected VL:  

Tennis  
1) r=-0.78, p<0.05* ϰ  
2) r=0.89, p<0.05* ϰ  

Control  
1) r=-0.76, p<0.05* ϰ  
2) r=0.87, p<0.05* ϰ  

Corrected quadriceps  
Tennis  

1) r=-0.64, p<0.05* ϰ  
2) r=0.93, p<0.05* ϰ  

Control  
1) r=-0.49, p<0.05* ϰ  
2) r=0.93, p<0.05* ϰ  

Non-corrected quadriceps:  
Tennis  

1) r=-0.78, p<0.05* ϰ  
2) r=0.90, p<0.05* ϰ  

Control  
1) r=-0.73, p<0.05* ϰ  
2) r=0.89, p<0.05* ϰ  

Abbreviations: Δ=change, yrs=years old, m=meter, min=minute, s=second, ISO=isometric, CON=concentric, BB=biceps brachii, TB=triceps brachii, RF=rectus femoris, MG=medial gastrocnemius, LG=lateral gastrocnemius, VL=vastus lateralis, 
VI=vastus intermedius, VM=vastus medialis, UL=upper limb, LL=lower limb, EI=echo intensity, RFD=rate of force development, RTD=rate of torque development, RVD=rate of velocity development, TA=tibialis anterior.  
Data are presented as mean ± standard deviation. *=statistically significant (p<0.05) correlation. Ф=Unpublished data provided by authors upon request. ϰ=calculated from mean, SD and n data (p-values are based on 95% confidence intervals).  
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Scans were collected in the transverse plane in 46 studies,7,12,14–17,19–24,26–30,32–36,38–44,46–62 251 

with four obtaining sagittal plane images,11,18,37,44 one study utilized both transverse and sagittal 252 

scanning planes.44 Snap-shot images were collected in 39 studies,7,11,12,14,17,18,20–24,26–29,32,33,35–42,44–253 

47,49,53,55–62 with 11 using panoramic/extended field-of-view technologies.15,16,19,30,34,43,48,50–52,54 The 254 

scanning plane and scanning method could not be deduced in a single study.31 Non-corrected 255 

echogenicity was used in 49 studies,7,11,12,14–20,22–24,26–49,51–62 while subcutaneous fat-correction was 256 

reported or obtained in 12 studies.15,16,18,19,21,30,40,48,50,51,54,59 Both non-corrected and corrected 257 

values and/or correlations were found or obtained from 10 studies.15,16,18,19,30,40,48,51,54,59  258 

 259 

The rectus femoris was the most common (n=33) isolated muscle included in 260 

correlations,7,11,12,14,17,18,20,22–24,28,29,31–37,39–41,43,46,47,53–57,59–62 followed by the vastus lateralis 261 

(n=11),12,28,29,36,38,39,51,53,56,59,62 medial gastrocnemius (n=7),15,16,32,33,36,40,48 vastus intermedius 262 

(n=7),12,20,41,47,53,56,57 lateral gastrocnemius (n=4),15,22,40,48 biceps brachii (n=4),22,23,32,33 vastus 263 

medialis (n=3),12,53,56 tibialis anterior (n=3),22,36,42 and triceps brachii (n=3).22,32,33 Single studies 264 

reported correlations with the multifidus,44 erector spinae,44 gluteus medius,38 masseter,58 psoas 265 

major,44 or rectus abdominis22 muscles. Several studies also pooled multiple muscles including all 266 

four quadriceps muscles (n=4),27,41,53,56 rectus femoris and vastus lateralis (n=7),28–30,57,59,61,62 267 

rectus femoris and vastus intermedius (n=2),49,57 biceps brachii and the wrist flexors (n=1),45 lateral 268 

gastrocnemius and soleus (n=1),26 rectus femoris, biceps femoris and triceps brachii (n=1),60 rectus 269 

femoris, vastus intermedius, medial gastrocnemius and lateral gastrocnemius (n=1),19 and rectus 270 

femoris, vastus lateralis, tibialis anterior and medial gastrocnemius (n=1).45  271 

 272 
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 The most common functional test was peak force or torque during isometric knee extension 273 

(n=22)7,12,14,17,18,20,22,23,27,31,35,39,43,47,48,53–57,59,60 or flexion (n=2),22,52 followed by measures of grip 274 

strength (n=20),11,14,20,22–24,28,32,33,37,40,45,46,48,53,57,58,60–62 walking speed 275 

