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Abstract 

Aims/hypotheses: Glucagon and Glucagon-like peptide-1 (GLP-1) are derived from the same 

precursor; proglucagon (gcg), and dual agonists of their receptors are currently explored for the 

treatment of obesity and steatotic liver disease. Elevated levels of endogenous glucagon 

(hyperglucagonaemia) have been linked with hyperglycaemia in individuals with type 2 diabetes but 

are also observed in individuals with obesity and metabolic dysfunction-associated steatotic liver 

disease (MASLD). It is unknown whether type 2 diabetes, obesity or MASLD causes 

hyperglucagonaemia or vice versa. We investigated potential determinants of plasma gcg and 

associations of glucagon receptor signalling with metabolic diseases based on data from the UK 

Biobank.  

 

Methods: We used exome sequencing data from the UK Biobank for ~410,000 Caucasians to identify 

glucagon receptor variants and grouped them based on their known or predicted signalling. Plasma 

levels of gcg estimated using Olink technology was available for a subset of the cohort (~40,000). We 

determined associations between glucagon receptor variants and gcg with BMI, type 2 diabetes, and 

liver fat (quantified by liver MRI) and performed survival analyses to investigate if elevated gcg predicts 

type 2 diabetes development. 

 

Results: Obesity, MASLD, and type 2 diabetes independently associated with elevated plasma levels 

of gcg. Baseline gcg levels were statistically significantly associated with the risk of type 2 diabetes 

development over a 14-year follow-up period (hazard ratio = 1.13; 95% confidence interval (CI) = 1.09, 

1.17, p < 0.0001). This association was of the same magnitude across strata of BMI. Carriers of 

glucagon receptor variants with reduced cAMP signalling had elevated levels of gcg (β = 0.847; CI = 

0.04, 1.66; p = 0.04), and carriers of variants with a predicted frameshift mutation had significantly 

higher levels of liver fat compared to wild-type controls (β = 0.504; CI = 0.03, 0.98; p = 0.04). 

 

Conclusions/interpretation: Our findings support that glucagon receptor signalling is involved in 

MASLD and type 2 diabetes, and that plasma levels of gcg are determined by genetic variation in the 

glucagon receptor, obesity, type 2 diabetes, and MASLD. Determining the molecular signalling 

pathways downstream of glucagon receptor activation may guide the development of biased GLP-

1/glucagon co-agonist with improved metabolic benefits. 

 

Keywords: Glucagon, Glucagon receptor, MASLD, Obesity, Type 2 diabetes, UK Biobank 

 

Abbreviations 

• Gcg: proglucagon 
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• GLP-1: Glucagon-like peptide-1 

• LoF: loss-of-function 

• MASLD; metabolic dysfunction-associated steatotic liver disease 

• NPX: Normalized Protein eXpression 

• PDFF: Proton density fat-fraction 

• UKB: UK Biobank 

 

 

Research in context 

What is already known about this subject?  

• Glucagon contributes to fasting hyperglycaemia in type 2 diabetes 

• Hyperglucagonemia is often observed in metabolic dysfunction-associated steatotic liver 

disease (MASLD), obesity and type 2 diabetes 

• Glucagon/GLP-1 co-agonists have superior metabolic benefits compared to monoagonists 

 

What is the key question?  

What are key determinants of plasma proglucagon (gcg) and is elevated plasma gcg a cause or 

consequence (or both) of type 2 diabetes? 

 

What are the new findings? 

• Plasma levels of gcg are increased in type 2 diabetes, MASLD and obesity independently of 

each other  

• Increased plasma gcg associates with higher risk of type 2 diabetes development  

• Glucagon signalling associates with hepatic fat 

 

How might this impact on clinical practice in the foreseeable future? 

• Biased glucagon receptor-regulating agents may be beneficial in the treatment of obesity and 

MASLD. 
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1. Introduction 

The proglucagon gene (GCG) encodes several metabolically important hormones including glucagon-

like peptide-1 (GLP-1) and glucagon with impact on glucose control, food intake, and hepatic protein-

and lipid metabolism [1]. Recently, co-agonists of these two hormones have been developed and are 

tested in clinical trials for the treatment of obesity and metabolic dysfunction-associated steatotic liver 

disease (MASLD) [2, 3]. Increased plasma levels of glucagon (hyperglucagonemia) are associated with 

fasting hyperglycaemia in patients with type 2 diabetes but are also observed in individuals with obesity 

and/or MASLD [4-6]. Glucagon binds and acts via the glucagon receptor, belonging to class B1 of the 

superfamily of G protein-coupled receptors signalling through Gαs (stimulating the adenylate 

cyclase/cAMP/protein kinase A pathway) and Gαq (signalling through the phospholipase C/inositol-

phosphate (IP3)/calcium/calmodulin pathway). Like other class B1 receptors, the glucagon receptor 

recruits β-arrestin, which sterically alters the binding between the receptor and the G protein and 

regulates internalization [7]. The molecular pharmacological phenotype of 38 missense variants of the 

glucagon receptor were recently described at the level of cAMP signalling and β-arrestin recruitment 

[8], whereas similar systematic investigations at the level of the PLC/IP3 pathway are still lacking. 

