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ABSTRACT 

BACKGROUND: Loss of kidney function is a substantial personal and public 

health burden. Kidney function is typically assessed as estimated glomerular filtration 

rate (eGFR) based on serum creatinine. Emerging electronic Medical Records (eMR) 

in UK Biobank present a promising resource to augment the data on longitudinal 

eGFR based on study center visits (SC; n=15,000). However, it is unclear whether 

eMR-based creatinine values can be used for research on eGFR trajectories. 

METHODS: We derived eMR-based serum creatinine values (various 

assays/labs, Jaffe or enzymatic) from UK Biobank “GP-clinical”. We compared these 

with SC-based creatinine in individuals with both measurements available in the 

same calendar year (n=70,231; 2007-2012).  

RESULTS: We found a multiplicative bias for eMR-based creatinine that was 

large, factor 0.84, for 2007, and decreased over time (0.97 for 2013). Deriving eGFR 

based on SC- and bias-corrected eMR-creatinine (CKD-Epi 2021) yielded 454,907 

individuals with ≥1eGFR assessment (2,102,174 assessments). This included 

206,063 individuals with ≥2 assessments (median=6.00 assessments) for a time 

between 1st and last assessment of up to 60.2 years (median time=8.7 years). We 

enriched the dataset with eMR-recorded kidney-relevant events from “GP-clinical” 

(Acute Kidney Injury, End stage Kidney Disease, Nephrectomy, Dialysis, Kidney 

Transplant, Pregnancy, and Diabetes). We illustrated the suitability of this data: e.g. 

we found an annual eGFR decline of 1.04 mL/min/1.73m²/year (95%-CI=1.03-1.05), 

in line with literature and a four-fold steeper decline following Acute Kidney Injury. 

CONCLUSIONS: In summary, our bias-correction of eMR-based creatinine 

values enabled a 4-fold increase in the number eGFR assessments in UK Biobank 

suitable for kidney function research.  
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BACKGROUND 

Accelerated kidney function decline can lead to renal failure, which necessitates 

dialysis or kidney transplantation. While age-related decline in kidney function is 

expected as part of the natural aging process (1), the rate of decline is highly variable 

in the population (2). The underlying reasons for this heterogeneity are not well 

understood. To investigate these reasons, large datasets on kidney function over 

time in the general population and recorded kidney-relevant clinical events are 

needed. However, such longitudinal datasets are sparse.  

The UK Biobank (3) provides an opportunity to advance our understanding of 

kidney function decline in a general adult population. With its vast and diverse cross-

sectional dataset from the study center (SC) assessments, encompassing over 

500,000 participants, it provides an unprecedented resource for studying cross-

sectional kidney function. However, longitudinal data on biomarkers over time, 

including kidney function biomarkers, is currently limited to ~15,000 individuals 

assessed at SC 4 years after baseline. The emergence of electronic Medical Record 

(eMR) data from general practitioners (GP) for UK Biobank participants offers the 

opportunity to augment the existing SC data with longitudinal information. This data 

was released in September 2019 including multiple serum creatinine measurements 

over time and records of severe kidney events. Such eMR-based measurements are 

potential subject to various sources of bias (4). This can be technical measurement 

bias from heterogeneous laboratories and assays. This can also be selection bias, 

when individuals with eMR-based data including creatinine measurements are more 

prone to disease than individuals without eMR data. The usability of this eMR-based 

data to assess kidney function and its potential for meaningful integration with the SC 

data is yet to be fully explored. We estimated the glomerular filtration rate (eGFR) 

based on serum creatinine levels (5). 

Our main objective was thus to augment the existing UK Biobank data on SC-

based eGFR by eMR-based data from GPs (“gp-clinical”, application number 20272) 

to provide a longitudinal data resource for studying kidney function decline. 

Specifically, we (i) extracted and quality-controlled the GP-eMR data on serum 

creatinine, (ii) compared it with SC-based creatinine values; (iii) derived eGFR for the 

combined creatinine values and included recorded kidney-relevant events, and (iv) 

assessed the usability of this combined data for studying kidney function decline.  
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MATERIAL AND METHODS  

UK Biobank data from the Study Center assessment and GP-clinical 

UK Biobank data and SC assessment at baseline and, for a smaller subset of 

participants, at a 4-year follow-up was described previously (3). Briefly, UK Biobank 

is a prospective cohort study that included approximately 500,000 individuals aged 

40-69 years at baseline recruited at 22 study centers in the United Kingdom. The SC 

assessment involved collecting participants’ blood samples and storing aliquots 

frozen at −80°C for further analysis (6). 

