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Abstract
Clonal hematopoiesis (CH) is a phenomenon of clonal expansion of hematopoietic stem
cells driven by somatic mutations affecting certain genes. Recently, CH has been linked
to the development of a number of hematologic malignancies, cardiovascular diseases
and other conditions. Although the most frequently mutated CH driver genes have been
identified, a systematic landscape of the mutations capable of initiating this
phenomenon is still lacking. Here, we train high-quality machine-learning models for 12
of the most recurrent CH driver genes to identify their driver mutations. These models
outperform an experimental base-editing approach and expert-curated rules based on
prior knowledge of the function of these genes. Moreover, their application to identify
CH driver mutations across almost half a million donors of the UK Biobank reproduces
known associations between CH driver mutations and age, and the prevalence of
several diseases and conditions. We thus propose that these models support the
accurate identification of CH across healthy individuals

Significance
We developed and validated 12 gene-specific machine learning models to identify CH
driver mutations, showing their advantage with respect to expert-curated rules. These
models can support the identification and clinical interpretation of CH mutations in newly
sequenced individuals.
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Introduction
In healthy hematopoiesis, a pool of hematopoietic stem cells (HSCs) contributes to all
blood-related lineages. During aging, this process frequently gives place to clonal
hematopoiesis (CH), a state in which one stem cell-derived population occupies a large fraction
of the blood cells and platelets (1–6). This phenomenon of clonal expansion is driven by somatic
mutations acquired by the HSCs at some point during life and is highly prevalent in elderly
population (1–3,5–13). These mutations that affect an array of genes collectively named CH
drivers, confer the HSCs bearing them growth advantages with respect to their neighbors, and
are thus, under positive selection in hematopoiesis.

When the expanded clone presents with a variant allele frequency greater than 2%, and in the
absence of any hematological disease phenotype, it is clinically referred to as CHIP, or clonal
hematopoiesis of indeterminate potential (14). Although this entity most often presents without
any clinical manifestation, epidemiological and molecular studies have, in the past decade,
linked the presence of CH (above or below this clinical threshold) with an increased risk of
development of myeloid malignancies, cardiovascular-related diseases, and all-cause mortality
(2,6,7,14–18). Recent studies have also linked the presence of CH with the ulterior development
of different conditions, such as solid malignancies (19), or with the response to certain infectious
diseases (20).

In the three decades since the discovery of the genetic basis of CH, intensive research has led
to the identification of some 60 of its driver genes (1,12,13). Nevertheless, we have, at best, a
fragmented picture of which mutations of these genes have indeed the potential to drive this
process of clonal expansion. While the ability of a few of them to drive CH has been tested in
experimental models (21), replicating this for all possible mutations of CH genes constitutes a
daunting experimental endeavor. The lack of a complete repertoire of CH driver mutations
further complicates epidemiological studies of this phenotype and its relationship with other
conditions. Across large cohorts of blood donors from the general population (sequenced at
relatively low depth), such as the UK Biobank (22) or TOPMed (23), the ability to detect true CH
driver mutations is hindered by the contamination with germline variants and sequencing
artifacts (24). Thus, uncovering the repertoire of CH driver mutations is key, not only to
understanding the molecular mechanisms underpinning CH, but also to accurately identifying
individuals with CH and thus powering epidemiological studies of its relationship with more
serious health conditions. This will also allow us to monitor the potential impact of CH driver
mutations on the health of individuals carrying them.

Faced with this reality, several research groups and health-related international institutions have
summarized the knowledge accumulated on several CH genes in a series of expert-curated
rules to select the mutations most likely to drive CH (25–27). The application of these
expert-curated rules, following a succession of stringent filters to the variants identified in the
blood samples of healthy individuals, is a frequently used approach, among researchers, to
identify CH cases (24).
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Despite their practical usefulness, expert-curated rules have a series of caveats. First, their
coverage of genes is heterogeneous, due to the difference in the amount of knowledge available
for them or even across different domains of one gene. Secondly, expert-curated rules cannot
be learned –or systematically updated– directly from information on CH mutations; rather this
information must be first sedimented into shared knowledge. Thirdly, they can only be
established for a small set of genes that have been intensely studied. We reasoned that these
hurdles could be overcome by applying a machine learning-based approach that produces
explainable models, trained on high-quality available CH mutations. This method would not
suffer from any biases from sedimented knowledge, its models could reveal complex patterns in
CH mutations that have not been apparent so far to expert knowledge and would be easy to
scale as more datasets of CH mutations become available. This continuous expansion of
explainable machine learning models of CH will increase our knowledge of the molecular
mechanisms underlying it.

We reasoned that the approach we recently presented to build machine learning models
inspired by evolutionary biology to distinguish cancer driver and passenger mutations in cancer
genes (28) –using mutations observed across cancer patients– could be repurposed to produce
CH-specific models. Using bona fide CH mutations identified across known CH driver genes
(12) and sets of neutral hematopoiesis mutations, we trained machine learning models to
identify CH driver mutations across 12 genes (collectively referred to as boostDM-CH). When
tested on CH mutations not included in the training, the models show a performance that is in
general terms above that of expert-curated rules. Models also outperform the results of
experimental base-editing approaches. When applied to mutations identified in the blood of
470,000 donors from the general population (UK Biobank), the mutations identified by
boostDM-CH models as CH drivers show a very significant association with age and the
development of hematopoietic malignancies and other diseases, while mutations identified as
CH non-drivers show no meaningful associations.

Results
BoostDM-CH models accurately identify CH driver mutations
Training machine learning models aimed at distinguishing CH driver mutations requires a
high-quality dataset of blood somatic mutations identified across individuals. In principle, these
could be obtained from blood sequencing datasets across large cohorts carried out in recent
years (22,29). However, the set of somatic mutations identified by these single-sample low
depth (usually ~30X) sequencing analyses is expected to be contaminated with germline
variants and sequencing and mapping errors. Large cohorts of solid malignancies from different
organs have been sequenced in the past 15 years, where one germline reference sample
(usually blood) was used to call somatic tumor mutations. We reasoned that such cohorts could
be repurposed to produce a set of high-quality blood somatic mutations using the tumor sample
as germline reference (12). Following this idea, we identified blood single somatic nucleotide
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variants (SNVs) and indels (collectively, mutations) across more than 36,000 cancer patients
from 3 large studies (TCGA, HMF, MSK-IMPACT) (30–32) (Fig. 1a). We call this process
reverse mutation calling, as it reverses the normal use of these two samples in cancer genomics
by using the tumor sample as the germline reference.

