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Abstract 

Long-COVID-19 manifests as a multisystemic condition with varied symptoms lingering 

beyond three weeks of acute SARS-CoV-2 infection, though its underlying mechanisms 

remain elusive. Aiming to decipher the long-term molecular impacts of COVID-19, we 

conducted a transcriptomic analysis on PBMCs from 1-year post-covid patients, including 

individuals without pneumonia (NP, n=10), those with severe pneumonia (SP, n=11), and 

healthy controls (C, n=13). Our extensive RNA sequencing revealed 4843 differentially 

expressed genes (DEGs) and 1056 differentially expressed long non-coding RNAs 

(DElncRNAs) in “C vs NP,” 1651 DEGs and 577 DElncRNAs in “C vs SP,” 954 DEGs and 
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148 DElncRNAs in “NP vs SP,” with 291 DEGs and 70 DElncRNAs shared across all groups. 

We identified 14 hub genes from 291 DEGs, with functional enrichment analysis showing 

upregulated DEGs mainly linked to inflammation and osteoclast differentiation, and 

downregulated DEGs to viral infections and immune responses. These hub genes play central 

roles in inflammatory and immune processes and are significantly associated with 

pneumonitis and diverse lung diseases. Investigations revealed unique immune cell signatures 

across DEG categories, associating upregulated DEGs with neutrophils and monocytes, and 

downregulated DEGs with CD4 memory effector T cells. Analysis of 14 hub genes showed 

notable upregulation in the no pneumonia group versus healthy controls, displaying complex 

patterns in the severe pneumonia group. Our study uncovered potential idiopathic pulmonary 

fibrosis signals in Long-COVID-19 patients’ PBMC transcriptome, highlighting the urgency 

for thorough monitoring and extended research to understand COVID-19’s lasting effects.  

This study sheds light on COVID-19’s transcriptomic changes and potential lasting effects, 

guiding future research and therapeutic approaches for Long-COVID-19. 

Abstract: 250 words 

Keywords: Lost-COVID-19, Transcriptomic analysis, Peripheral Blood Mononuclear Cells 

(PBMC), Long-term effects, Inflammatory responses, Pneumonia 

Running Title: Long-COVID-19: Transcriptomic Insights from PBMCs 
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1. Introduction:  

SARS-CoV-2, a highly contagious respiratory virus that is the source of the continuing 

worldwide pandemic, is the cause of the coronavirus disease 2019 (COVID-19). Common 

symptoms of COVID-19 include fever, cough, headache, lethargy, myalgia, diarrhoea, and 

anosmia in previously healthy people. COVID-19 often manifests as an asymptomatic or mild 

to moderate respiratory infection [1, 2]. Additionally, COVID-19 in patients with pre-existing 

co-morbidities such as obesity, respiratory, cardiovascular, and renal illnesses can swiftly 

progress into a serious, life-threatening condition needing immediate critical care support [3, 

4]. According to the World Health Organization (WHO), there were 6,897,025 fatalities and 

762,791,152 confirmed cases of COVID-19 worldwide as of 12 April 2023 (WHO, 2023).  

The early acute stages of COVID-19 have been the subject of numerous studies, but 

studies of the long-term consequences of the disease have received much less attention, and 

still little is known. In the past two years, studies have reported that 30-70% of recovered 

individuals who had mild to severe COVID-19 struggling with prolonged symptoms for the 

time more than a 1 year after infection[5-10], have been commonly referred to as Long-

COVID (CDC, 2021) or post-acute sequelae of COVID-19 (PASC)[11]. Long-COVID-19 is 

defined as a multisystemic condition with severe symptoms for at least 3 weeks or longer after 

the first negative PCR test following the acute course of SARS-CoV-2 infection [12]. Most 

cases are resolved within two to four weeks of the initial symptoms’ appearance; however, 

after the initial infection, early studies have showed that these persistent symptoms in some 

cases may appear four weeks to less than a year later [13, 14]. The most common symptoms 

observed in the Long-COVID-19 studies include fatigue, headache, attention disorder, 

memory loss, hair loss, gastrointestinal (GI) distress, dyspnoea, anosmia, shortness of breath, 

pneumonia, and other symptoms[9, 15, 16].  

Recent studies have revealed that Long-COVID-19  is associated with the features of 

the severity of the disease [7, 17] including the presence of chronic pulmonary fibrosis, 

pneumonia at initial diagnosis, dyspnoea, and emergency service admission in the Long- 

COVID-19 period [8]. Long-COVID-19 has been thought to be related to autoimmune 

mechanisms, unresolved viral fragments, and the presence of high-titre SARS-CoV-2 IgG 

response induced by the natural infection [7, 18, 19]. Additionally, although some infected 

people experience long-term radiological abnormalities linked to pulmonary function 

impairment [20-23], the underlying pathogenic pathways are poorly understood. Besides, it is 
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unclear why some patients experience complete clinical, physiological, and radiological 

recovery while others have a more dangerous outcome that includes persisting interstitial lung 

alterations and related pulmonary function impairment. It is still unknown whether the 

COVID-19 sequelae that are still present in the lungs are a result of the lingering effects of the 

initial increase in the inflammatory response or the activation of alternate pathways after the 

acute illness has subsided. To address these knowledge gaps, we carried out unbiased next-

generation RNA sequencing from peripheral blood mononuclear cells (PBMCs) of the 

patients with the absence of pneumonia and presence of severe pneumonia in 1-year recovery 

after COVID-19 and the healthy controls without SARS-CoV-2 infection. 
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2. Material and methods 

Ethical Statement: 

This study followed the principles of the Declaration of Helsinki and was approved by the 

institutional ethics committee of Çukurova University School of Medicine (Approval number: 

356/22.05.2021). Informed consent was obtained from the patients and the healthy volunteers 

for the collection of blood samples. 

Data Availability: 

FASTQ sequences of the PBMC samples have been deposited in NCBI Short Read Archive 

(SRA) under BioProject PRJNA895325. 