Creatinine was measured in serum for all individuals from SC blood drawn at 

baseline and follow-up in a central laboratory according to standardized protocols 

(Enzymatic Beckman Coulter AU5800). We obtained these SC-based serum 

creatinine values (creaSC), the date of the SC visit baseline and follow-up (date-of-

exam), age at that date (age-at-exam), and sex of participants (data fields 30700, 31, 

34, 52 and 53). 

Based on the UK Biobank “GP-clinical” table, we obtained raw creatinine 

values (creaeMR) via read codes (7) (Supplementary Table 1, details 

Supplementary Note 1). 

 

Ascertaining the comparability of creaSC and creaeMR  

Next, we merged creaeMR to creaSC for each person by date of blood draw (“date-of-

exam”). CreaeMR were measured by different laboratories and laboratories were 

starting to implement standards around the year 2009. Therefore, we investigated the 

possibility of a systematic technical bias in creaeMR values that decreased the closer 

the measurement date approached 2009 or some years after (assuming a 

heterogeneous onset of use of standardized products). For this, we compared creaSC 

and creaeMR distributions, values, and via Bland-Altman-plot (8) focusing on 

individuals with both from the same calendar year (using creaeMR closest in time to 

SC blood draw).  

Considering creaSC as gold standard (centralized laboratory; highly 

standardized protocol; using an Enzymatic Beckman Coulter AU5800), we evaluated 

whether creaeMR exhibited a systematic bias: we assumed normally distributed creaSC 

and creaeMR on the log-scale, � � ln ���	
�� �~ ��, ��� and 

�� � ln ���	
����~ ���, ����, respectively. We also assumed an additive error 

consisting of a random component, ��
�~(0,σ�

�

), and a systematic bias, s,  

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 14, 2023. ; https://doi.org/10.1101/2023.12.13.23299901doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.13.23299901


 5 

 

�� � � � � � ��
�. 

This implies that the expected value of X* is ����� � ��� � � � ��
�� � ���� � ���� �

����
��, so that �̂� �  �̂ � � � 0, yielding � � �̂� � �̂. On the original scale, we can derive 

the geometric means of creaeMR and creaSC, exp ���� and exp ���, respectively. Then 

the bias is multiplicative and given as the ratio of these geometric means 

exp��� � exp ��̂�� exp ���⁄  . 

We assumed a differential bias by calendar years (larger in earlier years). Thus, we 

quantified the multiplicative bias (on the original scale) per calendar year, 

exp��	�
�� � exp���	�
�� /exp ��	�
��, among participants with creaeMR and creaSC 

values from the respective calendar year.  

 

Bias-corrected creaeMR 

The above stated error model and bias quantification can also be used to derive bias-

corrected creaeMR, 

���������

�	�
�
� �� � �	�
�, 

where year is the calendar year of the creaeMR measurement. The expected value of 

the corrected creaeMR is then �����������
� � � ���� � �	�
�� � ����� � �	�
� � ��̂ �

�	�
�� � �	�
� � �̂, thus yielding ���������
� ~��, σ�

�

�, with a purely random error 

compared to creaSC,  ���������
� � � � ��

�.  

 For calendar years without individuals that had both creaeMR and creaSC 

available to estimate the bias correction factor, we used �	�
� �
�

�
� �	�
��� � �	�
���, 

or �	�
�  from the first or last year, respectively. We utilized bias-corrected creaeMR for 

further analyses, and merged them to creaSC by person and date-of-exam.  

  

Generating the eGFR data based on creaSC- and creaeMR values 

We utilized the combined data of creaSC and bias-corrected creaeMR to derive eGFR 

(5). For this, we used age-at-exam (i.e. difference between date-at-exam and date-of-

birth) and sex (reported at baseline SC visit). We defined Chronic Kidney Disease 

(CKD) as eGFR <60 mL/min/1.73m²).  

