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Title: EEG-Based Frequency Domain Separation of Upward and Downward Movements of the 

Upper Limb. 

 

Running title: EEG-based same joint movement classification. 

 

ABSTRACT  

One of the fundamental challenges encountered when implementing the Motor Imagery based Brain-

Computer Interfacing (BCI) paradigm is accurately classifying the Electroencephalography (EEG) 

signals that originate due to the same joint movements. This emanates from the limited spatial 

proximity in the corresponding brain regions. Here, we explore the feasibility of distinguishing arm-

reaching movements specific to the right hand using multiple frequency bands in EEG signals despite 

the limited spatial differentiation of induced potentials. To address this challenge, a channel averaging 

method was used combining six electrodes positioned in close proximity to the motor cortex, 

intending to isolate and enhance electromagnetic activity in the brain associated with arm movements. 

This study was further refined by focusing on two distinct frequency bands: mu (8-12Hz) and beta 

(12-30Hz), each associated with different cognitive and motor functions. The results of our study 

revealed promising outcomes across two classification methods. Utilizing the Support Vector 

Machine (SVM) classification method, our proposed approach achieved an average accuracy of 

59.3% while the K-Nearest Neighbors (KNN) classification approach yielded an average accuracy of 

61.63% in distinguishing between upward and downward movements of the right arm. 

 

Keywords: BCI, Channel reduction, EEG, Motor movement, Same joint, Same limb.   
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INTRODUCTION  

Brain-computer interfacing (BCI) is a technology that has the potential to both improve functions in 

healthy people and also restore usable function in people who are severely affected by a wide range 

of debilitating neuromuscular illnesses. The primary objective of BCI signal processing is to extract 

characteristics from obtained brain signals and convert them into logical control instructions for BCI 

applications [1]. Applications of brain-computer interfaces based on electroencephalography (EEG) 

that use motor movements and motor-imagery (MI) data have the potential to be revolutionary in the 

clinical and entertainment fields. They excel by not necessitating external stimuli, remaining cost-

effective, and being entirely non-invasive. Moreover, the discrete movement intention paradigm 

which utilizes the EEG signals collected before movement onset can be directly used in motor 

rehabilitation and in navigating through the environment accordingly as it detects movement 

intention [2]. 

 

Most widely deployed left and right upper limb or upper and lower limb movements serve as the 

basis for motor imagery-based control systems. Numerous research studies have shown improved 

accuracy in classifying different limb motions [3]–[7] since the motor cortex has unique, spatially 

separable regions that correspond to specific areas of the human body. Thus, event-related 

desynchronization (ERD) or event-related synchronization (ERS) induced in corresponding areas 

can be recognized by algorithms that identify distinct spatial patterns of activity [8], [9]. 

 

The classification of EEG signals that correspond to the same limb is more challenging than that of 

separate limbs because the EEG signals that correspond to the same limb movements originate in 

adjacent areas in the motor cortex with minimal spatial separation. Several studies have shown that 

brain activity captured by EEG can be used to decode motor intents associated with the same limb 

activities such as reaching, grasping, finger movements, and complex limb movements 
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[10]–[15]. However, it is challenging to separate the EEG signals induced due to distinct movements 

done by the same joint, as the differences among spatial activations get even smaller [16]. Besides 

the potentials originating from the primary motor cortex, these joint movements may be correlated 

with the potentials that originate from locations such as the premotor cortex and the supplementary 

motor cortex as well [17]. Furthermore, the EEG rhythms that can discriminate joint movements can 

be modulated not only within the intended movement time segment but also within the segment that 

correlates with the movement intention that occurs before movement onset [14], [18]. Therefore, in 

contrast to spatial separation, it is essential to focus more on identifying unique features of the EEG 

signals triggered by different motor movements carried out by the same joint.  

 

In the EEG signal analysis pipeline, classification methods play a pivotal role since higher accuracy 

enables the bearer to execute precise motor controls of fine movements with high reliability. 