(n=16),14,17,20,32,33,36,40,44,45,47,53,54,57,58,60,61 sit-to-stand (n=16),22,23,28,29,38,40,41,43,49,53,56,57,59–62 timed 276 

up-and-go (n=10),17,20,38,45,47,49,51,57,60,61 concentric knee extension force or power, 277 

(n=8)11,22,30,31,39,45,48,56 isometric or concentric plantar-flexion (n=5) strength, power or velocity, 278 

15,16,19,26,48 single leg balance or posture (n=5),17,20,38,50,57 isometric elbow flexion (n=2)22,23 or 279 

extension (n=1),22 sit-up (n=2),28,29 supine to stand (n=2),28,29 ‘functional reach’ score (n=2),40,60 280 

or short physical performance battery (n=2).24,45 Single studies reported correlations between 281 

echogenicity and the ‘functional independence measure gait score’,27 heel-rise repetitions,40 dorsi-282 

flexion,42 or hip flexion force,34 jump height or power,56 knee extension fatigue,30 stand from 283 

floor,61 or the Tinetti performance test.45 Ten studies included at least one measure of rapid 284 

force/torque/velocity production.16,19,21,34,39,52–54,56,62 285 

 286 

3.2. Knee extension strength 287 

Twenty studies, including 2924 participants, reported or later provided correlations 288 

between quadriceps echogenicity and maximal isometric or concentric knee extension force or 289 

torque.7,12,17,18,20,22,23,23,27,30,31,35,37,39,43,45,47,54–56 Meta-analysis determined a moderate (r=-0.36 290 

[95%CI: -0.38 to -0.32], p<0.001) negative correlation between quadriceps echogenicity and knee 291 

extension strength in older adults (Figure 2A). Sub-group analyses revealed no significant 292 

differences between correlations between knee extension strength and individual quadriceps 293 

muscles (Figure 2B). However, despite relatively few studies for comparison, the vastus medialis 294 

muscle holds larger correlations (r=-0.41 [95%CI: -0.65 to -0.10], p=0.01) when compared to 295 
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vastus intermedius (r=-0.35 [95%CI: -0.41 to -0.30], p<0.001), vastus lateralis (r=-0.30 [95%CI: 296 

-0.55 to -0.02], p=0.04), or rectus femoris (r=-0.34 [95%CI: -0.37 to -0.30], p<0.001) muscles. 297 

Interestingly, combining the rectus femoris with vastus lateralis echogenicity (r=-0.60 [95%CI: -298 

0.77 to -0.36], p<0.001) outperformed combining all four quadriceps muscles (r=-0.48 [95%CI: -299 

0.72 to -0.13], p=0.01). Additionally, the rectus femoris and vastus intermedius combination 300 

(Fisher’s Z lower 95%CI: -0.38) was superior to rectus femoris in isolation (Fisher’s Z upper 301 

95%CI: -0.39). 302 

 303 

 304 
Figure 2. Meta-analytical forest plot of Fisher’s Z correlations between quadriceps echogenicity 305 

and maximal isometric or concentric force or torque (panel A) with sub-group analysis for 306 

individual quadriceps muscles (panel B). *=studies where multiple muscles and correlations were 307 

averaged. 308 

 309 

3.3. Grip strength 310 

 Sixteen studies, including 1912 participants, reported or provided correlations between 311 

muscle echogenicity and grip strength.11,14,20,22–24,28,32,33,37,40,45,46,48,53,58 Meta-analysis determined 312 

a moderate (r=-0.31 [95%CI: -0.37 to -0.24], p<0.001) negative correlation between echogenicity 313 

and grip strength (Figure 3). No significant differences were found when comparing correlations 314 

between different individual muscles via sub-group analyses. 315 
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 316 
Figure 3. Meta-analytical forest plot of Fisher’s Z correlations between echogenicity and grip 317 

strength. *=studies where multiple muscles and correlations were averaged. 318 

 319 

3.4. Walking speed 320 

Within study comparison demonstrated that preferred or normal walking speed (r=-0.11. 321 

range: -0.46 to 0.17) held smaller correlations (p=0.015) with muscle echogenicity when compared 322 

to maximal walking speed (r=-0.17, range: -0.51 to 0.15).20,36,40,44,47,60,61 Therefore, the meta-323 

analysis only included maximal walking speed where possible. The meta-analysis included 17 324 