 

Integrating GP-eMR variables on kidney-relevant events  

Next, we extracted GP-eMR data on kidney-relevant events: (i) onset of severe 

kidney events (End-Stage Kidney Disease, ESKD, Nephrectomy; Acute Kidney 
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Injury, AKI), (ii) onset of renal replacement therapy (dialysis, kidney transplantation), 

(iii) onset of other conditions potentially relevant to kidney function (diabetes, 

pregnancy; Supplementary Table 1, Supplementary Note 1).  

 

Statistical Analyses 

For our final dataset including kidney-relevant events and eGFR based on creaSC or 

bias-corrected creaeMR, we derived descriptive statistics of the included UK Biobank 

study participants using SC-baseline information regarding lifestyle (smoking, BMI), 

diabetes (HbA1c>6.5%, self-report or medication) and CKD status (SC-based 

eGFR). Individuals with multiple eMR-based data points were reported to be 

potentially more affected by diseases (4). We thus examined whether individuals in 

GP clinical (GP clinical members) versus not in GP clinical, or, among GP clinical 

members with ≥9 versus 2-8 eMR-based eGFR assessments differed regarding 

lifestyle, diabetes or CKD status.  

To investigate whether the derived data was suitable for research on eGFR 

decline, we estimated annual eGFR decline (and 95%-CI) as difference between last 

and 1st eGFR assessment divided by the number of years in-between. For this, we 

restricted to individuals with ≥2 eGFR assessments at least one year apart, censoring 

eGFR values after onset of kidney-relevant events (for pregnancy, excluding values 

±6 months before and after). We also estimated annual eGFR decline (and 95%-CI) 

around an incident AKI event using eGFR assessments ≥6 months (as close as 

possible) before and after AKI.  
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RESULTS 

Serum creatinine measurements from the SC visits and GP-eMR 

When extracting creaSC from the baseline SC visit (year of exam 2006-2010), we 

yielded measurements for 425,147 individuals. For 16,446 individuals, creaSC was 

available from the follow-up SC visit (year of exam 2012-2013). Together, this 

resulted in 15,314 individuals with 2 creatinine values over time for follow-up time of 

up to 6.11 years in-between (median time= 4.42 years) and 410,965 individuals with 

exactly one creatinine value.  

When extracting creaeMR from “GP-clinical” (7), we yielded 1,701,710 raw 

creatinine values for 199,482 individuals. After quality control, this resulted in 

1,660,581 creaeMR values for 199,968 individuals (Supplementary Figure 1). This 

included 23,188 individuals with exactly 2 creatinine measurements and 151,728 with 

≥3 measurements (median number of measurements per person=7.00, max=288). 

The year of exam (i.e. year of measurement) was as early as 1950 up to 2017 

resulting in a time between 1st and last measurement of up to 60.15 years (median 

time=8.12 years).  

When merging the creaeMR values to the creaSC values by date-of-exam (i.e. 

date of measurement for eMR; date of SC-visit for SC), we yielded 2,102,174 

creatinine values for 454,907 individuals. Thus, the creaeMR values substantially 

extended the longitudinal information on eGFR for UK Biobank participants including 

eGFR trajectories for up to 60.10 years and up to 289 measurements per person 

(Figure 1A&B; among the 206,063 individuals with ≥2 measurements: median time 

between 1st and last assessment=8.71 years; median number of measurements per 

person=6.00).  

 

Bias corrected creaeMR values 

We evaluated whether creaeMR values were comparable to creaSC data. We 

hypothesized that creaeMR measurements conducted in years substantially earlier 

than 2009 were subject to a measurement bias. We further hypothesized that this 

bias became smaller the closer the measurement year was to 2009 and beyond, 

where laboratories started implementing standards for creatinine measurements (9). 

To investigate this, we focused on the 70,231 individuals with creaSC and creaeMR 

values in the same calendar year (year of exam 2007-2010 and 2011&2012). We 

observed higher median creaeMR values compared to creaSC values in earlier years, 
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which gradually converged towards nearly identical median values in 2013, Figure 

2A, Supplementary Figure 2).  