Using the blood somatic mutations in these three discovery cohorts we previously identified 64
genes involved in CH development (12). We did this through the detection of signals of positive
selection in their pattern of mutations across samples using a toolbox of methods originally
developed to identify cancer driver genes, organized in the Integrative OncoGenomics
(IntOGen) pipeline (intogen.org) (33) (Fig. 1a). We then aimed to build gene-specific machine
learning models that captured combinations of features (mostly computed through the methods
in the IntOGen pipeline) characteristic of the CH driver mutations found in each gene. These
features include, for example, the significant clustering of mutations in specific regions of the
linear sequence or the three-dimensional folded structure of the protein, the enrichment of
mutations in certain domains, the consequence type of each mutation, and some additional
features such as the conservation of the residue and post-translational modifications (PTM)
(28).

The most important and challenging step to train these models is to start with a good quality set
of driver/positive, non-driver/negative blood mutations. Using a set of known CH driver
mutations as the positive set could bias the models toward the current knowledge. To solve this
problem we reasoned –as we did previously in the case of cancer– that somatic mutations
detected in human blood, an unbiased set enriched for driver mutations of each CH gene,
constitute the best positive training set. The ideal negative set contains mutations that could
have occurred by neutral mutagenesis processes in HSCs but do not provide a selective
advantage (non-drivers). We thus generated synthetic mutations by simulating neutral
mutagenesis in HSCs, following the probabilities of tri-nucleotide changes observed across
blood samples as the negative training set. Although these sets are highly enriched in driver and
non-driver mutations respectively, they are imperfect, as the group of observed CH mutations
may contain non-drivers, whereas the synthetic set of mutations may contain drivers. These
imperfections need to be taken into account in the strategy used to train the models.

For example, to build a model for DNMT3A, we used the 2,650 blood somatic mutations
observed across the donors of the three discovery cohorts as the positive set (Fig. 1b, left top
panel), and created fifty negative sets of 2,650 synthetic mutations (Fig. 1b, left bottom panel).
Then, we trained fifty base (extreme gradient boosting) classifiers on randomly chosen 70% of
the positive set and the same fraction of each of the negative sets. This is designed specifically
to deal with the expected imperfection of the positive and negative sets of mutations. Finally,
these fifty base classifiers integrated a full DNMT3A model, and mutations held back from the
training (30% in each base classifier) and evaluated as a test set of each of the base classifiers
provided a cross-validation for this full model. Since some of the mutations in the positive set
may be CH non-drivers, we selected the Fscore-50 (F50) –a metric that gives more weight to
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precision than recall– to evaluate the performance of the integrated model. The DNMT3A model
exhibits an F50 of 0.82 upon cross-validation.

We aimed to produce explainable models capable of capturing complex relationships between
biological features that may be unattainable to expert-curated rules (see Introduction).
Therefore, we decomposed the prediction cast for every mutation to reveal the contribution of
individual features, using the Shapley additive values (SHAP) strategy (34). For example, for the
recurrent R882H mutation of DNMT3A (Fig. 1c), the prediction as CH driver results primarily
from a combination of three salient features: its location within a linear (35) or a
three-dimensional (36) cluster and its conservation across vertebrate species (37).

We followed the same strategy for the 25 CH driver genes with sufficient number of mutations to
carry out the training (Methods). We refer to these full models, collectively, as boostDM-CH
(extreme gradient boosting of CH driver mutations). We also computed a discovery index for
each of these genes to assess how well the mutations observed across the three discovery
cohorts represent all potential CH driver mutations in these genes. This discovery index tracks
the increase in the number of observed mutations in a gene as more blood samples are
sequenced (28). The boostDM-CH models of 12 CH driver genes (ASXL1, CHEK2, DNMT3A,
GNAS, IDH2, PPM1D, SF3B1, SRSF2, TET2, TP53, U2AF1, and MDM4) yielded an F50 above
0.80 and their discovery indexes were deemed sufficiently representative of all their potential
driver mutations (genes in blue in Fig. 1d; Fig. S1; Methods and Supplement). The KRAS
model, although scoring an F50 above 0.8 does not satisfy the threshold of discovery index
(Methods). As a trend, genes with more observed CH mutations (or higher discovery index)
yielded models with higher F50 (Fig. 1d and S2a). Nevertheless, some CH driver genes with
relatively low number of mutations observed across the three discovery cohorts, most of them
concentrated within significant clusters (e.g., U2AF1 and IDH2), also yielded high-quality
models. The area under the cross-validation precision-recall curves (AUC) for these models
ranged between 0.87 and 0.99 (Fig. 1e; Fig. S2b).

To benchmark the performance of the boostDM-CH model of DNMT3A, the most recurrent CH
driver gene, we compared it with a recently published experimental base editing assay that
quantified the reporter methylation activity of mutants (38). We reasoned that the best way to
measure the performance of any experiment or in silico method in the identification of CH driver
mutations is to compare them to the somatic mutations observed in CH and synthetic mutations
generated following the trinucleotide frequencies observed in normal hematopoiesis, as we did
previously in the case of cancer drivers (28). As explained above, these two sets are enriched
for CH drivers and non-drivers, respectively. First, we compared the classification of CH
mutations carried out in the cross-validation of the DNMT3A model (consisting, as explained
above, of mutations left out of the training of each base model) with the base editing assay of
the gene that assessed the loss in methylation capability of the mutants. The DNMT3A model
showed a better performance in its cross-validation than this experimental assay in the
separation between observed and neutral CH mutations (Fig. 1f, left bars; Fig. S2c). Moreover,
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when applied to an independent set of CH mutations (i.e., not the ones from the discovery
cohorts) identified across the general population (Japanese Biobank) (29), it also showed higher
F50 than the experimental assay (Fig. 1f, right bars; Fig. S2c).