 

During the last decade, the impact of glucagon signalling on hepatic amino acid catabolism has gained 

increasing interest due to its potential clinical implications. Equally important has been the recognition 

of the role of amino acids as determinants of hyperglucagonemia in patients with MASLD. We and 

others have shown that MASLD is associated with hepatic glucagon resistance resulting in 

hyperaminoacidemia and compensatory hyperglucagonemia, increasing hepatic glucose production [9, 

10]. This feedback system, known as the liver-alpha cell axis, may contribute to the increased risk of 

type 2 diabetes observed in obese individuals with MASLD. The potent impact of glucagon on amino 

acid levels has also prompted the use of circulating amino acids (alanine in particular) as markers for 

drug engagement in studies investigating the clinical utility of glucagon receptor co-agonism [11].  

 

An important gap in the understanding of the pathophysiological role of glucagon in metabolic diseases 

lies in elucidating whether increased plasma levels of glucagon result from a) obesity, b) MASLD, c) 

type 2 diabetes, or d) a combination of these. A key question in this context is whether 

hyperglucagonemia is merely an epiphenomenon of dysmetabolic conditions or a direct contributor to 

the development of type2 diabetes. Elucidation of this has been challenged due to lack of sufficient 

matching of body weight, age, sex, MASLD status, and kidney function, in particular because of limited 

sample sizes across reported clinical studies. 
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To determine glucagon’s role in type 2 diabetes, and whether hyperglucagonemia exists independently 

of obesity, MASLD and type 2 diabetes, we analysed data from the UK Biobank including data from 

more than 500,000 individuals. The dataset included plasma gcg on ~40,000 individuals, ~15 years 

follow up data on incident type 2 diabetes development, amino acid quantification for ~230,000 

individuals, liver fat quantification for ~35,000 individuals, and exome sequencing allowing 

investigations of the potential impact of glucagon receptor variants on clinical features.  

 

2. Materials and Methods 

2.1. The UK Biobank  

The UK Biobank (UKB) is a large prospective research resource including half a million participants 

aged 40 to 69 at the time of inclusion from the United Kingdom. The biobank encompasses genetic, 

lifestyle, and health data derived from various sources such as questionnaires, physical assessments, 

biological specimens, imaging, and the continual monitoring of health-related outcomes, as described 

in detail previously [12]. Participants who withdrew from the biobank were excluded from all analyses 

(n = 179, updated 14.11.2023). We excluded non-white individuals and outliers for sex chromosome 

aneuploidy. A list of field names used in the study is available in ESM Table 1. 

 

2.2. Proteomics data processing 

Proteomics data was accessed through the DNA nexus platform and processed locally. The data is 

available as NPX units (an arbitrary and normalized unit in Log2 scale). Processing of the raw data and 

normalization has been described elsewhere [13]. Overall, there was 2.9% missing data. We filtered out 

individuals and proteins with >10% missing data (4 proteins and 3298 individuals were excluded). The 

remaining 1.1% missing data was imputed by MinProb. The resulting Olink sub-cohort consisted of 

40,164 individuals and 1460 proteins. Differential expression analysis was performed with the Limma 

package (v. 3.56.2) [14]. 

 

2.3. Exome Sequencing Analysis and Variant Annotation 

We analysed the whole-exome sequencing of 469,914 individuals from the UKB [12]. The UKB whole-

exome sequencing data was reference-aligned with the Original Quality Functional Equivalent protocol 

previously described [15]. This protocol uses BWA-MEM [16] to map all the reads to the human 

reference genome GRCh38 [17]. Variant call was performed using DeepVariant [18]. We filtered the 

Genomic VCF (gVCF) files for each sample, restricted to the location of the glucagon receptor at chr17: 

81,804,150 to 81,814,008 forward strand. The analyses were conducted on the Research Analysis 
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Platform (https://ukbiobank.dnanexus.com). A cloud worker with 36 CPU threads was chosen to run 

36 bcftools (swiss army knife) parallel jobs and automatically launch new jobs when the previous jobs 

had finished. The output csv files were subsequently merged using Python. The scripts used to filter the 

gVCF files from UKB and merge the output csv files are available at https://github.com/nicwin98/UK-

Biobank-GCG.  

 

We filtered for genotype quality (GQ) < 20, depth (DP) < 10, and allele balance (AB, for the minor 

allele) < 0.2. The genetic variants were annotated for their sequence effect with opencravat.org [19]. 

We created a variant group “Frameshift” for predicted loss-of-function alleles. This group included the 

sequence ontologies frameshift elongation, frameshift truncation, in-frame deletion, in-frame insertion, 

start lost, and stop gained (see ESM Table 2). Missense variants were denoted as the reference amino 

acid (1 letter code), the amino acid position, followed by the alternative amino acid. Missense variants 

were subsequently categorized as G40S heterozygotes and G40S homozygotes (pooled in the 

proteomics sub-cohort), or as cAMP loss-of-function based on a previous study reporting the molecular 

phenotype of 38 missense variants [8].  