We quantified the bias of creaeMR based on an additive error model on the log-

scale as the difference between mean log (creaeMR) and mean log (creaSC), s. This 

can also be interpreted as a multiplicative error on the original scale, where the bias 

is quantified as factor, exp(s), derived as ratio of the geometric means of creaeMR and 

creaSC (Methods). We found a bias of factor 0.84 for the year 2007, which converged 

to near unity until year 2013 (0.84, 0.84, 0.90, 0.91, 0.95 and 0.97), for the years 

2007-2010 and 2012-2013, respectively, Figure 2B). We obtained nearly the same 

bias estimates when winsorizing extreme values (beyond mean ± standard deviation 

on log-scale: exp(s) =0.84, 0.84, 0.90, 0.91, 0.95 and 0.98), emphasizing the lack of 

influence of extreme values. 

In order to obtain bias-corrected creaeMR values for all individuals, we used the 

derived year-specific correction factors exp��	�
�� to correct creaeMR measurements 

from the respective year (i.e. 2007-2010, 2012 and 2013). For years where the 

correction factor could not be estimated directly, we used proxy correction factors: (i) 

the average of 2010 and 2012 on log-scale for 2011 (0.93); (ii) the 2007 factor for 

measurements before 2007 (0.84), (iii) and 1.0 (no correction) for measurements 

after 2013. When comparing the year-specific distributions of corrected creaeMR with 

creaSC distributions, we now found similar distributions and median values (Figure 

2C).  

 

Description of the resulting UK Biobank dataset on eGFR including eGFR 

trajectories  

Next, we merged creaSC and bias-corrected creaeMR values by date-of-exam and 

derived the eGFR (CKD-EPI 2021 (5)). When comparing the eGFReMR
 with the 

eGFRSC values, we observed the bias before the correction and no bias after the 

correction (Supplementary Figure 3&4). We found that eGFReMR was comparable 

with eGFRSC when regarded as 5-year age groups (Figure 3A). 

The final data comprised 454,907 individuals with ≥1 eGFR assessment based 

on creaSC and/or creaeMR (54.18% women) and with overall 2,102,174 eGFR 

assessments (Table 1). Average age was 55.9 years at the 1st and 59.8 years at the 

last eGFR assessment. Mean eGFR was 95.10 and 91.07 mL/min/1.73m² at 1st and 

last assessment, respectively (Figure 3B&C). The data consisted of (i) 248,844 
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individuals with exactly 1 eGFR assessment, mostly from SC baseline visit (98.26% 

from SC baseline, 0.32% from SC follow-up, 2.21% from eMR), (ii) 33,851 individuals 

with exactly 2 assessments (60.0% of these with one assessment from SC and one 

from eMR), and (iii) 172,212 with ≥3 assessments (i.e. ≥k-2 assessments from eMR, 

k being the number of assessments per person).  

The characteristics of individuals with ≥2 eGFR assessments (age, %women, 

%smoking, BMI, eGFR, and %CKD from SC-baseline) were similar as in the overall 

data, but individuals with ≥10 eGFR assessments were older, with higher BMI, lower 

eGFR, higher %CKD (Table 1). This difference between individuals with many versus 

few assessments was also observed when restricting to individuals that were part of 

GP-clinical data (GP-clinical members), while there was no difference between GP-

clinical members and individuals that were not in GP-clinical (n=199,396 versus 

255,511, respectively; Supplementary Table 2). Thus, we found evidence for a 

selection towards older and less healthy individuals among those with many creaEMR 

values over time compared to fewer creaeMR values, in line with literature (4, 10). 

However, there was no selection observed for being a GP-clinical member versus all 

UK Biobank participants.  

 

Description of eGFR trajectories augmented with kidney-relevant clinical 

events in the resulting UK Biobank dataset 

To determine eGFR trajectories in the UK Biobank dataset, we analyzed 206,063 

individuals with ≥2eGFR assessments over time, finally encompassing 1,853,330 

eGFR assessments as UK Biobank dataset on eGFR trajectories (Table 1). Most of 

these individuals (n=195,885, 95.1%) had ≥1 eGFR assessed from creaeMR, thus 

were members of GP-clinical. Median time between 1st and last assessment was 8.5 

years (IQR: 5.8-11.5; maximum 60.2 years), median number of eGFR assessments 

over time per person was 6.0 (IQR: 3.0-12.0; up to 289 assessments).  