We then compared the collective performance of boostDM-CH models to that of three sets of
expert-curated rules (referred to as Niroula (25), Bick (26), and WHO (27), Table S1) on three
different sets of CH mutations. We first compared the performance of boostDM-CH models and
the expert-curated rules on the classification of cross-validation CH observed and synthetic
neutral mutations from the three discovery cohorts across 10 CH genes (MDM4 and CHEK2 are
not covered by the three rule sets; Fig. 1g left bars; Fig. S2d). Next, we compared the
performance of boostDM-CH models with expert-curated rules in the classification of a set of
rare CH mutations in 6 genes (10), included neither in the training nor in the cross-validation of
models (center bars). Finally, we compared boostDM-CH models and the expert-curated rules in
the identification of CH mutations across the Japanese Biobank (right bars). Interestingly, the
performance of boostDM-CH models is systematically greater than that of the three sets of
expert-curated rules, even when analyzing mutations not employed in their training. This
performance comparison reflects a variability across the 10 CH drivers genes (Fig. 1g; Fig.
S2d). These results demonstrate the potential of machine-learning models trained from
observed mutations –and thus, unbiased by prior knowledge– to capture the genetic
mechanisms underlying CH.
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Figure 1
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Figure 1. Building and evaluating BoostDM-CH models.
a) Blood somatic mutations used to train the boostDM-CH models were identified in the three discovery
cohorts through reverse calling (blood vs tumor sample); then, CH driver genes were identified by
uncovering signals of positive selection using the IntOGen pipeline; finally, models to identify CH driver
mutations were built.
b) Training and cross-validation of machine learning-based boostDM-CH models, exemplified by
DNMT3A. In the outcome of the model, mutations with a score equal to or above 0.5 are deemed CH
drivers.
c) Explanation of the classification of the DNMT3A-R882H mutation as a driver based on the contribution
of the features employed in training the model. The numbers in the radar plot correspond to the SHAP
values (34) of each feature. Features with positive SHAP value (i.e., positive contribution to the
classification of a mutation as driver) appear above the ‘0’ line in the radar plot.
d) Performance (median ± interquartile range (IQR) F50) of the cross-validation of 25 CH models as a
function of their number of observed mutations. Blue dots represent the genes with high-quality models,
i.e. F50 above 0.8 and sufficient discovery index to deem the set of mutations across the three discovery
cohorts representative of their CH driver mutations.
e) Area under the Precision-Recall curves of the 12 high-quality boostDM-CH models.
f) Performance (median ± interquartile range (IQR) F50) of the classification of DNMT3A blood somatic
mutations of boostDM-CH models and a DNMT3A experimental base editing assay.
g) Performance (median ± interquartile range (IQR) F50) of the classification of blood somatic mutations of
boostDM-CH models and three sets of expert-curated rules. Left, overall performance in three CH
datasets; right, gene-specific performance in one of the datasets. PTM: post-translational modifications;
NMD: nonsense-mediated decay.

The repertoire of CH driver mutations reveals mechanisms underlying CH
We next used boostDM-CH models to classify all possible mutations in each CH driver gene (in
silico saturation mutagenesis). Each mutation is classified on the basis of the boostDM-CH
score resulting from the aggregation of trees into each base classifier: mutations attaining a
score equal to or above 0.5 are classified as CH drivers, while those with score lower than 0.5
are deemed CH non-drivers (Fig. 2a,b). While many driver mutations exhibit boostDM-CH
scores very close to 1 (agreement between the majority or all trees within base classifiers),
some score lower, even close to the 0.5 boundary.

The distribution of driver CH missense and nonsense mutations in DNMT3A differ, with the
former enriched at specific stretches of the gene, and the latter more smoothly distributed along
its sequence (Fig. 2a). The clustering of observed mutations at specific regions of the protein 3D
structure (and/or linear sequence stretches) and at the PWWP and DNA methylase domains
appear the most important contributors to the identification of driver missense mutations (Fig.
2a). Possibly, these clusters of missense driver mutations represent interference with different
aspects of the DNMT3A methylation activity. For example, while R882 mutations are known to
affect its tetramerization, thus acting as a dominant negative (5), amino acid substitutions in the
PWWP domain interfere with the recognition of histone modifications (38,39). Conversely,
nonsense mutations that trigger nonsense-mediated decay would result in a reduction of
DNMT3A abundance in the cell.

9

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 14, 2023. ; https://doi.org/10.1101/2023.12.13.23299893doi: medRxiv preprint 

https://www.zotero.org/google-docs/?LlwtYE
https://www.zotero.org/google-docs/?RGu7xx
https://www.zotero.org/google-docs/?absL8Q
https://doi.org/10.1101/2023.12.13.23299893
http://creativecommons.org/licenses/by-nc-nd/4.0/


TET2 missense CH driver mutations (some of which are known to act in haploinsufficiency) (40)
appear enriched for certain regions of the protein, grouped in three-dimensional and linear
clusters, whereas nonsense mutations appear uniformly distributed along its entire sequence
(Fig. 2b). The clusters of CH driver missense mutations overlapping different stretches of the
protein, most of them within the Tet domain or in its proximal region, may be related to distinct
aspects of the catalysis of the methyl group removal from CpGs (41); these mutations may
result in anomalies of the methylation profile during hematopoiesis (42).

The analysis of the distribution of CH driver mutations across observed blood somatic mutations
or all possible mutations reveals different landscapes within the remaining 10 CH driver genes
with boostDM-CH models (Figs. S3 and S4). A group of CH drivers (such as ASXL1, TP53, or
CHEK2) appears to act in a loss-of-function manner, showing a broad distribution of missense
and nonsense CH driver mutations along long tracts of the protein sequence. This contrasts
with another group of genes (SF3B1, PPM1D, U2AF1, and IDH2) known to act in a
gain-of-function manner, where CH driver mutations appear confined to specific regions of the
protein, and in extreme cases, to a single mutational hotspot. These clusters of CH driver
mutations are related to underlying alterations of the biological function of these genes.

A detailed exploration of the contribution of different features to the classification of four CH
driver mutations across the same number of genes is presented through the radial plots in
Figure 2c. For example, in the case of PPM1D, nonsense CH driver mutations tend to
concentrate towards the C-terminal portion of the protein. These mutations escape
nonsense-mediated decay and result in a form of the protein lacking a degron sequence and,
thus, with increased stability (43) (Fig. 2c). This, in turn, causes altered phosphorylation of
proteins involved in the response to DNA damage, such as TP53, providing mutant cells with an
advantage when exposed to certain cytotoxic therapies (11,43).