 

2.4. Incident type 2 diabetes and survival analyses 

We defined type 2 diabetes based on hospital diagnoses encoded as E11 or E14 in the ICD-10 

classification system. We excluded individuals with a diagnosis of type 1 diabetes (E10). Prevalent 

cases were defined as 1) probable and possible type 2 diabetes based on the Eastwood algorithm [20], 

2) with a baseline HbA1c greater than 48 mmol/mol (a recommended cutoff point for diagnosing type 

2 diabetes) [21], or 3) a diagnosis before or within 6 months after the enrolment visit. A list of fields 

used for the definition of diseases is available in ESM Table 3. After exclusion of 1833 prevalent cases, 

a total of 1562 developed incident type 2 diabetes during follow-up (median follow-up time: 14.75 

years).  

 

Risk time (in months) was defined from date of baseline examination (between 2006 and 2010) where 

the blood sample for proteomics analysis was obtained, to the last updated version of the hospital 

register (3rd of October 2021), the date of type 2 diabetes diagnosis, death, or loss to follow-up, 

whichever occurred first. Data on loss to follow-up was last updated in May 2017, and censored 

individuals were included in the analysis up to the point of censoring. 

 

For the Kaplan-Meier survival analysis, the cohort was stratified into tertiles based on their plasma gcg 

levels at the baseline visit. Pairwise comparison using Log-Rank test with Bonferroni correction for 

multiple testing was used to compare survival curves between the three subgroups. Using Cox 

proportional hazard regression with adjustment for age and sex, and we explored BMI (continuously) 
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as a potential intermediate. However, due to lacking model fit our final analysis instead stratified on 

BMI categories (BMI < 25 kg/m2; 25 kg/m2 ≥ BMI > 30 kg/m2; BMI ≥ 30 kg/m2) and addressed whether 

the association between gcg and incident type 2 diabetes differed across BMI categories. Proportional 

Hazards and linearity assumptions for all covariates were assessed with Schonfeld and Martingale 

residual plots, respectively. Survival analyses were done using the Survival package for R (v3.5-4; 

Therneau, 2020) [22].  

 

2.5. Statistical methods 

For association analyses, we used the following variables: Age when attending the assessment centre; 

sex; BMI; baseline type 2 diabetes was defined as probable and possible type 2 diabetes based on the 

Eastwood algorithm [20]; liver fat (quantified by MRI-PDFF at the second repeat visit) [23]; weekly 

alcohol; glucose; Hba1c; amino acids. BMI was used continuously or as a binary variable (non-obese, 

BMI < 25 kg/m2; obese, BMI > 30 kg/m2). Liver fat was used as a continuous variable or a binary 

variable to define MASLD (non-MASLD, < 5.5%, MASLD ≥ 5.5%), in both cases excluding 

individuals with a weekly alcohol intake above 17.5 units for women and 26.25 units for men. The gcg-

alanine index was calculated as the product of gcg and alanine. 

 

For linear models, increments of independent variables were set to 5 units for BMI, 5% for liver fat, 5 

years for age, and 5 mmol/L for serum creatinine. Glucose, Hba1c, and amino acids were normalized 

to the standard deviation (SD) of each variable. Glucagon receptor variant groups were tested for 

association to binary traits with logistic regression with Firth-correction. R version 4.3.0 was used for 

all analyses.  

 

 

3. Results 

3.1. Plasma gcg is elevated in obesity, type 2 diabetes, and MASLD and associates with 

increased risk of incident type 2 diabetes 

Plasma gcg was measured as a part of the proteomics analysis in a sub-cohort that matched the UKB 

cohort on age, sex, and recruitment centre (ESM Table 4) [13]. We investigated whether plasma gcg 

was associated with BMI, type 2 diabetes, and MASLD in the UK Biobank. Plasma gcg was available 

as NPX units (an arbitrary and normalized unit in Log2 scale). Plasma gcg was increased in individuals 

with obesity (Log2 fold change (FC) = 0.53, p < 0.0001) (Fig. 1a), type 2 diabetes (Log2 FC = 1.10, p 

< 0.0001) (Fig. 1b), and MASLD (Log2 FC = 0.36, p < 0.0001) (Fig. 1c).  
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We performed multiple linear regression models to assess the association between plasma gcg as 

independent variable and type 2 diabetes, BMI, and liver fat as dependent variables. Model 1 was 

adjusted for age, sex, fasting time, and plasma creatinine. All variables significantly associated with 

higher plasma gcg (Fig. 1d). To investigate whether these metabolic diseases independently associated 

with higher gcg levels, we adjusted the linear models for each of the other variables. Importantly, plasma 

gcg remained positively associated with type 2 diabetes (p < 0.0001), BMI (p < 0.001) and liver fat (p 

< 0.01) (Fig. 1d) suggesting that each of these metabolic disorders independently associate with 

elevations in plasma gcg. This was confirmed in an additional analysis with a tenfold increase in the 

sample size for type 2 diabetes and BMI specifically (Fig. 1e).  
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Fig. 1: Plasma gcg is elevated in obesity, type 2 diabetes, and MASLD. Plasma gcg in (a) lean individuals (BMI < 25) and 

individuals with obesity (BMI > 30), (b) individuals with and without type 2 diabetes, and (c) individuals with MASLD. The 

number of individuals in each group is shown. Data is shown as boxplots with quartiles and analysed by unpaired t-test. 