A key aspect when analysing eGFR decline over time is the censoring (i.e. set 

to missing) of eGFR values at or after severe kidney events (ESKD, AKI, 

nephrectomy), after onset of renal replacement therapy (dialysis, kidney 

transplantation), and during or shortly after pregnancy. We identified read codes for 

records of AKI, ESKD, Nephrectomy, Dialysis, Kidney Transplantation and 

Pregnancy, curated based on experts’ knowledge, and we obtained read codes for 

Diabetes (11) (Supplementary Table 1). We merged the corresponding information 
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from UK Biobank “GP-clinical” to the eGFR trajectories by date-of-event compared to 

the date-of-exam for the eGFR assessment (Figure 4, Supplementary Table 3). 

Among the 199,396 individuals with ≥2 eGFR value over time that were GP-clinical 

members (i.e. ≥1 eMR-based eGFR value), we recorded >1000 kidney-relevant 

events (Supplementary Table 3). For example, 94 individuals had AKI before the 1st 

eGFR assessment and 563 had an AKI event after the 1st eGFR assessment. We 

compared the 563 individuals with a recorded AKI event to the 171,565 individuals 

with no recorded AKI event. Individuals with AKI also had more eGFR assessments 

over time (median=4.0, IQR: 1.0-14.0) compared to those without AKI (median=1.0, 

IQR: 1.0-5.0). Overall, there were more individuals with a severe kidney event or 

onset of renal replacement therapy among the individuals with ≥10 eGFR 

assessments than among the GP-clinical members (i.e. ≥1 eMR-eGFR assessment) 

 

Some aspects of UK Biobank eGFR trajectories exemplifying its utility 

One aspect to provide a proof-of-concept that the data is usable to study eGFR 

decline is the annual decline observed in the data. When restricting to the 206,063 

individuals with at least 2 eGFR assessments, a follow-up time of at least 1 year, and 

the censoring of eGFR values as stated above, we estimated annual decline 

(difference between last and 1st eGFR assessment divided by years in-between) of 

1.04 mL/min/1.73m² per year (95%-CI=1.03-1.05). This is in line with literature (1) 

and documented a plausible eGFR decline in the data despite heterogeneous source 

of creatinine measurements. Of note, when using the creaeMR values without bias-

correction, the mean annual eGFR decline was 0.11 mL/min/1.73m² per year (95%-

CI=0.10-0.12). This underscored the importance of the bias-correction when studying 

eMR-based eGFR from historic creatinine measurements in UK Biobank GP-clinical.  

To provide a further proof-of-concept, we evaluated whether eGFR trajectories 

reflected properly the onset of severe kidney disease: e.g. for the 354 individuals with 

incident AKI and at least one eGFR assessment 6 months before and after, the mean 

annual eGFR decline was four times larger than the overall decline (3.93 

mL/min/1.73m² per year, 95%-CI=2.82-5.05). An example of such a rapid eGFR 

decline around AKI is illustrated in Figure 5A. Two further examples illustrate eGFR 

trajectories of individuals with ESKD followed by transplantation or dialysis 

(Figure 5B&C).  
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Technical aspects of the UK Biobank data including eGFR-trajectories from 

eMR 

In this dataset, we included all 450,000 individuals with ≥1 eGFR assessment, since 

some analytical approaches to analyze eGFR decline can integrate individuals with 

only one GFR assessment (e.g. linear mixed models). We generated the data as long 

format (individual-identifier and record-number as key variables): the record-number 

counts the number of entries per person that can be (i) the quality-controlled, bias-

corrected creaeMR or creaSC value together with the record-type (crea) and record-

date or (ii) the kidney-relevant event together with record-type (onset of AKI, ESKD, 

nephrectomy, dialysis, kidney transplantation, pregnancy). The integrated data 

utilizes SC data from September 2019 and GP-clinical downloaded in May 2023 (i.e. 

records until September 2017, depending on country Scotland, Wales or England).  