The boostDM-CH models of these genes encapsulate the knowledge of the molecular
mechanisms of CH by directly exploiting the signals of positive selection presented by their
observed mutational patterns when compared to that expected under neutrality. Certain
differences are apparent between the configuration of CH driver mutations in these genes
according to boostDM-CH models and expert-curated rules (Fig. S5). There are also similarities
and differences in the configuration of CH and cancer driver mutations in 3 of these CH driver
genes for which we have also been able to build boostDM cancer models (28) (Fig. 3a-c and
Fig. S6). One of the differences corresponds to a mutational hotspot of IDH2 observed in
myeloid malignancies, but absent in CH mutations (Fig. 3c). This hotspot is considered as a
driver CH mutation by the expert-curated rules, which include data from hematological
malignancies. However, its absence from the output of the IDH2 model suggests it may be an
example of incorrect definition of the rule. This is an example of the benefits provided by models
trained from observed data over expert-curated rules established from sedimented knowledge.
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In summary, BoostDM-CH models support the exploration of underlying CH mechanisms across
genes. To facilitate this process, the results of the in silico saturation mutagenesis provided by
boostDM-CH models of the 12 CH driver genes included in this section are available to the
research community at www.intogen.org/ch/boostdm.
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Figure 2. In Silico Saturation Mutagenesis of CH genes.
Blueprints of CH driver mutations in DNMT3A (a) and TET2 (b). The plots represent the distribution of
driver and non-driver mutations, with red representing predicted driver mutations (boostDM-CH score >=
0.5) and gray, non-driver mutations. From top to bottom, the first plot contains observed mutations in the
three training cohorts classified as drivers or non-drivers, with the height of each needle tracking the
recurrence of the mutation. The distribution of the boostDM scores of these mutations observed in blood
samples is shown at the right, with the partition of all (top) or unique (bottom) observed mutations shown
in bars. The plot immediately below the observed mutations presents boostDM-CH scores of all possible
SNVs along the protein sequence. The density of all potential SNVs classified as drivers is presented
immediately below, with a distinction between missense and nonsense drivers (gold). The values of
mutational features used to train the models are shown linearly along the protein sequence in the plot at
the bottom of the figure. The violin plots at the right present the distribution of SHAP values of all driver
mutations across the features used to train the models. The SHAP values entail a decomposition of the
boostDM score of mutations into the contribution of each of these features. c) Radar plots representing
the SHAP values for several illustrative driver mutations.

13

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 14, 2023. ; https://doi.org/10.1101/2023.12.13.23299893doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.13.23299893
http://creativecommons.org/licenses/by-nc-nd/4.0/


DNMT3A

TP53

IDH2

a

b

c

Figure 3

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 14, 2023. ; https://doi.org/10.1101/2023.12.13.23299893doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.13.23299893
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3. Comparison of boostDM-CH models and myeloid boostDM models in three genes.
For each gene (a-c), the needle plots represent the distribution of driver and non-driver observed
mutations in CH (top) and myeloid cancer (bottom) cohorts. The internal plots represent the distribution of
driver mutation along the sequence of each gene using in silico saturation mutagenesis by boostDM, in
CH (red) and myeloid cancer (blue) .

BoostDM-CH models identify CH driver mutations in a large general population cohort
One of the main hurdles to exploiting large cohorts of donors (such as the UK Biobank, UKB) for
population-wide CH epidemiological studies is the difficulty to accurately identify blood somatic
mutations (in a relatively shallow sequencing) without a reference germline sample from the
same donor (12,24). Potential somatic mutations identified across these blood samples may
contain a non-negligible fraction of germline variants and sequencing artifacts, as well as
passenger mutations. We reasoned that boostDM-CH models –trained on high-quality blood
somatic mutations obtained from the reverse mutation calling across tumor cohorts– could be
employed to accurately identify CH driver mutations in this setting. We could then use these CH
driver mutations to analyze the relationship between CH and several phenotypes across the
population.

Thus, we next identified 201,916 potential somatic variants in the 12 genes with high-quality
boostDM-CH models across the blood samples of 467,202 individuals in the UKB (Methods).
BoostDM-CH models were employed to sift these potential somatic variants. We identified
41,311 CH driver mutations (28,508, or 69.0%, non-synonymous; 10,098, or 29.3%, nonsense;
and 705, 1.7%, splice site affecting) in the 12 genes (Fig. 4a; Methods). CH driver mutations in
these 12 genes appeared in 8.2% (38,129) of the donors of the UKB cohort (92.5% of them
bearing a single driver mutation). While all potential somatic variants exhibited a marked
bimodal distribution of variant allele frequency (VAF) with one mode very close to zero, and a
second mode around 0.5, CH driver mutations show a salient peak at very low VAF, with a small
tail that extends up to 0.5 (Fig. 4b; Fig. S7a). This reflects that the approximately 165,000 SNVs
identified by boostDM-CH models as non-drivers probably comprise a mixture of germline
variants, sequencing artifacts, and passenger somatic mutations. This is also implied by the
differences in the tri-nucleotide mutational profiles of variants identified as CH drivers or
non-drivers by boostDM-CH (Fig. S7b). Most of the variants identified as drivers possess
boostDM-CH scores above 0.9, while the overwhelming majority of non-drivers are scored
below 0.1, forming an extremely bimodal distribution (Fig. S7c,d). Taking advantage of this, we
can define more restrictive sets of high-confidence drivers and non-drivers using these two
thresholds (Fig. S7).

The proportion of individuals with CH driver mutations identified by boostDM-CH models
(relative to those in the youngest age bracket, 38-45 years old) grows with age, as expected of
true CH mutations (Fig. 4c). In contrast, the number of donors with non-driver CH mutations
remains constant. While all potential somatic SNVs in the 12 CH driver genes show a significant
association with age (Fig. 4c, black dot), the significance is virtually entirely due to CH driver
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mutations (top red dot), since non-driver mutations (gray dot) show almost no association with
age. The effect size is larger for individuals with CH mutations with VAF > 10% (driver large)
than for those with CH mutations with VAF <= 10% (driver small), and it also appears larger for
donors bearing several co-occurring CH driver mutations (multiple drivers). This difference in the
association with age is even clearer when high-confidence CH driver and non-driver mutations
are compared (Fig. S7e). CH driver mutations in individual genes show higher association with
age than non-driver mutations, although for some genes this association is not significant due to
the small number of mutations observed in the cohort (Fig. 4c). In contrast, non-driver mutations
in nearly all genes show no significant association with age.