studies, including 2972 participants.14,17,20,22,24,28,29,33,36,40,44,45,51,53,54,58,60 Meta-analysis determined 325 

a small (r=-0.23 [95%CI: -0.29 to -0.16], p<0.001) negative correlation between echogenicity and 326 

walking speed (Figure 4). Not enough between-study consistency existed to examine sub-analysis 327 

of individual muscle groups. 328 
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 329 
Figure 4. Meta-analytical forest plot of Fisher’s Z correlations between echogenicity and walking 330 

speed. *=studies where multiple muscles and correlations were averaged. 331 

 332 

3.5. Sit-to-stand 333 

 A total of 12 studies with 666 elderly participants were included in the meta-analysis 334 

determining a moderate (r=-0.34 [95%CI: -0.44 to -0.23], p<0.001) negative correlation between 335 

echogenicity and sit-to-stand performance (Figure 5A).22,23,28,29,38,40,41,43,53,56,60,62 When examining 336 

individual muscles (Figure 5B), the combination of all four quadriceps muscles (r=-0.61 [95%CI: 337 

-0.74 to -0.43], p<0.001) appears to have superior correlations when compared to rectus femoris 338 

(r=-0.25 [95%CI: -0.37 to -0.14], p<0.001), vastus lateralis (r=-0.38 [95%CI: -0.51 to -0.21], 339 

p<0.001), rectus femoris with vastus lateralis (r=-0.28 [95%CI: -0.45 to -0.10], p=0.03), or vastus 340 

intermedius (r=-0.45 [95%CI: -0.70 to -0.10], p<0.001). While only incorporating two studies, 341 

vastus medialis (r=-0.55 [95%CI: -0.73 to -0.37], p<0.001) outperformed all other individual 342 

quadriceps muscles when correlating to sit-to-stand performance. 343 
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 344 

 345 
Figure 5. Meta-analytical forest plot of Fisher’s Z correlations between quadriceps echogenicity 346 

and sit-to-stand performance (panel A) with sub-group analysis for individual quadriceps muscles 347 

(panel B). *=studies where multiple muscles and correlations were averaged. 348 

 349 

3.6. Timed up-and-go 350 

 Seven studies, incorporating 2172 participants, were included in a meta-analysis. The 351 

meta-analysis determined a small (r=-0.26 [95%CI: -0.35 to -0.18], p<0.001) negative correlation 352 

between echogenicity and timed up-and-go performance (Figure 6).17,20,38,45,47,51,60 Sub-group 353 

analyses could not be confidently performed. However, it seems plausible that vastus lateralis (r=-354 

0.55 to -0.51) echogenicity is a better predictor of timed up-and-go performance than the rectus 355 

femoris (r=-0.29 to -0.19) or vastus intermedius (r=-0.26 to 0.06). Interestingly, the largest single 356 

correlations with timed up-and-go performance were multifidus (r=-0.57) and gluteus medius (r=-357 

0.49) echogenicity. 358 
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 359 
Figure 6. Meta-analytical forest plot of Fisher’s Z correlations between echogenicity and timed 360 

up-and-go performance. *=studies where multiple muscles and correlations were averaged. 361 

 362 

3.7. Rapid force production 363 

 Ten studies report measures of rapid force,16,52,62 torque,21,34,53,54,56 or velocity19,39 364 

development. Correlations with echogenicity were generally small and highly variable (r=-0.15; 365 

range: -0.42 to 0.25). Methods were too variable for meta-analyses to be confidently performed. 366 

 367 

3.8. Additional considerations 368 

Other physical performance measures (e.g., sit-up, functional batteries, balance tasks) did 369 

not exist in large enough quantities to warrant data pooling. However, correlations were trivial to 370 

large (r=-0.58 to 0.23) and highly variable. Funnel plots illustrate minimal risk of publication bias 371 

Figure 7. 372 

 373 
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 374 
Figure 7. Funnel plots representing echogenicity correlations with knee extension strength (panel 375 

A), grip strength (panel B), walking speed (panel C), sit-to-stand (panel D), and timed up-and-go 376 