The newly generated variables for this UK Biobank dataset (Supplementary 

Table 4) are available as a return dataset in the UK Biobank portal.  
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CONCLUSIONS 

With this work, we present quality-controlled curated UK Biobank data of 2,102,174 

creatinine measurements and calculated eGFR in 454,907 individuals. For 206,063 

of these individuals, eGFR trajectories are available with two or more eGFR 

assessments over time augmented with kidney-relevant events from GP-clinical. 

Thus, by including eMR information from GP-clinical, we extended the UK Biobank 

data on eGFR by >10-fold more individuals with longitudinal eGFR information and 

>2-fold longer time between 1st and last eGFR assessment when compared to the 

dataset obtained in the SC, thus vastly extending the resource of kidney function in 

the UK Biobank. 

 A key aspect of eMR-based research on eGFR decline and thus a specific 

focus of our work was to determine the difference between creaeMR and creaSC 

measurements. The creaeMR values stemmed from historic measurements in different 

laboratories and assays from routine outpatient care, and are thus prone to bias 

inherent to unstandardized creatinine assays. UK Biobank provided the opportunity 

to compare the creaeMR with creaSC, which were all measured after SC visits on 

biobanked serum using a modern enzymatic creatinine assay from 2019 calibrated to 

National Institute Standardized Technology (NIST) reference material 967. We 

observed a bias in the eMR measurements of factor 0.84 for calendar year 2007 and 

2008, which decreased to factor 0.90 for the year 2009, coinciding with implementing 

standards for creatinine measurements (9). The observed bias of 0.95 and 0.97 for 

the years 2012 and 2013 could reflect a slow and heterogeneous onset of laboratory 

standardization. Using the correction factor of 0.84 for years before 2007 and no 

bias-correction after 2013 might not be a perfect fit, but provides a best reflection of 

our data. Our proof-of-concept analyses estimating the annual eGFR decline without 

and with bias-corrected values showed 0.11 versus 1.04 mL/min/1.73m² per year 

annual decline, with the latter being in line with literature (1). Thus, we not only 

provided curated and bias-corrected eMR-based eGFR values for UK Biobank 

individuals that can be reasonably used for research on eGFR decline. We also 

provided an approach to identify, quantify, and account for bias in eMR-based 

biomarker, when gold standard measurements were available.  

For studies with historic creatinine measurements but no gold standard 

measurements, this might not be fully generalizable. However, the limited 

standardization of serum creatinine measurements before 2009 and implemented 
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standards thereafter were well acknowledged (9). It is conceivable that the here 

presented correction factors by calendar year might provide some reasonable proxy 

quantification of the bias involved also for other eMR-based studies. With all due 

concern regarding the problem of external data and limited generalizability to other 

settings, using the here presented correction factors might be better than no bias 

correction of historic serum creatinine measurements.  

A limitation is the heterogeneity of creaeMR values across laboratories and 

assays that probably involve larger measurement error than standardized 

measurements even after bias correction. Another limitation is the fact that the data is 

predominantly European ancestry, which is a general limitation of UK Biobank. Data 

from eMR are generally prone to bias with regard to enrichment of individuals with 

disease (12). While we found more AKI events among individuals with many versus 

few eMR-records on creatinine, we found little differences between UK Biobank 

participants that had eMR-records (i.e. were members of the GP-clinical) versus 

other participants. This might be due to the fact that UK GP-records are rather 

comprehensive.  

In other recent work on datasets of eGFR trajectories, eGFR trajectories are 

utilized from 116,870 individuals with CKD from the Million Veterans Project and 

Vanderbilt University Medical Centers identifying novel genetic loci associated with  

longitudinal eGFR decline (13). The topic is timely as large-scale Biobank data that 

integrate eMR data on biomarker trajectories for research are currently emerging, but 

so far with little focus on serum creatinine and kidney function decline (e.g. all-of-us) 

(11, 14).  