We next verified known associations of CH, defined by the presence of CH driver mutations
identified by boostDM-CH, with the exposure to external CH promoters across UKB individuals.
Thus, we corroborated that individuals with a history of smoking have significantly higher
likelihood of carrying CH driver mutations than non-smokers, as have donors who suffered a
solid malignancy (as a proxy of exposure to cytotoxic drugs) (1,12,13) prior to their enrollment in
UKB (Fig. 4d, Fig. S8a,b), while we observed no association with CH non-drivers. We also
checked the association of CH driver mutations identified by boostDM-CH in UKB with
subsequent conditions known to be linked to CH. First, we corroborated the known association
of the presence of CH driver mutations with the subsequent development of hematopoietic
malignancies, in particular of myeloid origin (Fig. 4e; Fig. S9a-f). Both, the significance of the
association and the increase in risk appear higher for donors bearing high-confidence CH
drivers (Fig. S9f), large CH clones, or clones with multiple mutations (Fig. 4e). Conversely, the
risk of donors bearing CH non-driver mutations to subsequently develop any type of
hematopoietic malignancy is comparable to that of the general UKB population. We also verified
that the known associations between CH driver mutations and increased risk of subsequent
heart failure, development of a solid malignancy, risk of any type of infection, and all-cause
mortality are reproduced (Fig. 4f, S10-S12). Importantly, all aforementioned associations
appear as significant –or slightly more significant– with CH driver mutations identified by
boostDM-CH than selected using expert-curated rules established by CH researchers (Fig. S13
and S14).
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Figure 4. Application of BoostDM-CH to identify CH driver mutations across 467,202 donors.
a) Identification of CH driver mutations in UKB donors using boostDM-CH models.
b) Distribution of VAF of CH driver and non-driver mutations; inner, number of driver mutations identified
in the 12 CH driver genes studied.
c) Fold increase in the proportion of cases with CH driver and non-driver mutations across age groups
(upper left). Significance of the overall (bottom left) or gene-wise (right) association with age measured
via logistic regression. In this and subsequent regression plots, several sets of donors in the UKB are
selected for analysis: driver, donors bearing at least one CH driver mutation (according to boostDM-CH);
multiple driver, donors bearing more than one CH driver mutation; driver large, donors bearing at least
one CH driver mutation with VAF >= 10%; driver small, donors bearing aCH driver mutation(s) with VAF <
10%; non-driver, donors bearing a potential mutation in a CH driver gene classified as non-driver by
boostDM-CH; potential mutation, donors bearing any potential mutation (driver or non-driver) in a CH
driver gene (see Methods).
d) Association of CH with known causative factors including smoking and solid tumor history (as proxy of
chemotherapy) prior to enrollment in UKB as a proxy of treatment, measured via logistic regression.
e) Association of CH with the risk of myeloid malignancies, measured via Kaplan-Maier analysis (upper)
and Cox proportional hazards model (bottom).
f) Association of CH with all-cause death, heart failure, the occurrence of a solid tumor, and any infection
(measured via a composite variable).
All logistic regressions and Cox analyses included age, sex, and 10 ancestry principal components as
covariables. Additionally, tumor-related associations also included smoking history as covariates. Heart
failure associations included smoking history, dyslipidemia, body mass index, hypertension, and diabetes
type II status as covariates whereas Infectious diseases included smoking history and occurrence of
hematological neoplasm.
Asterisks represent significant associations (FDR<0.05); ns: non-significant.

The fitness of CH driver mutations
What distinguishes driver and non-driver CH mutations is that the former provide an increase of
fitness to the HSCs where they occur, thus resulting in its expansion in blood. To estimate the
fitness provided by specific mutations, we exploited the distribution of their VAF across UKB
individuals (44). In detail, we computed the gain in fitness from the VAF distribution of 220 SNVs
that were recurrently observed (in at least 30 cases) across UKB donors, after filtering out
potential germline variants and variants with multimodal VAF distribution (Methods, Fig. S15). Of
these, 136 were classified as CH drivers by boostDM-CH, while the remaining 84 were
classified as CH non-drivers (Fig. 5a). As expected, the fitness estimated for CH driver
mutations was significantly higher than that of non-drivers (Fig. 5b), a trend maintained across
genes (Fig. 5c). In agreement with previous findings, we observed that driver CH mutations
affecting splicing factors were among those conferring the highest fitness (44,45).

We also computed the strength of the association with age of each of these recurrent 220
variants (Fig. 5d) and found that, as expected, mutations classified as CH drivers by
boostDM-CH appear significantly more associated with age than non-drivers, irrespective of
their recurrence (Fig. 5e). In summary, among the most recurrent variants identified in 12 CH
genes in UKB, those identified as drivers by boostDM-CH tend to confer high fitness to HSCs,
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and show an association with age. In contrast, recurrent non-driver variants in the same genes
lack the combination of these two features (Fig. 5f). Furthermore, all recurrent mutations that
confer high fitness and strong association with age (top right quadrant in Fig. 5f and first bar in
the barplot at the right), are drivers according to boostDM-CH, as the chance to detect high
fitness clones through sequencing increases with age. Conversely, only a minority of the
recurrent mutations that confer low fitness and show no significant association with age (bottom
left quadrant and second barplot) are identified as drivers. Restricting the analysis to samples
with only one mutation in any of the 12 genes produced (Fig. S16) and to non-observed or
non-recurrent mutations in the training set (Fig. S17a,b; Supp. Note) produced similar results.

In summary, a number of orthogonal pieces of evidence obtained from the population
represented in the UKB, from the association with age and health risks to the estimated gain in
fitness, demonstrate the effectiveness of using boostDM-CH to identify driver CH mutations.
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Figure 5. The fitness of recurrent blood somatic SNVs across 467,202 UKB donors.
a) Schematic representation of the fitness score calculation for individual recurrent blood somatic SNVs,
based on their observed VAF distribution across the UKB cohort. Red refers to drivers and grey for
non-drivers.
b,c) Overall (b) and per gene (c) distribution of fitness scores of CH driver and non-driver mutations.
d) Left, schematic representation of the calculation of the associations (odds-ratio and p-value) between
individual CH driver SNVs and age using logistic regression; right, top 20 SNVs with higher association
with age. Red refers to drivers and grey for non-drivers.
e) Distribution of odds-ratios computed for the association of driver and non-driver CH mutations with age
(ageOR).
f) Left, kernel density estimate (KDE) representing the bi-dimensional density of SNVs in the ageOR-
fitness score plane. The horizontal dashed line represents an ageOR of 1.04, the minimum rendering a
significant p-value, whereas the vertical line is arbitrarily set at a fitness score of 0.08. These lines
effectively separate the bi-dimensional distributions of driver and non-driver recurrent CH SNVs into four
quadrants, with the density of both distributions clearly separated in the top-right (drivers) and bottom-left
(non-drivers) quadrants. The distribution of fitness and ageOR for driver and non-driver mutations are
presented along the x-axis and the y-axis of the plot, respectively. The proportions of driver and
non-driver mutations in these two quadrants of the plot are represented in the stacked bar plots at the
right of the plot.
In the figure, red denotes CH driver SNVs, whereas gray represents CH non-driver SNVs. Asterisks
represent significant associations (FDR<0.05). Double asterisk represents p-value <0.001.

Discussion
Here we built machine learning-based models to identify all CH driver mutations in 12
well-known CH genes. We were primarily motivated by the lack of unbiased methods to identify
the mutations responsible for the development of CH, even within well-established CH driver
genes (24). One key requirement to train such machine learning models is the availability of a
big enough set of high-quality blood somatic mutations. To fulfill this, we resorted to cohorts of
cancer patients where blood somatic mutations can be reliably identified through a comparison
of blood and tumor samples (12). The models were then trained on features that distinguish
these blood somatic mutations observed in CH genes across donors from those expected to
arise under neutral mutagenesis (28).