(panel E) performances, respectively 377 

 378 

4. Discussion 379 

Early identification of skeletal muscle weakness or dysfunction is imperative for early 380 

diagnosis and treatment for older individuals. Ultrasound-derived echogenicity is one potential 381 

method to detect and track changes in muscle composition and loss of function. Therefore, this 382 

systematic review with meta-analyses aimed to compile available research that evaluates the 383 

relationships between muscle echogenicity and measures of muscle functional assessments in older 384 

adults. The meta-analyses, consisting of 7-20 studies, consistently found moderate, negative 385 
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relationships, demonstrating higher measures of echogenicity (lower muscle quality) associated 386 

with lower physical function. However, results were not uniform across all studies.  387 

 388 

This study’s primary and largest meta-analysis examined the relationships between quadriceps 389 

muscle echogenicity and knee extension strength. This pooled analysis included 20 studies and 2924 older 390 

adults7,12,17,18,20,22,23,23,27,30,31,35,37,39,43,45,47,54–56 and demonstrated a modest, negative relationship, with 391 

relatively narrow confidence intervals (r=-0.36 [95%CI: -0.38, -0.32], p<0.001). Quadriceps strength has 392 

demonstrated moderate to strong relationships to functional tasks,23 with lower quadriceps strength 393 

increasing the odds (OR=3 [95%CI, 1.78 to 5.05]) of falls within older adults.64 Further, quadriceps strength 394 

relates to mortality, demonstrating a high utility for patient prognoses.65 The current review demonstrated 395 

that skeletal muscle quality quantified through ultrasound echogenicity might explain a relatively small 396 

variance of knee extensor torque. Prior research has found that echogenicity and muscle volume predict 397 

greater variances of knee extensor torque compared to muscle volume alone,66 which may suggest that 398 

morphological components of skeletal tissue contribute to the muscle’s functionality. The small to moderate 399 

pooled estimates within the current review may support echogenicity as a supplementary outcome to muscle 400 

volume in predicting strength or function. However, quadriceps echogenicity may be an appropriate 401 

surrogate to quantify knee extensor torque and total-body physical function as a stand-alone measure. The 402 

consistent findings of negative relationships may propose the utility of such measures within a screening 403 

protocol in a battery of other assessments. Greater intramuscular adipose tissue is associated with an 8% 404 

risk of mortality67 and has thus been suggested as a time-efficient and noninvasive sarcopenia screen.68 405 

Finally, it should be noted that sub-analysis, which including a limited number of studies excluding the 406 

rectus femoris, demonstrated relatively minimal differences in correlations with knee extensor strength over 407 

different quadriceps muscles. However, the studies combining multiple quadriceps muscles (rectus 408 

femoris+vastus lateralis; rectus femoris+vastus lateralis+vastus intermedius+vastus medialis) demonstrated 409 

the strongest correlations. 410 
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 411 

Like quadriceps strength, the meta-analysis of grip strength demonstrated a modest negative 412 

correlation (r=-0.31 [95%CI: -0.37 to -0.24], p<0.001) with echogenicity. When examining non-meta 413 

data, lower tissue quality in other muscle groups was also negatively related to knee extensor torque. For 414 

example, the multifidous and gastrocnemius echogenicity demonstrated weak to moderate negative 415 

relationships to knee extensor torque.60 Prior research has shown lower muscle quality present across 416 

multiple muscle groups with older individuals – suggesting global changes in muscle morphology, a finding 417 

supported by the present meta-analyses. Mateos-Angulo et al.45 found that the scanning location for muscle 418 

quality is important in collecting different strength measures. Muscle echogenicity contained in the upper 419 

extremity (biceps brachii and superficial wrist flexors) and lower extremity (rectus femoris, vastus lateralis, 420 

medial gastrocnemius, and tibialis anterior) were found to have moderate relationships to knee extensor 421 

torque, but not to hand grip strength.45 Hand-grip strength is a commonly collected measure within older 422 

adults to screen for sarcopenia.1,69 The current review demonstrates its relationship to skeletal muscle 423 

quality to be inconsistent across and within muscle groups (r=-0.52 to -0.02). Chang et al.32 found 424 

significant, negative relationships to hand grip strength when muscle quality was assessed within the biceps 425 

brachii, triceps brachii, and rectus femoris, but not to the medial gastrocnemius. Yoshiko et al.60 averaged 426 

four scanning locations (rectus femoris, biceps femoris, and triceps brachii) and found no significant 427 

relationships to hand-grip strength.  428 

 429 

Relationships to dynamic performance (walking speed: r=-0.23 [95%CI: -0.29 to -0.16], 430 

p<0.001; sit-to-stand: r=-0.34 [95%CI: -0.44 to -0.23], p<0.001; timed up-and-go: r=-0.26 431 