***P<0.001, ****P < 0.0001. (d) Multiple linear regression analyses were performed with plasma gcg from Olink proteomics 

as the dependent variable and T2D, BMI, % liver fat (PDFF) as independent variables. Increments were set to 5 units for BMI 

and 5% for liver fat. Model 1 for each variable included adjustment for age, sex, fasting time, and plasma creatinine. Additional 

co-factors in each of the remaining models are indicated at the figure. (e) Multiple linear regression analyses with plasma gcg 

as the dependent variable and T2D and BMI as independent variables. Increments were set to 5 kg/m2 for BMI. Model 1 for 

each variable included adjustment for age, sex, fasting time, and plasma creatinine. Additional co-factors in each of the 

remaining models are indicated in the figure. CI, 95% confidence intervals; T2D, type 2 diabetes. 

 

To investigate if high plasma levels of gcg associate with an increased risk of developing type 2 

diabetes, we first performed a Kaplan-Meier survival analysis stratified on tertiles of plasma gcg at 

baseline (Tertile 1: mean gcg (NPX): -1.50, n=13385; Tertile 2: mean gcg: -0.005, n=13386; Tertile 3: 

mean gcg: 1.62, n=13385). The median follow-up time was 14.75 years, and the number of incident 

type 2 diabetes cases included in the models was 1551 (893 men and 658 women). The risk of incident 

type 2 diabetes increased stepwise from low to medium levels (p < 0.0001) and from medium to high 

levels (p < 0.0001) (Fig. 2a). Secondly, we applied a Cox proportional hazard regression analysis to 

evaluate the impact of baseline gcg levels of incident type 2 diabetes with adjustment for age and sex. 

Gcg statistically significantly associated with the risk of type 2 diabetes development (HR: 1.13; CI = 

1.09. 1.17, p < 0.0001). We also stratified our model on BMI, and the association between gcg and 

incident type 2 diabetes was of similar magnitude across BMI categories (Fig. 2b).  
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Figure 2: (a) Kaplan-Meiner survival curves for incident type 2 diabetes during the follow-up period, differentiated by tertiles 

of baseline gcg levels. The shaded areas represent 95% confidence intervals. Tertile 1: n = 13,385, mean gcg = -1.50 NPX; 

Tertile 2: n = 13,386, mean gcg = -0.005 NPX; Tertile 3: n = 13,385, mean gcg = 1.62 NPX. The subgroups were statistically 

compared using pairwise Log-Rank test with Bonferroni correction. (b) Results from Cox proportional hazard regression 

analysis. The model was stratified on BMI categories: normal-weight, BMI < 25 kg/m2; overweight, 25 kg/m2 ≥ BMI > 30 

kg/m2; obese, BMI ≥ 30 kg/m2. Gcg (NPX) was the independent variable and age (5-year increment) and sex were included 

as covariates. HR, hazard ratio; CI, 95% confidence interval.  

 

3.2. Association between plasma gcg and circulating metabolites 

We tested the impact of selected confounders on plasma levels of gcg using linear models. Gcg levels 

were higher in males than females and increased with age (Fig. 3a). Plasma creatinine was included as 

an estimate of renal function, as circulating products of gcg are cleared in the kidneys. An increase in 

plasma creatinine, suggestive of reduced renal clearance, was associated with an increase in gcg (Fig. 

3a).  

 

Next, we used multiple linear regression to evaluate the association between plasma gcg and amino 

acids and glucose, adjusting for BMI and the confounders in Fig. 3a. Plasma gcg was positively 

associated with tyrosine, phenylalanine, alanine and histidine as well as the branched-chain amino acids 

valine, leucine, and isoleucine. Interestingly, glutamine and glycine were not associated with gcg levels 

(Fig. 3b). Plasma glucose and Hba1c were also positively associated with gcg levels (Fig. 3b). 

 

The glucagon-alanine index has been proposed as a plasma marker for glucagon resistance [24-28]. It 

is associated with hepatic steatosis [24], and decreases upon weight loss [25]. The gcg-alanine index 

(the product of gcg and alanine) correlated with liver fat (β = 0.15, p < 0.001) (Fig. 3c).  
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Fig. 3: Effects of circulating metabolites on plasma gcg levels. (a) Simple linear regression analyses were performed with 

plasma gcg in NPX units as the dependent variable and the indicates confounders as independent variables. Increments were 

set to 5 years for age and 5 mmol/L for creatinine. (b) Multiple linear regression analyses were adjusted for BMI, sex, age, 

creatinine, and fasting time. The x-axis is the effect size in standard deviations (SD) of the metabolite. P-values were adjusted 

using FDR correction. (c) The gcg-alanine index (the product of gcg (NPX) and alanine (mmol/L)) plotted against percent 

liver fat (log scale). Correlation was tested using Pearson correlation test. r, correlation coefficient.  