We demonstrate that these models perform on par with –or slightly better– than expert-curated
rules designed by CH researchers on the basis of years of accumulated knowledge in the task
of distinguishing newly observed CH mutations from neutrally arising blood mutations (25–27).
Similar –or slightly better– performance with respect to these rules is observed when
boostDM-CH models are applied to the task of distinguishing CH driver mutations in these
genes from a combination of sequencing artifacts, germline contamination, and passenger
somatic mutations across half a million donors in the UKB (22). This demonstrates that machine
learning models trained unbiasedly on observed blood somatic mutations are able to
recapitulate sedimented knowledge on CH development.
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BoostDM-CH models can be employed to gain new insights into the mutational mechanisms
underlying CH in different genes. Here, we provide examples with DNMT3A, TET2, and the
models of other genes. The 12 boostDM-CH models trained in this work and their associated
data are available to the CH research community at www.intogen.org/ch/boostdm. In the future,
as more cohorts for which blood and a second sample (such as in cancer patients cohorts)
become available in the public domain, growing sets of reliable blood somatic mutations will be
identified, and good-quality models for more CH genes will be within reach.

Moreover, we have shown a path for the identification of CH driver mutations across donors in a
large cohort, from whom only a blood sample is available, using boostDM-CH models. Applying
this rationale to the UKB, we are able to recapitulate known associations of CH with age and the
development of several phenotypes. We show that ad hoc laborious filtering steps of the
variants detected in these blood samples can be easily replaced by the use of boostDM-CH
models. We envision that this will streamline, accelerate and increase the reproducibility of
studies that require reliable identification of CH driver mutations.

We have previously employed machine learning-based models trained using the same
evolutionary-inspired approach described here to identify driver mutations in cancer genes (28).
Here, we report for the first time the use of boostDM-like models (this time aimed at identifying
CH driver mutations) to systematically identify CH across a large cohort of donors. We show
that this leads to the re-discovery of well-established associations between life-style exposures
and an increased risk of developing CH and between presence of CH and increase of the risk of
subsequent conditions. This work constitutes a proof-of-principle for a wider use of boostDM-CH
models in large retrospective or prospective clinical studies aimed at discovering such
associations. Furthermore, it also illustrates how the models could assist in detecting CH across
large populations, to subsequently monitor individuals at risk of developing different conditions.

In summary, in this article and our previous work on the discovery of CH driver genes (28), we
provide a systematic approach to advance the study of CH through computational approaches.
As larger cohorts of blood somatic mutations become available, boostDM-CH models for more
genes will be within reach.
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Methods
Blood somatic mutations in three discovery cohorts
Blood somatic mutations identified across two of our discovery cohorts –TCGA (whole-exome)
(30), HMF (whole-genome) (31)– through reverse calling were obtained from our previous study
Pich et al., 2022 (12). Briefly, aligned sequencing reads from normal (blood) and tumor BAM
files from patients with solid tumors in TCGA and HMF cohorts were compared (using Strelka2)
to call blood somatic mutations, which were subjected to a strict filtering post-process described
in detail in Pich et al, 2022 (12). We thus retrieved all mutations identified in each of these two
discovery cohorts. Blood somatic mutations in a third discovery cohort –MSK-IMPACT (in a
panel of genes) (32) called by Bolton et al., 2020 (1)– were obtained from cBioPortal
(https://www.cbioportal.org/) (46).

Compendium of mutational CH genes
In the previous work by Pich et al., 2022 (12) mutations identified in the three discovery cohorts
were used to detect genes under positive selection through the measurement of deviations from
the mutational patterns expected under neutrality (12,33,35,36,47–51). This analysis resulted in
64 genes with signals of positive selection in CH in at least one of the three cohorts. These 64
genes were used as the starting point of the work described here. Collecting the somatic
mutations identified in each of them in the three discovery cohorts, we attempted to build
boostDM-CH models for all of them. We completed the process of training for the 25 genes with
at least 30 mutations in the training set after the training-test partition of the base classifiers (see
below). The CH driver genes finally included in this process were ASXL1, ATM, CBL, CHEK2,
CTCF, DNMT3A, EZH2, GNAS, IDH2, JAK2, KDM5C, KRAS, MDM4, NF1, PPM1D, RAD21,
STAT5B, SF3B1, SH2B3, SRSF2, STAG2, TET2, TP53, U2AF1, ZRSR2.

BoostDM-CH models
BoostDM-CH delineates a supervised learning strategy based on observed mutations in
sequenced blood samples and their site-by-site annotation with mutational features, comparing
observed mutations in genes for which the consequence-type-specific excess is high enough
(48) with randomly selected mutations following the trinucleotide change probability. The method
essentially looks into the protein coding sequence of the genome as all mutations considered
map to the canonical transcripts in protein-coding genes according to VEP v.101 (52). The
training of boostDM-CH models (as the calculation of CH drivers discovery index and the in
silico saturation mutagenesis) follows the rationale previously presented for cancer boostDM
models (28). These steps for boostDM-CH models are described in detail in Supplementary
Methods.

SHAP local explanations
We use the Shapley additive values strategy (SHAP) (34,53) as a means to obtain an additive
decomposition of the boostDM-CH score in the space of features used to train a model (28).
Each of the 50 base classifiers integrated in the boostDM-CH model of a gene (see
Supplementary Methods) yields an additive explanation model based on SHAP. Specifically, for
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each base classifier we can decompose the logit forecast yielded for a particular mutation into a
vector of SHAP values, one per feature, in such a way that their sum is equal to the logit
predicted probability for that mutation. In order to provide a consensus SHAP value for each
feature and mutation across base classifiers, we simply take the average of the 50 values.

Implementation
The boostDM-CH pipeline has been implemented in Python and Nextflow (54). The base
classifiers were trained with XGboost (55) v.0.90 and we used SHAP (34,53) v.0.28.5 to
compute the local explanations for the predictions of the base classifiers. The pipeline is
available as a GitHub repository: https://github.com/bbglab/boostdm-pipeline/tree/ch.

In silico saturation mutagenesis
In silico saturation mutagenesis is a term commonly used to indicate the assessment of all
possible changes in a gene or protein with a computational approach (28). To assess the driver
potential of all possible mutations in CH driver genes, we used boostDM-CH models.