Study population: 

This study was conducted on patients who participated in the previously published 

TURCOVID study [8, 24]. During the first wave of the COVID-19 pandemic (between 11 

March and 18 July 2020), 1 500 patients over the age of 18, who were monitored and treated 

because of COVID-19 were included in the targeted trial population in the multi-centre TTS-

TURCOVID-19 registry cohort. A total of 831 patients were enrolled in the trial at 13 of the 

26 locations (11 university hospitals, 2 sizable tertiary institutions, and 1 private hospital). A 

standard questionnaire was applied to current patients in the cohort over the phone after 

receiving written informed consent. Of the cohort of 831 patients, 272 (32.7%) could not be 

reached, 48 (5.8%) refused to participate in the study, 69 (8.3%) were excluded due to death, 

and the remaining 442 patients were included (Form-1). Retrospective data entry was 

performed over the recorded files, and an analysis of the medical records of 442 patients, who 

could be reached by phone, was applied (Form-2). One year later, 138 patients from 11 

centres, who agreed to participate in the study and filled out a signed informed consent form, 

were called for a follow up check. A routine evaluation (clinical, laboratory and radiological) 

of the patients was performed (Form-3). From these cases, 27 were randomized into two 

groups using the computer program at https://www.medcalc.org/. Two groups were formed: 

one consisting of 13 cases (male: 8; female: 5) without pneumonia in their radiology findings 

after experiencing COVID-19, and the other consisting of 14 cases (male: 10; female: 4) with 

severe pneumonia. The control group was composed of 13 cases (male: 8; female: 5), who 

remained uninfected. Age, gender, and smoking status were taken into consideration to 
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eliminate confounding factors in the randomization process. Thus, the cases were divided into 

three groups: (i) those with no pneumonia following COVID-19 infection, (ii) those with 

severe pneumonia during COVID-19 infection, and (iii) the healthy control group with no 

disease (Table 1). Peripheral blood mononuclear cells (PBMC) were isolated from the blood 

obtained from the patients and stored at -80�C until used. 

Blood Sample Collection and Isolation of Peripheral Blood Mononuclear Cells (PBMCs)  

Approximately 20 ml of venous blood was collected from each participant, and PBMCs were 

isolated using a solution of Lymphoprep™ (Alere Technologies, Norway) by performing 

density gradient sedimentation at 2000 rpm for 20 minutes. 

Transcriptome Library Construction and Next-generation RNA Sequencing:  

Following isolation, the purity and integrity of RNA was assessed using a NanoDropTM 

spectrophotometer (Thermo Scientific, Nanodrop 2000c) and RNA Nano 6000 Assay Kit of 

the Agilent Bioanalyzer 2100 system (Agilent Technologies, CA, USA), respectively. 

Samples with RNA integrity number values >7.5 were retained for further processing. Before 

library preparation, mRNA and long non-coding RNAs (lncRNAs) were enriched by 

MGIEasy rRNA Depletion Kit (MGI Tech, China), and DNase I treatment (NEB) was carried 

out for complete removal of the DNA according to the manufacturer’s instruction. RNA 

libraries were constructed from 500 ng RNA using the MGIEasy RNA Library Prep Kit V3.0 

protocol (MGI, Shenzen, China) according to the manufacturer’s instruction. Firstly, enriched 

RNA samples were fragmented in fragmentation buffer, then short fragments were subjected 

to reverse transcription and second-strand synthesis. The cDNA fragments were treated with 

standard library generation steps; end-repair, A-tailing, and adapter ligation. After purification 

with DNA clean beads, we enriched adapter-ligated fragments using 14 PCR cycles and 

subjected to the following denaturation and single-strand circularization process to generate a 

single-stranded circular DNA library. These libraries were then used to generate DNA 

nanoballs (DNBs) by rolling circle replication (RCR). The resulting DNBs were then loaded 

into the patterned nanoarrays, and sequencing reaction was performed in a DNBSEQ-G400 

sequencer with a pair-end read length of 100 bp.  

RNA-Seq Data Analysis and Differential Expression Analysis 

The quality of raw sequencing reads was checked with FastQC (Babraham Bioinformatics) 

before and after sequence trimming. For a comparison of the qualities of all RNA-Seq 
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libraries, MultiQC [25] software was used to merge the results of FastQC. Raw reads were 

filtered using fastp v0.23.0 [26] to remove adaptor contamination, ambiguous (N>5) bases, 

low quality reads (Phred score, Q<20), and fragments <30 nt. All other options used the 

default values. Summary statistics for RNA-Seq reads were computed using seqkit v2.0.0 

(Shen et al., 2016). Filtered reads were mapped to human reference genome (GRCh38.p13, 

Ensembl Release 106) using Hisat2 v2.2.1 [27]. The alignment statistics were obtained with 

Sambamba v0.8.0 [28]. Count matrices and gene-level assignment were generated using 

featureCounts from Subread package v2.0.0 [29] with annotation version GRCh38.106 

(Ensembl “.gtf”). Differential gene expression between groups was performed on raw counts 

using DESeq2 v1.34.0 [30] after variance-stabilizing transform (vst) normalization. Genes 

were considered as significantly differentially expressed if the adjusted P�value (Benjamini– 

Hochberg (BH) multiple test correction method) was less than 0.001 and log2FC>1.0. 

Hierarchical clustering and principal component analysis (PCA) were performed using 

DEBrowser v1.20.0 [31] to evaluate the correlation between control and disease samples. 

Volcano plots of most differentially expressed genes (DEGs) among comparison groups were 

generated using EnhancedVolcano v1.12.0 [32]. The top 34 up-regulated and down-regulated 

protein-coding genes (sorted by adjusted p-value in increasing order) for each comparison 

were selected for heatmap generation using the online tool ClustVis[33]. The multiple plots 

generated from each condition were combined one overall graph using ggarrange() function 

available in the ggpubr R package (https://rpkgs.datanovia.com/ggpubr/).  

Functional Annotation and Enrichment Analysis 

Gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 

enrichment analysis of DEG among groups of control, no pneumonia and severe pneumonia 

was performed with Metascape using Homo sapiens (Ensembl Release 104) as background 

for enrichment[34]. The KEGG pathway enrichment analysis of DElncRNAs among groups 

of control, no pneumonia and severe pneumonia was performed with NCPATH using Homo 

sapiens (Ensembl Release 104) as background for enrichment[35]. Significance of enrichment 

analysis was estimated by Benjamini–Hochberg false discovery rate (FDR) <0.05 correction. 

Protein-protein interaction (PIP) network analysis was performed sing STRINGdb v12.0 [36]. 

Normalized expression data were used for discovery co-expressed modules, gene-diseases 

interaction, gene interactions with transcription factors and their targets, immune cell 

signatures using Metascape[34]  and Enrichr [37, 38]. A variance filter value of 0.01 was used 
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to ensure the highest level of statistical stringency and Pearson’s correlation method was 

selected for identification of the gene modules. 