  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 14, 2023. ; https://doi.org/10.1101/2023.12.12.23299852doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.12.23299852
http://creativecommons.org/licenses/by-nd/4.0/


12 

 

3.3. Associations between gcg and T2D and BMI may depend on genetic variation of 

the glucagon receptor 

To investigate the effect of genetic variation in the glucagon receptor on the same metabolic outcomes 

as above, we identified individuals with genetic variants of the glucagon receptor from whole-exome 

sequencing data. We grouped the glucagon receptor variants the following way: 1) the single nucleotide 

polymorphism G40S, previously associated with non-insulin dependent diabetes, hypertension, and 

adiposity [29-31], but normal cAMP signalling and reduced β-arrestin signalling [8], 2) the missense 

variants V368M, R378C, R225H, R308W, and D63 were grouped as “cAMP loss-of-function” (LoF) 

based on previous research [8], and 3) variants annotated as frameshift or stop-codon introduced were 

grouped as “Frameshift” variants (ESM Table 2). Fig. 4a-c outlines the number of individuals in each 

group in the UK Biobank cohort and the sub-cohort included in the proteomics analysis.  

 

Although only 11 individuals heterozygous for a cAMP LoF variant were included, we observed a 

statistically significant elevation in gcg compared to the wildtype reference group (β = 0.847; CI = 0.04, 

1.66; P = 0.04) (Fig. 4d). G40S or frameshift variants were not associated with gcg levels, implying that 

cAMP rather than β-arrestin signalling may be involved in metabolic processes directly or indirectly 

regulating gcg levels. 

 

In the frameshift variant group, liver fat was significantly increased compared to the wild-type reference 

group (β = 0.504; CI = 0.03, 0.98; p = 0.04) (Fig. 4e). None of the glucagon receptor variant groups 

were associated with BMI as a continuous or binary trait. We observed no difference in the prevalence 

of type 2 diabetes between G40S and controls (Fig. 4f). The sample size of type 2 diabetes was 

inadequate for cAMP LoF and pLoF variant groups. 

 

To test if the association between plasma gcg and type 2 diabetes and BMI, respectively, was dependent 

on the glucagon receptor genotype, we performed logistic and linear models stratified on the variant 

groups and with inclusion of the interaction term gcg*genotype. Interestingly, although plasma gcg 

associated with type 2 diabetes in the whole cohort (Fig. 1d, 1e), this was not the case in individuals 

with G40S (p = 0.1) (Table 1). The interaction term between G40S and gcg was borderline significant 

(p = 0.07). Oppositely, the effect of plasma gcg on BMI was larger in carriers of the G40S variants 

compared to wildtype controls (0.679±0.126 vs. 0.327±0.017, p < 0.05) (Table 1). The effects of plasma 

gcg on BMI in carriers of cAMP LoF and truncated variants were not different from individuals with 

wildtype receptors, however, the results are limited by the low sample size (11 and 24, respectively) 

(Table 1).  
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Fig. 4: Association of loss-of-function variants with plasma gcg and metabolic traits. (a) Number of individuals within 

each glucagon receptor variant group in the UKB cohort and the proteomics sub-cohort. (b) The Frameshift variant group 

divided into the sequence ontology terms included in the group. (c) The cAMP LoF variant group divided according to the 

missense mutations included in the group. (d) Variant groups were tested for association to plasma gcg in a multiple linear 

model adjusted for age, sex, BMI, fasting time, and plasma creatinine. G40S heterozygous and homozygous were pooled. (e) 

Variant groups were tested for associations with quantitative traits in multiple linear models adjusted for age and sex. The x-

axis is the effect size (β) in standard deviations (SD) of the phenotype. (f) Variant groups were tested for association to binary 

traits with logistic regression with Firth-correction adjusted for age and sex. Obesity was defined as BMI > 30 and controls as 

BMI < 25. N indicates the number of cases in each variant group. d, e, f: Blue, G40S; Green, frameshift variants; Red, cAMP 

loss-of-function variants. G40S was included as a numeric predictor (1, heterozygous; 2, homozygous). WT, wildtype; CI, 

confidence interval; OR, odds ratio. 

 

Table 1. Interaction between plasma gcg and genotype on type 2 diabetes and BMI. For type 2 diabetes, model 1 was a 

logistic model with type 2 diabetes as the dependent variable and gcg as independent variable adjusted for age, sex, fasting 

time, creatinine, and BMI, and stratified on the genotype G40S. Model 2 included the interaction between gcg and G40S. For 

BMI, model 1 was a linear model with BMI as the dependent variable and gcg as independent adjusted for age, sex, fasting 

time, creatinine, and type 2 diabetes, and stratified on the glucagon receptor variant groups. Model 2 for each variant group 

included the interaction between gcg and variant group. WT, wildtype; T2D, type 2 diabetes, CI, confidence interval. 
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Type 2 diabetes 

Genotype N controls N Type 2 

diabetes 

Effect of plasma gcg Interaction between plasma gcg 

and genotype 

 β CI p-value  p-value  

WT 36819 776 0.464 (0.43, 0.5) < 0.0001  

G40S 630 39 0.207 (-0.04, 0.46) 0.107 0.073 

 