Benchmarking boostDM-CH models
In order to validate the in silico saturation mutagenesis approach implemented via boostDM-CH
models we compared the cross-validation performance (F50) of boostDM-CH models with two
other approaches: 1) a simple classifier (logistic regression) derived from the readouts of an
experimental base editing assay of DNMT3A (38) and 2) three commonly used sets of
expert-curated rules (25–27). For these analyses, we used three different datasets of mutations.

Datasets used for validation
Observed mutations across discovery cohorts
We built two validation datasets using the cross-validation splits used to train the 50 base
classifiers of boostDM-CH, which we can deem “permissive” and “stringent”, respectively. In
both cases we collected all the mutations found across the test splits of each of the 50 base
classifiers (see Training Splits section above) with their true labels and the prediction cast by the
corresponding base classifier. In the “stringent” version we suppressed any instance of a
mutation that had previously been used in the training split, whilst in the “permissive” version we
allowed them.

Rare CH mutations from MSK-IMPACT
A set of rare mutations from the MSK-IMPACT dataset were obtained as a set for the validation
analysis (10). This set of rare mutations consists of SNVs from the 12 CH genes with
boostDM-CH models obtained by Gao et al., but not included in any of the discovery cohorts,
and thus, absent from the training set. As a negative set for this validation, we used synthetic
mutations simulated using the MSK-IMPACT cohort mutational profile. For each gene, we
selected 50 sets including unique mutations with balanced labels (same number of positive and
negative examples) and annotated them with the prediction of the corresponding boostDM-CH

24

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 14, 2023. ; https://doi.org/10.1101/2023.12.13.23299893doi: medRxiv preprint 

https://www.zotero.org/google-docs/?ZsISe3
https://www.zotero.org/google-docs/?DTm6aG
https://www.zotero.org/google-docs/?4peBZ9
https://github.com/bbglab/boostdm-pipeline/tree/ch
https://www.zotero.org/google-docs/?ICxCaF
https://www.zotero.org/google-docs/?QtXn6f
https://www.zotero.org/google-docs/?72Q9C5
https://www.zotero.org/google-docs/?M82DDW
https://doi.org/10.1101/2023.12.13.23299893
http://creativecommons.org/licenses/by-nc-nd/4.0/


general model. Only genes with more than 5 unique mutations were included in the validation
study.

Biobank Japan CH mutations
We obtained a dataset of mutations from the DNA Data Bank of Japan (DDJB) or Biobank
Japan (29) through accession numbers JGAS000293/JGAD000399 and
JGAS000293/JGAD000400. From this independent set of observed mutations, described in
Saiki et al., 2021 (56) we extracted the SNVs from the 12 genes with boostdm-CH models. For
the negative set, we used synthetic mutations generated in the three discovery cohorts. For
each gene, we selected 50 sets including unique mutations with balanced labels (same number
of positive and negative examples) and annotated them with the prediction of the corresponding
boostDM-CH general model. Only genes with more than 5 unique mutations were included in
the analysis.

DNMT3A mutants methylation efficiency
We used Nicholas et al., 2023 (38) methylation activity data across DNMT3A mutants. They
integrated base editing by single-guide RNA with a DNA methylation reporter to perform in situ
mutational scanning of DNMT3A in cells to evaluate the impact of 156 unique
missense/nonsense DNMT3A variants in the methylation activity. Variants with a sgRNA score
>2 s.d. (within cells selected by their diminished level of methylation of a reporter gene) above
or below the mean of intergenic negative controls were considered ‘enriched’ or ‘depleted,’
within the pool of all guides, respectively.

Expert-curated rules to identify CH driver mutations
Three sets of expert-curated rules designed by CH researchers (referred to as Niroula (25); Bick
(26), and WHO (27)) were used for boostDM-CH performance comparison. For such
benchmarking we only consider those mutations in genes included by all the three sets of
expert-curated rules (10 genes).

Comparison with myeloid boostDM models
The myeloid boostDM models were trained with data from 11 tumor-type specific cohorts from
IntOGen (Release v2023.05.31) (33) comprising Acute Myeloid Leukemias (9 cohorts),
Myelodysplastic Syndromes (1 cohort) and Chronic Myelogenous Leukemias (1 cohort).

Application to population-based cohort (UK Biobank)
All analyses were performed with the UK Biobank Research Analysis Platform (22). The cohort
used in the study comprises 469,880 individuals for whom whole exome sequencing (WES)
data was readily available. Individuals with hematological neoplasms at baseline (that is, with a
hematological cancer diagnosis date before the date they attended the assessment centers)
were excluded from the analysis, yielding 467,202 individuals included in the analysis (age
range: 37–73, median age: 58 years old; 54% females).
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Identification of CH mutations across UKB donors
CRAM files generated by the OQFE pipeline from UKB were used. All the following steps were
carried out within a nextflow (54) pipeline (v20.10.0). Variant calling on WES data from 467,202
individuals was performed using Mutect2, Genome Analysis Toolkit (GATK, v.4.2.2.0) (57).
Briefly, Mutect2 was run in ‘tumor-only’ mode with default parameters, for a mini-BAM
comprising the sequences of the exons of 11 with boostDM-CH models (excluding U2AF1, with
a known artifact in the GRCh38 assembly of the human genome). A panel of normals was
obtained from 100 WES from the youngest individuals (<41 years old at recruitment) in UKB,
generating a blacklist of mutations present in at least 2 of these individuals. Raw variants called
by Mutect2 were annotated with FilterMutectCalls using the estimated prior probability of a
reading orientation artifact generated by LearnReadOrientationModel (GATK, v.4.2.2.0) (58),
even though no filters were applied using this annotation. Since variant calling pipelines such as
Mutect2 cannot reliably identify variants in U2AF1 in sequencing data that are mapped to the
human GRCh38 (hg38) reference genome due to an erroneous duplication of the U2AF1 locus
in this reference genome, a custom script was used to identify variants in U2AF1. First we
performed a pileup approach to obtain all counts of mutated alleles present in reads that are
mapped at any of the two U2AF1 genomic loci (ENST00000291552 chr21:43092956-43107570
and ENST00000610664 chr21:6484623-6499248) and then we annotated this mutated reads
for a unique genomic location for ENST00000291552. Gene annotation was performed using
Ensembl Variant Effect Predictor (VEP) (v.101) (52). To filter out potential germline variants we
used a population reference of germline variants generated from the 1000 Genomes Project
(1000GP, Phase 3) (59) and the Genome Aggregation Database (gnomAD, r2.1.1) (60). The
identified variants were subjected to the following filters: only SNVs were selected, we required
a minimum number of alternate reads of 3, a maximum of 2 altered alleles, and a MAF lower
than 0.001 according to 1000GP (EUR_AF) or gnomAD (gnomAD_AF_NFE, gnomAD_AF).
Additionally, for U2AF1 mutations we selected those with evidence of the variant on both
forward and reverse strands.