Identification of 52 Genes Associated with Idiopathic Pulmonary Fibrosis Risk in The 

PBMCs’ Transcriptome 

In our PBMC transcriptome data, we compared up and down profiles based on the expression 

levels of 7 increased genes (PLBD1, TPST1, MCEMP1, IL1R2, HP, FLT3, S100A12) and 45 

decreased genes (LCK, CAMK2D, NUP43, SLAMF7, LRRC39, ICOS, CD47, LBH, 

SH2D1A, CNOT6L, METTL8, ETS1, P2RY10, TRAT1, BTN3A1, LARP4, TC2N, GPR183, 

MORC4, STAT4, LPAR6, CPED1, DOCK10, ARHGAP5, HLA-DPA1, BIRC3, GPR174, 

CD28, UTRN, CD2, HLA-DPB1, ARL4C, BTN3A3, CXCR6, DYNC2LI1, BTN3A2, ITK, 

CD96, GBP4, S1PR1, NAP1L2, KLF12, IL7R, SNHG1, C2orf27A ) from a gene signature 

previously found to be predictive of IPF poor prognosis and COVID-19 outcome [39-41]. The 

genes (sorted by adjusted p-value in increasing order) for each comparison were selected for 

heatmap generation using the online tool ClustVis[33]. 

Statistical Analysis 

Data were checked for normality and continuous variables were compared using one-way 

variance analysis, ANOVA/Dunnett's multiple comparison tests, or Kruskal-Wallis/Dunn's 

multiple comparison tests in the context of the RNAseq count data-based on gene expression 

analysis of the hub genes. The findings are presented as median�±�interquartile (IQ) ranges 

or mean�±�SD. P values were considered significant if they were less than 0.05. PRISM 

version 8 (GraphPad Software Inc, San Diego, CA, United States) was used for the statistical 

analysis. 
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3. Results:  
3.1. Identification of DEGs and DElncRNAs among Healthy Control, No Pneumonia and 

Severe Pneumonia Groups 

The success of the transcriptome sequencing reaction depends on the quality and quantity of 

the RNA isolated. Of the 40 PBMC-RNA samples sent for transcriptomic analysis, 36 

samples with high quality RNA were analysed, except for three patients with severe 

pneumonia and one patient without pneumonia. The RNA samples of the other 2 patients 

without pneumonia were not included in the analysis because it was determined that they 

could not reach the reading quality with sufficient number and accuracy for bioinformatic 

analysis. After the bioinformatic analysis of the raw data obtained after the sequence analysis, 

a total of 34 RNA samples from the control group (N=13), the post-Covid 19 group without 

pneumonia (N=10) and the post-Covid-19 group with severe pneumonia (N=11) were 

included in the analysis because the reading quality was of sufficient quality (Figure 1a). The 

relative status of gene expression changes in all three groups is shown by PCA analysis using 

the transcriptomic gene expression profile from PBMCs from control (n=13), no pneumonia 

(n=10), and severe pneumonia (n=11) individuals. As a result, we observed that the control 

samples grouped apart from the other two groups and that the gene expression variations in 

people with no and severe pneumonia differed more than those in the control group (Figure 

1b). Moreover, a cluster heat map was created from 34 upregulated and 34 downregulated 

genes to show differential gene expression in each group comparisons (Figure 1c). In the 

comparison between healthy control (C) and no pneumonia group (NP), we identified 4843 

DEGs including 3004 upregulated (up) genes and 1839 downregulated (down) genes, and 

1056 DElncRNAs including 694 up and 392 down lncRNAs (Figure 2a-c; Figure 6a-c). We 

identified 1651 DEGs including 1566 up and 85 down genes, and 577 DElncRNAs including 

493 up and 84 down lncRNAs between healthy control and severe pneumonia group (C 

versus SP). In NP vs SP comparison, we identified 954 DEGs including 79 up and 875 down 

genes, and 148 DElncRNAs including 5 up and 143 down lncRNAs (Figure 2a-c; Figure 6a-

c). We then overlapped DEGs from all comparisons. Totally, we identified 291 DEGs and 70 

DElncRNAs. Additionally, Upregulated and Downregulated DEGs and DElncRNAs were 

showed in Venn diagrams. Next, we tried to identify the function of common DEGs and 

DElncRNAs involved during the pneumonia triggered by Long Covid-19 (Figure 2a-c; 

Figure 6a-c).  

3.2. Functional Enrichment Analysis of all DEGs 
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To understand the function and pathways of all DEGs, enrichment analysis was 

performed. This analysis revealed that upregulated DEGs in “C vs NP” comparison was 

involved in osteoclast differentiation (KEGG) and positive regulation of inflammatory 

process (GO:0050727). The DEGs downregulated in the comparison, however, were 

associated with herpes simplex virus 1 infection (KEGG) and the positive regulation of 

natural killer cell mediated immunity (GO:0002717). The upregulated DEGs were mainly 

located in tertiary granules, and the main molecular function of these genes was found as 

protein serin/threonine kinase activity. The downregulated DEGs were mainly located in 

sarcoglycan and dystroglycan complexes, and the main molecular function of these down 

genes was found to bind to DNA via RNA polymerase II transcription regulatory region 

sequence (Figure S1a). Upregulated DEGs in “C vs SP” comparison was involved in 

osteoclast differentiation (KEGG) and positive regulation of inflammatory process 

(GO:0050727). The DEGs downregulated in the comparison, however, were associated with 

primary immunodeficiency (KEGG) and alcohol catabolic process (GO:0046164). The 

upregulated DEGs were mainly located in secretory granule membrane, and the main 

molecular function of these genes was found as cytokine receptor activity and G protein 

coupled receptor activity. The downregulated DEGs were mainly located in keratin and 

intermediate filaments, and the main molecular function of these down genes was found as 

oxidoreductase activity acting on NAD or NADP as an acceptor (Figure S1b).  