In summary, the quality-controlled and bias-corrected eMR-based information 

on eGFR enables analyses of eGFR trajectories in UK Biobank. We also provide an 

approach to identify, quantify, and correct for bias in historic creatinine 

measurements that is applicable to other biobank data. Further analyses of large 

data on eGFR trajectories together with rich information on genetic and non-genetic 

risk factors can help understand the variability in eGFR decline in the population. 
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DATA AVAILABILITY 

We will make the data available for download through the UK Biobank portal as a 

Return data set of the project number 20272. This data is available to researchers 

registered with the UK Biobank: please refer to instructions within the AMS portal to 

download these results. 
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Table 1: Participant descriptive of the UKBB data on eGFR including eGFR 
trajectories.  
We show participant characteristics using the information from the study center (SC) 
visit at baseline as well as temporal aspects of the combined SC- and (bias-
corrected) eMR-based data on eGFR (5). These descriptive statistics are shown for 
all individuals and with more than 2 and more than 10 eGFR assessments that can 
be used for analyses of eGFR trajectories (distinct subgroups with eGFR in 
individuals not in eMR data, with 1-8 and with ≥9 eMR-based data on eGFR in 
Supplementary Table 2). In the table header, ‘n’ denotes the number of individuals 
and ‘m’ denotes the number of eGFR assessments. Presented are mean and 
standard deviations, if not stated otherwise. 

All Data 
(n=454,907, 

m=2,102,174) 

≥2 eGFR 
(n=206,063, 

m=1,853,330) 

 ≥10 eGFR 
(n=69,506, 

m=1,234,508) 
Characteristics from SC-baseline*  

Age - years 57.3 ± 8.1 57.9± 7.9  60.7 ± 6.9 
Sex – female (%) 246,480 (54.2) 111,528 (54.1)  34,389 (49.5) 
Ancestry - European (%) 414,097 (91.0) 180,359 (87.5)  59,909 (86.2) 
Smoking status **– current or ever (%) 204,051 (44.9) 93,244 (45.3)  34,771 (50.1) 
BMI **– kg/m²  27.4 ± 4.8 27.6 ± 4.9  29.1± 5.3 
Diabetes – yes (%) 19,479 (4.5) 9,579 (4.9)  8,219 (12.6) 
eGFR - mL/min/1.73m² 94.1 ± 13.2 93.6 ± 13.2  90.5 ± 14.5 
Chronic Kidney Disease**** – yes (%) 7,258 (1.6) 3,437 (1.8)  2,284 (3.6) 
Temporal aspects  

Age-first-exam*** - years 55.9 ± 8.2 54.7 ± 8.0   55.7 ± 7.3 
Age-last-exam*** - years 59.8 ± 8.9 63.44 ± 8.5   67.6 ± 6.9 
time between 1st and last eGFR 
assessment - median (max) - years 0.0 (60.2) 8.5 (60.2)  11.7 (60.2) 

Calendar year of exam*** - min to max 1950 to 2017 1950 - 2017  1950 – 2017 
eGFR  
#eGFR assessments per person – 
median [IQR] 1.0 [1.0 -5.0] 6.0 [3.0-12.0]  15.0 [12.0-20.0] 