Associations of CH with age and other phenotypes in the UKB
Association analyses of CH with several conditions and risk analyses were performed on the
DNAnexus platform of the UKB. These analyses were performed taking into account different
subsets of UKB donors (reflected in Figures): 1) carriers of one CH driver mutation according to
boostDM-CH models; 2) carriers of more than one CH driver mutation (multiple drivers); 3)
carriers of a CH driver mutation at VAF>=10% (driver large); 4) carriers of a CH driver mutation
at VAF<10% (driver small); 5) carriers of non-driver mutations (non-driver); 6) carriers of any
potential blood mutation (irrespective of its classification) detected in the somatic calling
(potential mutation). For some analyses, we grouped carriers of CH driver mutations in genes of
different functional groups, such as chromatin modifiers (DNMT3A, TET2 and ASXL1), DNA
damage response (TP53, CHEK2, PPM1D and MDM4) and splicing factors (SF3B1, SRSF2
and U2AF1).

Phenotypes
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Clinical data from the UKB was downloaded in November 2022 and individual traits were pulled
out from the whole phenotype file classified in data-fields. Basic information from the individuals
used for the analyses was age of recruitment (data-field: 21022), sex (data-field: 31), genetic
principal components (data-field: 22009), death status (data-field 40007), and body mass index
(BMI, data-field: 21001). Smoking status was defined as never smoker or ever smoker using
smoking status information (data-field: 20116).

Presence of cancer was defined from reported occurrences of cancer (data-field: 40009). Years
to first cancer was assessed using the age of recruitment and the age of first cancer (data-field:
22008). Specific cancer type, cardiovascular diseases (CVD) traits, infectious disease and other
conditions such as hypertension or diabetes mellitus type II were generated combining
information from different data-fields (Table S2) including ICD-10 diagnosis (data-fields: 40006,
41202, 41270), ICD-9 diagnosis (data-fields: 40013, 41203, 41271), self-reported cancer
(data-field: 20001), self-reported non-cancer illness (data-field: 20002), underlying cause of
death (data-field: 40001), contributory cause of death (data-field: 40002), operation (data-field:
20004), and OPSC4 (data-field: 41272, 41200), similarly definitions outlined by Siddhartha et
al. 2020 (61) and Trinder et al. 2020 (62). For each definition, the first diagnosis event that
occurred was selected. Years to first occurrence of cancer, CVD and infectious diseases was
calculated also using the difference between date of recruitment and specific diagnosis dates
(data-fields: 40005, 40000, 41260, 41262, 41263, 41280, 41281, 41282) and diagnosis age
(data-fields: 20007, 20009) based on disease definitions. Regarding some of the covariates
used for the association, diabetes mellitus type II was defined as its diagnosis or treatment with
insulin or oral hypoglycemic medication (data-field: 6177); dyslipidemia was defined as
cholesterol ≥240 mg/dL (data-field: 30690), LDL-direct ≥160 mg/dL (data-field: 30780),
HDL-cholesterol <40 mg/dL (data-field: 30760), or use of lipid-lowering drugs (data-field: 6177);
hypertension was defined by its diagnosis or by having a systolic blood pressure ≥140 mmHg
(data-field: 4080), diastolic blood pressure ≥90 mmHg (data-field: 4079), or use of
antihypertensive medication (data-field: 6177).

Analyses
Unless otherwise specified, all regression models included age, sex, and the first ten ancestry
principal components as covariates. For cancer regressions, we also included smoking status
as covariate, while for CVD we included smoking status, BMI, diabetes mellitus type II,
dyslipidemia, and hypertension status. Infectious diseases included smoking status and
hematological cancer. For age, cancer, smoking status, CVD, and death association with CH we
performed logistic regression analysis using logit (Python statsmodel package v.0.14.0). To
analyze the risk of having hematological malignancies and myeloid neoplasms in CH carriers,
we performed a Cox proportional hazards model CoxPHFitter (Python lifelines package
v.0.27.8). We count as an event any reported diagnosis of hematological or myeloid cancer,
respectively, after enrollment in the UKB. Individuals without the event who died before the end
of the follow-up were censored at the time of death, while the rest were censored at the last
follow-up reported (2021-06-25, from data-field 40005). The maximum number of years to an
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event was restricted to the 97th percentile of the UKB population. Kaplan-Meier curves were
performed using KaplanMeierFitter and logrank_test functions (Python lifelines package
v.0.27.8).

Estimation of CH mutation fitness
Using a quantitative framework, Watson et al. 2020 (44) applied population genetic theory to
estimate the fitness advantage conferred by specific mutations in blood by analyzing the
spectrum of VAFs from sequencing data. Using the same approach, we aimed to infer the
fitness score of the most frequent SNVs from the UKB dataset (>=30 observed mutations).
Fitness estimation was performed using a custom Python script based on the approach
developed by Watson et al., 2020. Briefly, probability density histograms, as a function of log
VAFs, were plotted using Doane’s method for log VAF bin size calculation and then applying a
maximum likelihood approach, fitness (s) was inferred. Data was trimmed applying
gene-specific VAF detection threshold below which the density began to decline. From the initial
1028 recurrent SNVs, we exclude those with a multimodal VAF distribution (p-value > 0.2),
median VAF >0.2 or with VAF values above the limit of detection set (see above) that resembled
a normal distribution (p-value < 0.05) in order to exclude possible germline variants. We were
thus able to compute fitness scores for 220 SNVs (136 drivers and 84 non-driver CH mutations,
according to boostDM-CH).

Data and software availability
Blood somatic mutation data required to train boostDM-CH models is available through Hartwig
Medical Foundation (HMF) and dbGaP following the same procedure to access the original
datasets used in the reverse calling approach. HMF blood somatic mutations are available as
part of the data access request to HMF (https://www.hartwigmedicalfoundation.nl). TCGA blood
somatic mutations are available through dbGaP (phs002867) to researchers who have obtained
permission to access protected TCGA data. Panel-sequenced data from the IMPACT targeted
cohort is available through cBioPortal
(https://www.cbioportal.org/study/summary?id=msk_ch_2020). The compendium of CH driver
genes is available through IntOGen (intogen.org/ch), as is the in silico saturation mutagenesis of
CH drivers (intogen.org/ch/boostdm). Data required to reproduce UKB and Japanese Biobank
analyses is available upon access request to both entities (details above). Software required to
train boostDM-CH models and carry out analyses described in the article will be publicly
available upon publication.
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