Upregulated DEGs in “NP vs SP” comparison was involved in herpes simplex virus 1 

infection, viral myocarditis, arrhythmogenic right ventricular cardiomyopathy, sulphur 

metabolism, hypertrophic cardiomyopathy, and TGF-beta signaling pathway (KEGG) in 

addition to the regulation of lymphocyte activation (GO:0051249), and some cardiac tissue 

morphogenesis processes (such as GO:0048738, GO:0061384, GO:0051146). The DEGs 

downregulated in the comparison, however, were associated in the transcriptional 

misregulation in cancer and TNF signaling (KEGG), and the positive regulation of 

transcription by RNA polymerase II (GO:0045944). The upregulated DEGs were mainly 

located in sarcoglycan and dystroglycan complexes, and the main molecular function of these 

genes was found as serine-type endopeptidase activity. The downregulated DEGs were 

mainly located in specific and azurophil granules, and the main molecular function of these 

genes was found as protein serine/threonine kinase activity. (Figure S1c). 
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3.3. Functional Enrichment Analysis of Common DEGs and DElncRNAs 

Enrichment analysis was conducted to gain a deeper understanding of the function and 

pathways of common DEGs. The results indicated that 291 common DEGs across all DEGs 

were primarily engaged in inflammatory response processes, including TNF-alpha, NF-κB, 

and MAPK signalling pathways (Figure 2a). Moreover, the extended common 1436 DEGs in 

upregulated DEGs were involved in neutrophil degranulation, neutrophil extracellular trap 

formation, and osteoclast differentiation (KEGG), and cellular inflammatory response (GO: 

0006954 and GO:0071345) (Figure 2b). Furthermore, the extended common 71 DEGs in 

downregulated DEGs were mainly involved in primary immunodeficiency (KEGG), and some 

metabolic processes such as acyl-CoA process (GO: 0006637), small molecule catabolic 

process (GO: 0044282), and protein glycolisation (GO: 0006486) (Figure 2c). The results 

indicated that 70 common lncRNAs across all DElncRNAs were primarily engaged in MAPK 

and Rap1 signaling pathways (KEGG). Moreover, the extended common 457 lncRNAs in 

upregulated DElncRNAs were involved in MAPK signaling pathway, focal adhesion, cell 

cycle, and insulin resistance (KEGG). Furthermore, the extended common 79 lncRNAs in 

downregulated DElncRNAs were mainly involved in thermogenesis and mTOR signaling 

pathway (KEGG). Finally, we revealed that 23 common DEGs and 70 DElncRNAs were 

enriched in MAPK, Rap1, and AMPK signaling pathways (KEGG) (Table S1). 

3.3. Identification of Hub Genes via Protein–Protein Interaction (PPI) Network 

The PPI network analysis revealed an association of DEGs among healthy control, no 

pneumonia and severe pneumonia groups. We identified 291 common DEGs consisted of 291 

nodes with 142 edges (Figure 3a). Thirty-six genes were determined from the 291 common 

genes using Metascape online software. Among 36 genes, the highest scoring (Interactions≥3) 

in 23 central genes, namely ICAM1, TUBB4B, MARCKS, NFKB2, NFKBIA, NFKBIE, 

HDAC5, ATF3, DDIT3, F3, PRKCD, IL1R1, AREG, CSF1, IL1R2, TOM1, RAB11FIP1, 

FSCN1, ULK1, RELB, NFKBIB, FOSL1, and JUND were identified from the PPI network in 

combination with the Metascape (Table 2). When we analysed these 23 genes, we obtained a 

hub gene network with a total of 14 genes in 2 modules (Figure 3c), and then, we revealed 

that these genes were specifically involved in the TNF-alpha/NF-κB signaling complex, 

osteoclast differentiation, and cytokine signaling in the immune system. 
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3.3. Identification of Gene-diseases, Gene-transcription factors, and Gene-transcription 

factor Targets Interactions 

Gene-Diseases interaction via DisGeNET interestingly showed that the 291 common genes 

were related to pneumonitis, middle cerebral artery occlusion, acute pancreatitis, secondary 

malignant neoplasm of bone, choriocarcinoma, lung diseases, malignant neoplasm of mouth, 

myocardial ischemia, pancreatic neoplasm, infection and juvenile arthritis. We determined 

that these genes consisted of genes expressed especially under the control of NFKB1, RELA, 

JUN and ATF4 transcription factors (Figure 3b). Our remarkable discovery was that the 14 

hub genes we identified were primarily related to pneumonitis according to DisGeNET 

analysis. In our analysis, we saw that these genes, especially those carrying NFKB Q6, one of 

the transcription factor targets, were under the control of JUN (Figure 3d). 

3.4. Identification of Immune Cell Type Signatures of the Common and Central DEGs 

To determine immune cell type signatures in the extended common 1436 upregulated, the 

extended common 71 downregulated, 291 common, and 23 central DEGs, our Metascape 

analysis showed that the 1436 DEGs mainly involved in neutrophil cells and monocytes 

(Figure 4a). Downregulated common 71 DEGs mainly involved in CD4 memory effector T 

cells (Figure 4b). The common 291 DEGs involved in monocytes, dendritic cells, basophils, 

and neutrophils (Figure 4c). Interestingly, 23 central genes mainly involved in CCL19 and 

CCL21 positive cells, monocytes, basophils, and dendritic cells (Figure 4d). 

3.5. Gene Expression Analysis Based on RNA-seq Count Data of 14 Hub Genes. 

We performed a gene expression analysis based on statistical analysis of the normalized 

counts of the hub genes and GAPDH of each patient and control. According to these results, 

all genes were significantly upregulated in no pneumonia groups compared to healthy control 

individuals. Also, the other genes except FOSL1 and CSF1 were significantly upregulated in 

severe pneumonia group compared to the control groups. FOSL1 (p<0.05) and CSF1(p<0.01) 

genes were downregulated in severe pneumonia group compared to no pneumonia group. In 

other genes, no significance was found between no pneumonia and severe pneumonia (Figure 

5). 