[95%CI: -0.35 to -0.18], p<0.001) were similar, but slightly weaker and less homogenous than 432 

quadriceps strength. Intermuscular adipose fat has been demonstrated to be associated with annual declines 433 

in gait speed, a relationship independent from total body adiposity in men.70 Maximal gait speed in older 434 

adults are influenced by numerous neuromuscular factors, which may limit the predictability of such task 435 
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from quality assessment of a single muscle.71 Also, the number of individual muscles needed to be recruited 436 

and activated for walking tasks may explain the inconsistencies or lack of relationships between a single 437 

muscle group and gait speed. Nevertheless, the relatively similar between-variable pooled correlations, 438 

combined with the sub-analyses, suggest that muscle echogenicity is systemic; thus, poor muscle quality in 439 

one muscle is likely representative of total-body skeletal muscle composition. 440 

 441 

In addition to strength, the current review extracted ten studies that assessed the relationship 442 

between muscle echogenicity and rapid force, torque, or velocity production.16,19,21,34,39,52–54,56,62 Rate of 443 

force/torque/velocity development quantifies the time frame at which these qualities are expressed and often 444 

hold stronger relationships to sport-specific and functional daily tasks than strength alone.72,73 Rapid 445 

strength expression is limited in older, active men compared to a younger cohort.74 Negative, but highly 446 

variable relationships were observed between muscle echogenicity and rapid force expression, though the 447 

methods by which rapid force expression was measured may influence these clinical relationships. Olmos 448 

et al.21 assessed the rate of torque development in terms of absolute (non-normalized), normalized 449 

(normalized to peak torque), or specific (normalized to muscle cross-sectional area) and only found weak, 450 

negative relationships to exist between gastrocnemius echogenicity and plantar-flexion rate of torque 451 

development when normalized to peak torque.21 Additionally, the time domain in calculating rapid force 452 

expression may contribute to the relationships to clinical outcomes. Studies extracted in this review 453 

calculated rapid force from 0-50 ms to 0-200 ms, demonstrating weak to moderate relationships to 454 

echogenicity with each.21,56 455 

 456 

4.1. Limitations and future research directions 457 

 While a substantial number of studies, participants, muscles, functional tests, and analyses 458 

were examined, this systematic review with meta-analyses has limitations. While this review 459 

focused on older adults, ultrasonic muscle quality and composition estimations are potentially 460 
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valuable to various populations, including development through adulthood, athletes, and people 461 

with neuromuscular conditions. Due to general differences in muscle fiber type and body fat 462 

amount and distribution, the effects of sex on the relationships between skeletal muscle 463 

echogenicity is another exciting topic, especially considering the lack of studies reporting 464 

correlations with subcutaneous fat thickness corrected values despite correction resulting in greater 465 

inter-session reliability.75 While one of the strengths of meta-analysis is to balance out studies with 466 

extreme findings, it should be noted that Kawai et al.,17 (N=1239), and Nishihara et al.,20 (N=831) 467 

included the largest sample sizes by a substantial magnitude. Thus, these two studies affected the 468 

knee extension strength, grip strength (only Kawai et al., 2018), walking speed, and timed up-and-469 

go analyses more than others. However, these two studies were never ‘outliers’ compared to the 470 

other relevant studies. Finally, this review included only cross-sectional correlational studies. 471 

Therefore, future meta-analytical reviews may wish to examine the relationships between 472 

longitudinal changes in echogenicity and physical function. 473 

 474 

5. Conclusions 475 

 The results of this systematic review with meta-analyses demonstrate a consistent yet 476 

modest association between skeletal muscle echogenicity and physical function in ageing adults. 477 

Additionally, sub-analyses show minimal between-muscle differences in correlations between 478 

echogenicity and physical function, suggesting that ultrasound-estimated muscle quality and 479 

composition are systemic. However, including multiple muscles tends to improve the predictive 480 

ability of muscle strength measures. Researchers and practitioners should, therefore, understand 481 

echogenicity screenings for muscle-related issues should be supplemented with additional 482 

assessments, such as muscle thickness. Additionally, while researchers could consider combining 483 
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multiple muscles to improve correlational strength, time-poor practitioners can choose to scan a 484 

single, easily accessible muscle to estimate total body muscle composition. 485 
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