eGFR-first-exam - mL/min/1.73m² 95.1 ± 12.9 95.9 ± 12.6  94.2 ± 13.3 
eGFR-last-exam - mL/min/1.73m² 91.1 ± 14.4 86.9 ± 14.8  81.5 ± 16.5 
Chronic Kidney Disease**** – yes (%) 23,035 (5.1) 19,191 (9.3)  14,212 (20.5) 
BMI=Body Mass Index, eGFR=estimated Glomerular Filtration Rate.  
* obtained from SC-baseline (data fields 30700, 31, 34, 52, 53, 20116, 21001, 30750, 20003, 
2443 and 21001).  
** Among the individuals where this variable is available (n=454,361 for smoking status, 
n=452,721 for BMI).  
*** “Exam” is the examination in SC or the examination by the GP, assuming that the date of 
the eMR-record is the same date as the GP-exam.  
**** Chronic Kidney Disease was defined as having at least one assessment of eGFR <60 
mL/min/1.73m² 
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Figure 1: Descriptives of creatinine values from Study Center (SC) and electronic Medical Records (eMR).  
When combining SC- and eMR-based creatinine values after quality-control, we obtained 2,102,174 creatinine values f
individuals. We show (A) the distribution of individuals by their number of available creatinine measurements over time
with exactly one measurement indicated as SC- or eMR-derived in black or red, respectively; n=206,063 with ≥2 measur
time in gray), (B) the distribution of individuals by the time between 1st and last measurement, (C) the number of me
assessed in each calendar year, and (D) the number of measurements available by age groups (age-at-exam, “exam” ref
GP-record for eMR or to the examination at the SC visit). For C&D, the red colour represents eMR and black colour re
data. 
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Figure 2: Bias correction of serum creatinine values from electronic Medical 
Records (eMR) data.  
We contrasted serum creatinine values from study center (SC) versus eMR by calendar year 
of exam (i.e. year of blood draw & measurement for eMR, year of blood draw for SC with 
centralized measurement in 2007-2010 and 2012-2013). (A) We show the distributions of 
creatinine from eMR (red; quality-controlled, not bias-corrected) and SC (black). (B) We 
show creatinine values from SC- versus eMR (quality-controlled, not bias-corrected) among 
70,231 individuals with both measurements from the same calendar year (using the eMR-
creatinine value closest in time to the SC-value). Also shown is the estimated bias (i.e. ratio 
of geometric means of SC-values versus eMR-values) and Spearman correlation coefficient. 
Grey lines indicate the identity. Sex is color-coded (blue: men, pink: women). (C) Shown are 
the distributions of bias-corrected creatinine from eMR (green; bias-corrected) and SC 
(black). The year-specific bias estimate was used as correction factor; for other years, we 
used proxies (2011: 0.93 derived as exp(average of ln(bias) for 2010 and 2012; years before 
2007: 0.84; years after 2013: 1.0 (no correction).  
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Figure 3: Descriptive of combined data from eMR- and SC-based eGFR.  
The dataset for eGFR from SC and eMR combined comprised 454,907 individuals 
with ≥1 eGFR assessment and overall 2,102,174 assessments of eGFR. (A) Shown 
are age-group-specific eGFR distributions (5) based on data from Study Center (SC, 
black) and electronic Medical Records (eMR; bias-corrected, green). This was limited 
to the 1st eGFR assessment from SC or eMR, respectively. We also show eGFR 
distributions at (B) first and (C) last assessment (omitting 48 extreme values ≥ 
150mL/min/1.73m²). 
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Figure 4: Workflow from raw data to the curated data.  
This schematic illustrates the analytical flow of the data generation. We used Study 
Center (SC) data on creatinine at baseline and follow-up (creaSC, data field 30700) 
and other SC-based data (date-of-exam, age-at-exam, sex, BMI, smoking status, 
HbA1c, medication and diabetes diagnosis; data fields 53, 34, 52, 31, 21001, 20116, 
30750, 20003, 2443). We used eMR-data from “GP-clinical” deriving reads codes for 
creatinine (creaeMR) (7), Diabetes (11), and read codes for kidney-function related 
events and data-of-exam (Acute Kidney Injury, End stage Kidney Disease, 
Nephrectomy, Dialysis, Kidney Transplant and Pregnancy). We derived the calendar-
specific bias correction factor for creaeMR in individuals with both creaeMR and creaSC 

available in the same calendar year (dashed lines) and used proxy correction factors 
for other calendar years. We combined creaSC and bias-corrected creaeMR with other 
SC-based data and eMR-based events. ‘n’ denotes the number of individuals and ‘m’ 
the number creatinine measures. 
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Figure 5: Showcases of eGFR trajectories for individuals with recorded kidney-relevant events. 
Shown are three examples of individuals: (A) a 65-year-old with an episode of Acute Kidney Injury (AKI) and subsequent partial eGFR 
recovery, (B) a 50-year-old with eGFR decline down to 10 mL/min/1.73m², a recording of ESKD, and eGFR recovery after kidney 
transplantation and (C) a 56-year-old with eGFR decline below 15 mL/min/1.73m² and under dialysis 11 years after the first eGFR 
assessment. The x-axis depicts the time since 1st eGFR assessment in years, the y-axis depicts the eGFR value in mL/min/1.73m². 
Red and black dots indicated whether the eGFR was based on electronic Medical Records or from Study Center assessment, 
respectively. The shaded area indicates eGFR < 60 mL/min/1.73m² (i.e. defining Chronic Kidney Disease, CKD). Events of ESKD, AKI 
and transplant are visualized at vertical dotted lines in green, red and blue, respectively. 
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