3.6. Investigation of Idiopathic Pulmonary Fibrosis related 52 Gene Signatures in 

PBMC Transcriptome of Patients with Non-Pneumonia and Severe Pneumonia 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 14, 2023. ; https://doi.org/10.1101/2023.12.12.23299822doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.12.23299822
http://creativecommons.org/licenses/by-nc-nd/4.0/


The transcriptome signals of the PBMCs from individual patients in the "NP " and "SP" 

groups were analysed using a predefined set of 52 PBMC signature genes and visualised in a 

heatmap to determine whether these groups exhibited IPF signals. Our results shown that the 

expression levels of the genes PLBD1, TPST1, MCEMP1, IL1R2, HP, FLT3, and S100A12, 

which were low in the control group, significantly increased in patients, who had COVID-19 

but did not develop pneumonia (’NP’). In patients with severe pneumonia due to COVID-19 

('SP'), an increase was observed in PLBD1, S100A12, and MCEMP1 genes, while no 

significant changes were noted in the other four genes (Figure S1d). Also, we demonstrated 

that the expression levels of the genes LCK, CAMK2D, NUP43, SLAMF7, LRRC39, ICOS, 

CD47, LBH, SH2D1A, CNOT6L, METTL8, ETS1, P2RY10, TRAT1, BTN3A1, LARP4, 

TC2N, GPR183, MORC4, STAT4, LPAR6, CPED1, DOCK10, ARHGAP5, HLA-DPA1, 

BIRC3, GPR174, CD28, UTRN, CD2, HLA-DPB1, ARL4C, BTN3A3, CXCR6, DYNC2LI1, 

BTN3A2, ITK, CD96, GBP4, S1PR1, NAP1L2, KLF12, IL7R, SNHG1, and C2orf27A, 

which were high in the control group, significantly decreased in both NP and SP groups 

(Figure S1d).  
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4. Discussion  

Subsequent to the propagation of COVID-19, the observation of protracted health 

complications among individuals recuperating from the acute phase of the disease has 

engendered novel and complex challenges for the scientific community and healthcare 

professionals. Termed as "Long-COVID," which is characterized by persistent symptoms that 

pervasively affect various organ systems, culminating in a substantial diminution of patients' 

quality of life. These symptoms encompass fatigue, dyspnoea, pneumonia, pulmonary fibrosis, 

and pervasive inflammatory responses[8]. The multi-omics analyses of whole blood and 

PBMC samples have been instrumental in elucidating the cellular signals underpinning the 

disease's mechanisms and symptoms, contributing significantly to parallel research 

endeavours [42] [43].  

In our study, we conducted a comprehensive analysis of RNA sequences from PBMCs to 

interrogate the differential gene and lncRNA expression profiles amongst healthy controls, 

Lost Covid-19 patients without pneumonia (NP), and Long-COVID-19 patients with severe 

pneumonia (SP). The investigation's main finding indicates that, regardless of pneumonia 

manifestation, the TNF-alpha/NFκB signalling complex and MAPK signalling pathways 

regulate the positive control of inflammatory processes one year after COVID-19. This 

modulation, together with neutrophil-associated signatures, could be the underlying cause of 

the reported problems in patients. In one of the pioneering studies, proteomic analysis was 

conducted with blood plasma collected for two 6-month visits, and multiplex gene expression 

analysis was performed with RNA obtained from nasal epithelial cells. This study showed the 

presence of elevated systemic inflammatory signals even 3-6 months post-disease, and 

reported that the radiological and functional alterations observed in these individuals did not 

revert to normal within a 12-month period [44]. These findings corroborate the alterations 

observed in our studies. However, our investigation is distinguished as the inaugural 

transcriptomic analysis conducted with PBMCs isolated from blood samples obtained at the 

end of one year, from randomly selected long-Covid-19 patients with no pneumonia, severe 

pneumonia, and healthy controls, matched for age and gender. The PCA analysis and cluster 

heat maps provided a clear visual representation of the variations in gene expression, with the 

control samples distinctly separating from the patient groups. This separation is indicative of a 

fundamental shift in gene expression dynamics in Long-COVID-19, which could be 

instrumental in understanding the lingering effects of the disease and potential avenues for 

therapeutic interventions. The identification of DEGs revealed distinct molecular signatures 
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between the groups. Based on group comparisons of healthy control vs no pneumonia, healthy 

control vs severe pneumonia, and no pneumonia vs severe pneumonia, DEGs that were 

upregulated in both no pneumonia and severe pneumonia patients compared to control 

individuals were enriched in osteoclast differentiation, HIF1α, IL-17 and TNF signaling 

pathways, while downregulated genes were found to be enriched in Herpes simplex virus 1 

infection in the "C vs NP" comparison and primary immunodeficiency in the "C vs SP" 

comparison. This situation suggests the long-lasting effect observed following excessively 

increased inflammatory signals after virus infection. According to the no pneumonia group, it 

was determined that the upregulated genes in patients with severe pneumonia observed in 

their radiology and clinics were mainly clustered in herpes simplex virus 1 infection and 

cardiac changes secondary to the virus, while the downregulated genes were especially found 

to be associated with transcriptional mis-regulation in cancer and decrease in TNF-α signaling. 

The "NP vs SP" comparison revealed a unique set of DEGs involved in cardiac-related 

processes and viral infections, highlighting the potential cardiovascular risks and lingering 

susceptibility to viral infections in Long-COVID-19 patients. 

Previous investigations have elucidated that TNF-α accelerates osteoclast 

differentiation independently through the receptor activator of NF-κB ligand (RANKL), 

RANK, and TRAF6, while IL-17A facilitates the same process via RNAKL-JNK1 signaling 

pathway[45, 46] [47]. Studies have reported that the differentiation of osteoclasts is intricately 

coordinated through the binding of macrophage colony-stimulating factor (M-CSF) and 

RANKL to their respective receptors on the surface of osteoclast precursor cells. It has been 

documented that M-CSF plays a pivotal role in the proliferation of osteoclasts, whereas 

RANKL is instrumental in their differentiation[48].  

In a murine model study, silica-induced pulmonary fibrosis was observed to stimulate 

osteoclast-like differentiation, leading to the recruitment of monocytes to the tissue. This 

process of osteoclast-like differentiation of alveolar macrophages is mediated by the 

osteoclastogenic cytokine RANKL, which is released from pulmonary lymphocytes and type 

II alveolar epithelial cells [49]. Collectively, these studies suggest the potential involvement 

of this mechanism in the persistent effects observed post-viral infection. 

The identification of common DEGs and DElncRNAs across all comparisons, as well 

as the elucidation of hub genes, provided a holistic view of the pivotal molecular players in 

Long-Covid-19 conditions. In present study, the enrichment of these common DEGs in 

inflammatory response processes and signaling pathways, such as TNF-α, NF-κB, and MAPK, 
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underscores the persistent inflammatory state and potential for chronic complications in Long-

Covid-19 patients. This augmentation of signatures was already expressed in an editorial [50]. 