BMI 

Genotype N  Effect of plasma gcg Interaction between plasma gcg 

and genotype 

  β CI p-value  p-value  

WT 38662 0.327 (0.29, 0.36) < 0.0001  

G40S 669 0.679 (0.43, 0.93) < 0.0001 0.013 

cAMP LoF 11 2.984 (-4.65, 10.62) 0.339 0.141 

Frameshift 24 -0.1514 (-1.85, 1.55) 0.853 0.389 

 

 

3.4. Circulating amino acids and proteins are not altered by loss-of-function glucagon 

receptor variants 

Plasma levels of the individual and the sum of amino acids were not significantly different in individuals 

with the glucagon receptor variant groups compared to wildtype controls (table 2). However, a numeric 

increase (p = 0.10) in plasma alanine was observed in cAMP LoF in line with prior studies linking 

glucagon resistance to an increased glucagon-alanine index.  

 

Table 2: Association between glucagon receptor variant groups and plasma amino acids. The associations were tested in 

linear models with the genotype as predictor and age, sex, BMI, and fasting time as covariates. β is given in amino acid SD. 

β, effect size; CI, 95% confidence interval. 
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 cAMP LoF G40S Frameshift SD 

 β CI p-

value 

N β CI p-

value 

N β CI p-

value 

N  

Alanine 0.20 (-0.04; 

0.45) 

0.10 63 -0.01 (-0.04; 

0.02) 

0.66 3868 -0.06 (-0.22; 

0.1) 

0.44 151 0.08 

Glutamine 0.04 (-0.2; 

0.29) 

0.72 63 0.03 (-0.01; 

0.06) 

0.10 3863 0.11 (-0.05; 

0.26) 

0.18 151 0.08 

Glycine -0.20 (-0.43; 

0.03) 

0.09 63 0.02 (-0.01; 

0.05) 

0.12 3860 -0.06 (-0.21; 

0.09) 

0.42 151 0.07 

Histidine -0.03 (-0.28; 

0.21) 

0.79 63 -0.02 (-0.05; 

0.01) 

0.26 3861 0.08 (-0.08; 

0.24) 

0.33 151 0.01 

Isoleucine -0.02 (-0.26; 

0.22) 

0.88 63 0.01 (-0.02; 

0.04) 

0.55 3869 0.02 (-0.13; 

0.18) 

0.76 151 0.02 

Leucine -0.03 (-0.26; 

0.21) 

0.83 63 0.00 (-0.03; 

0.03) 

0.99 3869 0.03 (-0.12; 

0.18) 

0.68 151 0.03 

Valine -0.13 (-0.36; 

0.1) 

0.28 63 0.00 (-0.03; 

0.03) 

0.93 3866 0.01 (-0.14; 

0.16) 

0.88 151 0.04 

Phenylalanine -0.12 (-0.36; 

0.12) 

0.34 63 0.03 (0; 

0.06) 

0.08 3867 -0.06 (-0.22; 

0.09) 

0.42 151 0.01 

Tyrosine -0.03 (-0.27; 

0.21) 

0.79 63 0.02 (-0.01; 

0.05) 

0.18 3863 -0.02 (-0.18; 

0.13) 

0.77 151 0.02 

Total AA -0.01 (-0.26; 

0.23) 

0.92 63 0.02 (-0.01; 

0.05) 

0.27 3845 0.01 (-0.15; 

0.17) 

0.94 151 0.21 

 

 

We next performed differential expression analysis on the proteomics dataset (~1,500 proteins 

measured in each sample) to identify plasma proteins potentially regulated by glucagon receptor 

signalling. After correction for multiple testing, no proteins reached statistical significance. A list of the 

top 10 up- and downregulated proteins for each variant group is provided in Table 3.  

 

Table 3: Top 10 up- and downregulated proteins in glucagon receptor variant groups. Differential expression analysis 

was performed for each of the variant groups. p-values were adjusted by FDR for multiple testing. logFC, log fold change.  

Upregulated 

cAMP LoF G40S Frameshift 

Protein logFC p-

value 

adj. p-

value 

Protein logFC p-

value 

adj. p-

value 

Protein logFC p-

value 

adj. p-

value 

il18rap 0.644 0.225 0.916 grap2 0.156 0.004 0.384 ruvbl1 0.852 0 0.06 

pnliprp2 0.639 0.478 0.916 mesd 0.155 0.003 0.384 il5 0.661 0.026 0.779 

ntprobnp 0.617 0.058 0.916 stat5b 0.15 0.01 0.44 paep 0.512 0.065 0.988 

klk1 0.568 0.156 0.916 rhoc 0.144 0.004 0.384 tshb 0.44 0.008 0.487 

gcg 0.513 0.194 0.916 lat2 0.129 0.015 0.44 pm20d1 0.417 0.27 0.999 

ak1 0.468 0.026 0.916 pdlim7 0.127 0.019 0.44 pnliprp2 0.378 0.001 0.191 

ghrl 0.459 0.082 0.916 diablo 0.126 0.004 0.384 dsg4 0.378 0.531 0.999 

nppb 0.457 0.269 0.916 gopc 0.126 0.005 0.384 npm1 0.364 0.052 0.897 

sestd1 0.431 0.05 0.916 nck2 0.126 0.007 0.384 spink4 0.343 0.015 0.712 

chit1 0.43 0.357 0.916 sult1a1 0.124 0.023 0.449 klb 0.342 0.037 0.875 

            