The PPI network analysis and identification of hub genes further highlighted the 

interconnectedness of these molecular players, with genes such as RELB, NFKB2, NFKBIA, 

NFKBIB, NFKBIE, HDAC5, ATF3, DDIT3, FOSL1, JUND, CSF1, ICAM1, IL1R1 and IL1R2 

emerging as central nodes in the network. These hub genes are known to play crucial roles in 

immune responses and inflammation, reinforcing the idea that Covid-19 conditions are 

characterized by prolonged immune activation and potential dysregulation.  In a multi-omics 

analysis performed on the pulmonary tissues of COVID-19 patients [51], the study elucidated 

that the complications observed in the acute phase of the disease were underpinned by 

augmented mechanisms of senescence, inflammation, apoptosis, coagulation, and fibrosis. 

Furthermore, the genes and proteins playing a role in these mechanisms, as well as their 

associated signaling networks, were elucidated. Intriguingly, within these networks, certain 

molecular entities (RELB, DDIT3, and FOSL1) were identified as hub genes with increased 

expression in our patient samples during the 1-year Long-COVID-19 follow-up period. These 

genes are thought to play a role in ongoing pneumonia and are believed to bridge the 

networks of apoptosis, inflammation, and fibrosis [51]. The continued upregulation of these 

genes, initially detected in the acute phase, throughout the 1-year recovery period Long-

COVID-19 is noteworthy. This phenomenon could potentially lead to the emergence of 

pneumonia complications and other inflammation-related outcomes.  

Interestingly, our gene-diseases interaction analysis provided intriguing links between 

the common DEGs and various diseases, including especially pneumonitis, other lung-related 

conditions, and arthritis. Transcriptomic study of the acute phase PBMCs of COVID-19 

patients revealed a number of immune-related illnesses, such as pneumonia, arthritis, and 

septicemia, in earlier research[43].  As far as is known, the lung is the organ primarily 

affected by SARS-CoV-2 infection. SARS-CoV-2 spreads in the lower respiratory tract of the 

severe patients, resulting in hypoxemia, severe pneumonia, and acute respiratory distress 

syndrome[52].  When single-cell RNA-seq analyses were conducted on pathological samples 

taken from the lungs of COVID-19 patients during the acute phase, they found strong 

inflammation and cellular markers associated with apoptosis-dependent fibrotic alterations. 

They hypothesised that these signals could be connected to inflammation and fibrotic 

alterations brought on by acute pneumonia [51]. 
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The immune cell type signature analysis revealed distinct profiles between the 

upregulated and downregulated DEGs, with neutrophils and monocytes dominating the 

upregulated DEGs and CD4 memory effector T cells being prominent among the 

downregulated DEGs. Transcriptomic analyses performed on the PBMCs of COVID-19 

patients in the acute phase have reported an enrichment of upregulated genes in bone marrow 

and blood CD33+ myeloid cells as well as CD14+ monocytes, while downregulated genes 

were observed to be enriched in CD4 and CD8 T cells, as we have also noted [43]. This shift 

in immune cell type signatures could have implications for the patient's immune response and 

susceptibility to secondary infections in Long-COVID-19. The gene expression analysis of 

the 14 hub genes provided a granular view of their expression patterns across the groups, with 

significant upregulation observed in the no pneumonia group compared to healthy controls. 

This upregulation, coupled with the distinct expression patterns in the severe pneumonia 

group, suggests a complex interplay of molecular factors contributing to the varied clinical 

outcomes in Long-COVID-19 patients. The investigation of idiopathic pulmonary fibrosis 

(IPF) related gene signatures revealed a subset of genes with altered expression in the no 

pneumonia and severe pneumonia groups, providing a potential link between COVID-19 and 

the risk of developing IPF-like conditions. In our investigation, all seven genes exhibited 

increased expression in COVID-19 patients without pneumonia, while only certain genes like 

PLBD1, S100A12, and MCEMP1 showed increased expression in severe pneumonia cases. 

These seven genes' upregulation correlates with severe IPF and COVID-19 outcomes, as 

evidenced by prior studies [39-41]. Additionally, all 45 genes displayed decreased expression 

across both patient groups and have been previously associated with severe IPF and COVID-

19 risks. The NP group presented transcriptomic signatures similar to IPF [41]. We identified 

these high-risk genes predominantly in CD14+ monocytes, dendritic cells, and neutrophils, 

highlighting their pivotal role in mediating high-risk gene-associated responses. 

5. Conclusion  

In summary, our study provides a comprehensive transcriptomic analysis of PBMCs in post-

Covid-19 conditions, uncovering a complex landscape of DEGs, DElncRNAs, and hub genes 

associated with various clinical outcomes. The persistent inflammatory state, alterations in 

immune cell type signatures, and potential links to lung-related conditions and IPF highlight 

the need for ongoing research and monitoring of post-Covid-19 patients. Future studies should 

focus on validating these findings in larger cohorts, exploring the therapeutic implications of 
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these molecular alterations, and investigating the long-term health impacts of Covid-19 to 

enhance our understanding and improve the care of affected individuals. 
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Figure Legends:  

Figure 1. (a) A graphical abstract of the study. (b) Principal component analysis is shown. 

Each point represents a sample. Colouring indicates groups. Red circles represent the control 

samples, green triangles represent the patient samples with COVID-19 disease from a year 

ago and no pneumonia in the follow-up radiological data, and blue squares represent the 

samples of patient with COVID-19 disease from a year ago and severe pneumonia confirmed 

by radiological data in the follow-up period. (c) Heatmap of 34 upregulated and 34 

downregulated DEGs in all group comparisons. 

Figure 2. (a) All differentially expressed genes (DEGs) comparison among “C vs NP”, “C vs 

SP” and “NP vs SP”, and common 291 DEGs. Functional enrichment analysis (Kyoto 

Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), WikiPathways (WP), 

and the comprehensive resource of mammalian protein complexes (CORUM)) of common 

291 DEGs. (b) Upregulated DEGs among all comparisons, and 1436 extended common 

upregulated genes. Functional enrichment analysis of common 1436 up-DEGs. (c) 

Downregulated DEGs among all comparisons, and 71 extended common downregulated 

genes. Functional enrichment analysis of common 71 down-DEGs. The green circle in Venn 

diagram represents DEGs in “C vs NP” comparison, and blue circle represents DEGs in “C vs 

NP” comparison, and red circle represents DEGs in “NP vs SP” comparison.  

Figure 3. (a) Protein-protein interaction analysis of 291 common genes determined as a result 

of comparison of DEGs in all comparable groups. (b) Gene-Diseases (DisGeNET) and Gene 

Transcription Factor interactions (TRRUST) of these genes. (c) PPI analysis of hub genes 

from 291 genes. (d)  Gene-Diseases (DisGeNET), Gene Transcription Factor interactions 

(TRRUST), and gene-transcription factor targets (GSEA) of these hub genes. The graph 

shows the diseases, transcription factors and their targets with which DEGs are highly 

correlated in these intergroup comparisons. The vertical axis shows the disease names 

obtained from the DisGenet database, and the horizontal axis shows the -log10 (P) statistical 

significance level. 

Figure 4. Immune cell signatures of (a) the extended common upregulated DEGs, (b) the 

extended common downregulated DEGs, (c) the 291 common DEGs, and (d) the 14 hub 

genes. The graph shows the immune cell signatures with which DEGs are highly correlated in 

these intergroup comparisons. The vertical axis shows the immune cell names obtained from 

the databases, and the horizontal axis shows the -log10 (P) statistical significance level. 
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Figure 5. Gene expression analysis based on RNA-seq count data of 14 hub genes. All target 

genes’ counts were normalized the counts of the individual GAPDH. Blue and circles shows 

control individuals, Orange and squares shows the individuals with no pneumonia, and red 

and triangles shows the individuals with severe pneumonia. Statistical significance was shown 

as *p<0.05, **p<0.01, ***p<0.001, and ****p<0.0001. 
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Tables:  

Table 1. Demographics of study subjects.  

Groups Healthy controls  

Before/after RNA 

quality control 

 

No pneumonia  

Before/after RNA 

quality control 

 

Severe pneumonia 

Before/after RNA 

quality control 

 (n=13)/(n=13) (n=13)/(n=11)  (n=14)/(n=10) 

Male* 8 (46.25±7.85; 41-61)/   

8 (46.25±7.85; 41-61) 

8 (49.63±16.20; 25-75)/   

7 (46±13.55; 25-64) 

10 (57.5±12.41; 37-77)/   

7 (58.14±11.80; 44-77) 

Female * 5 (47.8±6.10; 42-58)/    

5 (47.8±6.10; 42-58) 

5 (61±8.06; 53-72)/ 

4(62.75±8.14; 53-72) 

4 (51.5+10.25; 40-62) /   

3 (53.33±11.72; 40-62) 

*Age data were demonstrated as Mean ± SD; Minimum-Maximum 
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Table 2. Following the comparative analysis of all up-regulated and down-regulated genes 

across the control, no pneumonia, and severe pneumonia groups, 36 hub genes were identified 

from a total of 291 common DEGs. Subsequently, a selection of 23 central genes, each 

interacting with three or more other genes, was made, along with an investigation into the 

genes, which they interact with. 

Gene Symbol  Number of genes 

interacted  

Names of genes interacted 

ICAM1 6 AREG, CSF1, IL1R1, IL1R2, PRKCD, 

TUBB4B 

MARCKS 6 F3, FSCN1, PRKCD, RAB11FIP1, 

TUBB4B, ULK1 

TUBB4B 6 F3, GABARAPL1, ICAM1, MARCKS, 

SNAI1, ULK1 

HDAC5 5 ATF3, DDIT3, NFKB2, NFKBIA, 

NFKBIE 

NFKBIE 5 HDAC5, NFKB2, NFKBIA, NFKBIB, 

RELB 

NFKB2 5 HDAC5, NFKBIA, NFKBIB, NFKBIE, 

RELB 

NFKBIA 5 HDAC5, NFKBIB, NFKBIB2, 

NFKBIE, RELB 

ATF3 4 DDIT3, FOSL1, HDAC5, JUND 

F3 4 ICAM1, MARCKS, PRKCD, TUBB4B 

DDIT3 4 ATF3, FOSL1, HDAC5, JUND 

IL1R1 4 CSF1, ICAM1, IL1R2, TOM1 

PRKCD 4 F3, FSCN1, ICAM1, MARCKS 

AREG 3 ERG, HBEGF, ICAM1 

CSF1 3 ICAM1, IL1R1, IL1R2 

FOSL1 3 ATF3, DDIT3, JUND 

FSCN1 3 MARCKS, MCL1, PRKCD 

IL1R2 3 CSF1, ICAM1, IL1R1 
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JUND 3 ATF3, DDIT3, FOSL1 

NFKBIB 3 NFKB2, NFKBIA, NFKBIE 

RAB11FIP1 3 IFITM3, MARCKS, TOM1 

RELB 3 NFKB2, NFKBIA, NFKBIE 

TOM1 3 IL1R1, IFITM3, RAB11FIP1 

ULK1 3 GABARAPL1, MARCKS, TUBB4B 

ERG 2 AREG HBEGF 

GABARAPL1 2 TUBB4B, ULK1 

HBEGF 2 AREG, ERG 

IFITM3 2 RAB11FIP1, TOM1 

MCL1 2 FSCN1, USP2 

SNAI1 2 TUBB4B, USP2 

USP2 2 MCL1, SNAI1 

GADD45B 2 GADD45G, MAP2K3  

GADD45G 2 GADD45B, MAP2K3 

MAP2K3 2 GADD45B, GADD45G 

CSNK1D 2 HSPA5, NOP2 

HSPA5 2 CSNK1D, NOP2 

NOP2 2 CSNK1D, HSPA5 
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Supplementary Data:  

Supplementary Figure Legends:  

Figure S1. (a) KEGG and GO terms of upregulated and downregulated DEGs between 

Healthy control and No pneumonia groups. (b) KEGG and GO terms of upregulated and 

downregulated DEGs between Healthy control and Severe pneumonia groups. (c) KEGG and 

GO terms of upregulated and downregulated DEGs between No pneumonia and Severe 

pneumonia groups.  The top 10 functional terms are sorted from the highest statistical 

significance score in light color to the lowest score in dark color. (d). Evaluation of 52 

validated PBMC genes for disease progression risk assessment in patients with IPF and 

COVID-19 in post-COVID-19 patients 

Figure S2. (a) All DElncRNAs comparison among “C vs NP”, “C vs SP” and “NP vs SP”, 

and common 70 DElncRNAs. Functional enrichment analysis (KEGG) of common 70 

DElncRNAs. (b) Upregulated DEGs among all comparisons, and 457 extended common 

upregulated lncRNAs. Functional enrichment analysis of common 457 upregulated lncRNAs. 