Downregulated 
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cAMP LoF G40S Frameshift 

Protein logFC p-

value 

adj. p-

value 

Protein logFC p-

value 

adj. p-

value 

Protein logFC p-

value 

adj. p-

value 

micb_mica -0.97 0.03 0.92 il18rap -0.11 0.11 0.79 fabp1 -0.49 0.02 0.72 

siglec5 -0.86 0.02 0.92 kir3dl1 -0.11 0.03 0.45 oxt -0.49 0.12 0.99 

gpa33 -0.77 0.07 0.92 folr3 -0.10 0.22 0.80 pdgfb -0.43 0.02 0.72 

pdcd6 -0.75 0.001 0.54 tcl1a -0.09 0.04 0.48 folr3 -0.43 0.27 0.99 

foxo3 -0.71 0.02 0.92 nptn -0.08 0.02 0.44 sparc -0.42 0.006 0.49 

casp10 -0.67 0.005 0.73 sord -0.08 0.006 0.38 epcam -0.40 0.05 0.90 

tdgf1 -0.58 0.20 0.92 hao1 -0.08 0.14 0.73 gh2 -0.49 0.25 0.99 

pvalb -0.54 0.13 0.92 ghrl -0.08 0.03 0.44 fcgr2a -0.39 0.003 0.49 

ptpn1 -0.52 0.05 0.92 cd177 -0.07 0.16 0.76 gusb -0.38 0.007 0.49 

tcl1b -0.51 0.05 0.92 sult2a1 -0.07 0.004 0.38 gh1 -0.37 0.32 0.99 
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4. Discussion 

Using UKB data encompassing multiple omics data, MRI imaging and hospital registers, we here 

demonstrated that increased plasma levels of gcg are independently associated with obesity, MASLD, 

and type 2 diabetes. In addition, gcg levels were significant predictors of the risk of type 2 diabetes 

development over a 14-year follow-up period. Although causality cannot be drawn, our data support 

that increased glucagon directly contributes to development of type 2 diabetes [32]. 

 

One of the two antibodies in the Olink gcg assay binds within the first 100 amino acids of proglucagon. 

The assay may therefore measure both proglucagon products – namely glucagon and GLP-1. However, 

our results point towards glucagon as the measured peptide: Firstly, we observed that gcg was elevated 

in individuals with type 2 diabetes (Fig. 1b). Numerous studies have described that GLP-1 is reduced, 

and glucagon increased, in type 2 diabetes [33, 34]. Secondly, gcg was positively associated with 

alanine (Fig. 3b). Alanine was not correlated with plasma GLP-1 levels after a protein-rich intake in 

women with obesity [35] and did not stimulate GLP-1 secretion in vitro [36]. On the contrary, alanine 

is known to correlate positively with glucagon levels in the fasting and postprandial states [24, 37], and 

to strongly stimulate glucagon secretion across species [38-40]. Thirdly, the gcg-alanine index 

significantly correlated with liver fat. Multiple studies have shown that the glucagon-alanine index is 

correlated with liver fat even below the level of steatosis [26, 27, 41]. Lastly, we observed a significant 

increase in plasma gcg in carriers of cAMP LoF variants of the glucagon receptor (Fig. 4d). Since 

glucagon resistance in MAFLD results in a compensatory increase in glucagon levels [27, 41], similar 

mechanisms likely underlie the finding of increased gcg in individuals with reduced glucagon receptor 

activity at the level of cAMP signalling. The assumption that gcg represents glucagon rather than GLP-

1 should ideally be validated by measuring in parallel plasma samples with high endogenous and 

exogenous levels of GLP-1, glucagon, and oxyntomodulin by a validated immunoassay and by the 

Olink proteomic assay.  

 

Plasma gcg showed a positive association with BCAA. BCAA catabolism is not regulated by glucagon, 

and BCAA do not directly stimulate glucagon secretion [38, 39]. However, BCAA do play an important 

role in the pathogenesis of insulin resistance [42, 43] and the correlation between gcg and BCAA may 

reflect the mutual relationship between hepatic insulin and glucagon resistance [24]. A limitation of the 

current study is the lack of markers of insulin resistance, hereof plasma insulin levels. We previously 

observed that glucagon resistance and insulin resistance may coexist but importantly also occur 

independently of each other highlighting the differential pathophysiological mechanisms underlying 

glucagon and insulin resistance [28].  
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In agreement with previous studies, we found a link between MASLD and glucagon. In our analyses, 

we utilized MRI to estimate and diagnose MASLD based on hepatic steatosis, but we lacked data on 

the severity of fibrosis, which is the most critical predictor of clinical outcomes in MASLD. However, 

given the probable close relationship between glucagon and the metabolic alterations in MASLD, the 

degree of hepatic steatosis is likely to indicate the risk of developing cardiometabolic conditions, 

including diabetes. Our findings therefore support speculations that there is a two-way connection 

between MASLD and diabetes and suggest that glucagon could be a main factor in the pathogenesis. 