(c) Downregulated DEGs among all comparisons, and 79 extended common downregulated 

lncRNAs. Functional enrichment analysis of common 79 downregulated lncRNAs The green 

circle in Venn diagram represents DElncRNAs in “C vs NP” comparison, and blue circle 

represents DElncRNAs in “C vs NP” comparison, and red circle represents DElncRNAs in 

“NP vs SP”comparison. 
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Supplementary Tables:  

 

Table S1: Top 10 functional enrichment (KEGG) analysis of upregulated, downregulated, 

common, and hub genes. Data were obtained from NCPATH database. 

Common 70 DElncRNAs-KEGG Functional Enrichment Analysis 

hsaid pathway p-adjust p-value genes 

hsa0401

0 

MAPK signaling pathway 9.53933919587235e-

17 

1.1776961970212778

e-18 

223 

hsa0401

5 

Rap1 signaling pathway 2.444343597210432e

-12 

9.053124434112712e-

14 

165 

hsa0521

5 

Prostate cancer 2.444343597210432e

-12 

8.804392672203224e-

14 

84 

hsa0415

2 

AMPK signaling pathway 2.6608061331489008

e-12 

1.3139783373574818

e-13 

101 

hsa0472

2 

Neurotrophin signaling pathway 9.495107472233918e

-12 

5.861177451996246e-

13 

98 

hsa0452

0 

Adherens junction 1.0647390579295397

e-11 

7.886955984663257e-

13 

65 

hsa0516

5 

Human papillomavirus infection 1.7895532145452728

e-11 

1.5465274693601124

e-12 

242 

hsa0421

8 

Cellular senescence 2.324204209971124e

-11 

2.295510330835678e-

12 

124 

hsa0152

2 

Endocrine resistance 2.6330695483170815

e-11 

2.925632831463424e-

12 

82 

hsa0451

0 

Focal adhesion 2.6692401663290662

e-11 

3.2953582300358844

e-12 

151 

     

Upregulated common 457 DElncRNAs-KEGG Functional Enrichment Analysis 

hsaid pathway p-adjust p-value genes 

hsa0401

0 

MAPK signaling pathway 3.805507722682358e

-15 

5.0740102969098097

e-17 

250 

hsa0451 Focal adhesion 2.892857382144406e 7.714286352385083e- 173 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 14, 2023. ; https://doi.org/10.1101/2023.12.12.23299822doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.12.23299822
http://creativecommons.org/licenses/by-nc-nd/4.0/


0 -11 13 

hsa0411

0 

Cell cycle 1.5296857804112035

e-10 

6.118743121644814e-

12 

113 

hsa0493

1 

Insulin resistance 3.8773516016758865

e-10 

2.0679208542271393

e-11 

99 

hsa0415

2 

AMPK signaling pathway 3.937591631844922e

-10 

2.6250610878966148

e-11 

109 

hsa0521

5 

Prostate cancer 6.763741254546563e

-10 

5.41099300363725e-

11 

89 

hsa0472

2 

Neurotrophin signaling pathway 8.295350701461146e

-10 

7.742327321363737e-

11 

106 

hsa0401

5 

Rap1 signaling pathway 1.3129177372101546

e-09 

1.4004455863574982

e-10 

181 

hsa0415

0 

mTOR signaling pathway 1.5725927540822539

e-09 

1.8871113048987045

e-10 

132 

hsa0421

8 

Cellular senescence 2.2339661496262503

e-09 

3.490933500542371e-

10 

136 

     

Downregulated common 79 DElncRNAs-KEGG Functional Enrichment Analysis  

hsaid pathway p-adjust p-value genes 

hsa0152

4 

Platinum drug resistance 0.0002407241117594

7426 

1.2269490024761625

e-05 

35 

hsa0471

4 

Thermogenesis 0.0002407241117594

7426 

1.4589340106634803

e-05 

88 

hsa0415

0 

mTOR signaling pathway 0.0006114137926066

184 

6.154770701913108e-

05 

59 

hsa0522

5 

Hepatocellular carcinoma 0.0006114137926066

184 

7.411076274019616e-

05 

63 

hsa0521

4 

Glioma 0.0008561020059955

173 

0.0001297124251508

3596 

33 

hsa0522

0 

Chronic myeloid leukemia 0.0009716455253148

1 

0.0001766628227845

1092 

33 
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hsa0521

2 

Pancreatic cancer 0.0018137416627057

09 

0.0004327559007987

3394 

32 

hsa0522

2 

Small cell lung cancer 0.0018137416627057

09 

0.0004543111882996

7885 

38 

hsa0421

1 

Longevity regulating pathway 0.0018137416627057

09 

0.0004946568171015

57 

36 

hsa0152

1 

EGFR tyrosine kinase inhibitor 

resistance 

0.0031958699234137

06 

0.0009684454313374

866 

32 

     

Common 23 DEGs and 70 DElncRNAs-KEGG Functional Enrichment Analysis 

hsaid pathway p-adjust p-value Gene

s 

hsa0401

0 

MAPK signaling pathway 1.22923251613022e-

17 

1.499064044061244e-

19 

225 

hsa0521

5 

Prostate cancer 8.612608644679657e

-14 

2.1006362547999165

e-15 

86 

hsa0472

2 

Neurotrophin signaling pathway 7.647697967280332e

-13 

2.797938280712317e-

14 

100 

hsa0401

5 

Rap1 signaling pathway 2.1920773103682596

e-12 

1.0693060050576875

e-13 

165 

hsa0415

2 

AMPK signaling pathway 2.4298777304097346

e-12 

1.4816327624449603

e-13 

101 

hsa0522

0 

Chronic myeloid leukemia 9.72383680842217e-

12 

7.11500254274793e-

13 

68 

hsa0452

0 

Adherens junction 1.0075525944866993

e-11 

8.601058733423044e-

13 

65 

hsa0516

5 

Human papillomavirus infection 1.9429917103537356

e-11 

1.8956016686377907

e-12 

242 

hsa0421

8 

Cellular senescence 2.3876880558830318

e-11 

2.6206332320667423

e-12 

124 

hsa0152

2 

Endocrine resistance 2.6522564008199485

e-11 

3.2344590253901814

e-12 

82 
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