 

Consistent with prior research, we identified an association between plasma gcg and individuals with 

type 2 diabetes at baseline. It is possible that this relationship may not only reflect the 

pathophysiological traits of diabetes but also the glucagonostatic effects of glucose-lowering drugs (e.g. 

metformin). In our analysis, however, we still detect a significantly increased plasma level of gcg in 

patients with type 2 diabetes.  

 

Type 2 diabetes is often diagnosed by general practitioners, and only ~41% of diabetes diagnoses are 

registered in hospital records [20]. Primary care data are linked to the UK Biobank for ~45% of the 

participants up until 2016 (England) and 2017 (Scotland and Wales), so to get a longer follow-up period, 

incident type 2 diabetes was defined from secondary care ICD-10 diagnostic codes. This is a limitation 

of this study and may explain the flattening of the Kaplan-Meier curve (Fig. 2a) in the later years of the 

follow-up period, as hospital diagnoses may be registered at a later point than the primary care 

diagnosis. Another limitation is that quantification of liver fat (MRI PDFF) is obtained from the MRI 

scan performed ~10.5 years after the baseline data was obtained.  

 

Traditionally, the primary focus on glucagon receptor signalling has centred on the adenylate 

cyclase/cAMP/protein kinase A pathway as the predominant mediator of the hepatic glucose-mobilizing 

actions of glucagon. However, compelling evidence suggests that the PLC/IP3 pathway may be even 

more important for physiological levels of glucagon as compared to pathologically or 

pharmacologically elevated levels [44]. Further investigation into the impact of rare missense variants 

on this pathway is warranted.  

 

The most common missense variant in the glucagon receptor, G40S has normal to mildly reduced cAMP 

signalling [45-47], and significantly decreased β-arrestin 1 signalling [8]. G40S has previously been 

linked to non-insulin-dependent diabetes and central adiposity in France and Sardinia [29, 30], but 

interestingly not in Japan or Finland [48, 49]. We did not find an increased prevalence of type 2 diabetes 

or obesity in heterozygotes or homozygotes of the G40S variant in the UK Biobank. However, there 

was a significant interaction between plasma gcg and G40S, with gcg having a significantly stronger 

association with BMI in carriers of G40S compared to wild-type controls (Tabel 2). On the contrary, 
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the association between gcg and type 2 diabetes was borderline significantly lower in individuals with 

G40S compared to wild-type controls (Table 1). Together with the divergent literature on the effects of 

G40S on metabolic disorders, our results suggest that G40S may play a role in the development of type 

2 diabetes and obesity, but that this may require parallel metabolic disruptions leading to altered gcg 

levels.  

 

A tendency toward increased risk of obesity was previously shown for the group of cAMP LoF variants 

[8]. Since then, exome sequencing data was increased to cover the whole UK Biobank. After an 

approximately doubling of the sample size of carriers of a cAMP LoF variant, this tendency 

disappeared, both when BMI was treated as a continuous and dichotomized variable. However, the 

increased plasma levels of gcg in this group of individuals suggest that cAMP signalling is involved in 

the regulation of a factor, that in turn regulates gcg levels in a feedback manner. This has previously 

been suggested to be amino acids, with alanine being particularly important for this feedback system 

termed the liver-alpha cell axis [50-52]. In line with this, there was a tendency to increased alanine (p 

= 0.1) in individuals with cAMP variants adjusting for age, sex, BMI, fasting time, and creatinine.  

 

The Frameshift category of glucagon receptors was defined rather broadly. Yet, carriers of one of the 

Frameshift variants were associated with significantly higher levels of liver fat compared to wild-type 

controls. This was not observed in G40S or the cAMP LoF variant groups, suggesting that a signalling 

pathway other than cAMP and β-arrestin is likely involved. Further functional subdivision and in silico 

predictions may help select and group variants that are pharmacologically characterized by more 

stratified loss-of-function phenotypes. Other research groups have found ubiquitination and β-arrestin 

to be essential for the signalling and internalization of the glucagon receptor [7, 53], whereas others 

report only a minor internalization of the glucagon receptor [54], suggesting that this pathway may not 

be a major regulator of glucagon receptor signalling. The multiple factors impacting signalling 

pathways are complex and warrant further exploration. 

 

In conclusion, our study supports the involvement of glucagon signalling in metabolic disorders such 

as type 2 diabetes and MASLD and that increased gcg levels may predispose to type 2 diabetes. 

Furthermore, the presence of hyperglucagonemia in obesity, MASLD and type 2 diabetes indicates that 

distinct mechanisms may drive increased alpha cell secretion. Other signalling pathways than cAMP 

and β-arrestin recruitment may be important for the metabolic effects of glucagon such as the regulation 

of liver fat. Identification of the specific molecular characteristics responsible for the beneficial effects 

of glucagon on hepatic lipid turnover may be crucial in developing improved glucagon co-agonists for 

the treatment of MASLD and obesity. 
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