Traditional machine learning (ML) techniques such as SVM, Linear Discriminant Analysis (LDA), 

and Logistic Regression have dominated the literature as classification methods for Sensory Motor 

Rhythm (SMR) based BCI paradigms over Deep Learning methods [2].  

 

This study examines the feasibility of using EEG signals induced due to upward and downward 

movements performed by the right upper limb, to distinguish them in the frequency domain. The 

analysis involved combining the EEG signals collected from the electrodes positioned in brain 

regions that are closely associated with motor planning and execution, considering time segments, 

both before and after the movement onset. Although the analysis pipeline is done in offline mode in 

this study, the computational simplicity of the suggested model serves the purpose of being feasible 

for real-time implementation. 
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MATERIALS AND METHODS  

Data Acquisition and Description 

The EEG data for this study was sourced from the "Multimodal signal dataset for 11 intuitive 

movement tasks from single upper extremity during multiple recording sessions" [19]. This dataset 

includes 60-channel EEG, 7-channel electromyography (EMG), and 4-channel electro-oculography 

(EOG) signals recorded at 2500Hz across three days. It was gathered from 25 healthy right-handed 

subjects and notch filtered at 60Hz to reduce external electrical noise. Electrode positioning followed 

the international standard 10-20 system. The experiment involved upper extremity actions, including 

arm-reaching in six directions, hand-grasping of three objects, and wrist-twisting with two motions 

performed by the right hand. [19] 

 

Experimental Paradigm 

Figure 1 illustrates the timing diagram for both real and motor imagery tasks. The experiment was 

initiated with a 4-second resting stage, after a gray background and a black cross displayed on the 

monitor. Subsequently, participants were presented with textual task instructions serving as visual 

cues for 3 seconds. Following this, participants received a visual cue indicating whether to execute 

a motor activity or engage in motor imagery within a 4-second timeframe. [19] 

 

  

Figure 1. The timing diagram of the experiment 
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Dataset Preparation 

In the original dataset, each subject performed 50 movements from each type of arm reaching real 

movements randomly. Corresponding EEG (60 channels), EMG (8 channels), and EOG (4 channels) 

data were recorded simultaneously for all 300 movement epochs. Out of them, data from the EEG 

channels were selected and subjected to bandpass FIR filtering (0.5-100 Hz) to eliminate high-

frequency noise and drifts in all real-reaching movements. Since this study explores only the upward 

and downward movements, the epochs corresponding to these movements were segregated from all 

the recorded reaching real movements considering the given trigger points. This separation was done 

in such a way that each subject had 100 epochs, with 50 epochs per movement type. 

 

Signal Pre-Processing 

EEG functions by measuring the integration of all postsynaptic potentials of the populations of 

neurons over the scalp and has a lower spatial resolution compared to functional Magnetic Resonance 

Imaging (fMRI), Electrocorticogram (ECoG), etc. Therefore, EEG data are contaminated with 

artifacts including ECG, eye movements, voluntary muscle activity, and noise from surrounding 

electronic equipment [20]. Hence following preprocessing was done on the data set to remove these 

noise artifacts to improve the SNR. 

 

All the data were resampled at 500 Hz and the artifactual epochs were removed by visual inspection 

considering the extreme values and abnormal trends. It was verified by visual inspection that no 

noisy and corrupted channels were present, and then the data were re-referenced with Common 

Average Referencing (CAR) [21] as stated in equation 1 to reduce the background noise. 

𝑦𝐶𝐴𝑅(𝑐, 𝑛) = 𝑦(𝑐, 𝑛) −
1

𝑁
∑ 𝑦(𝑖, 𝑛)𝑁

𝑖=1               …(1) 

where yCAR(c,n) denotes the common averaged potential at channel c and sample point n which was 

calculated by subtracting the average potential of total N channels at that sample point from EEG 

potential y(c,n) at channel c and sample point n. 
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Subsequently, Independent Component Analysis (ICA) (Potter et al., 2002; Xue et al., 2006) was 

performed using the Infomax algorithm as it has shown better performance in isolating artifacts [24].  

After inspecting the spatial topography, temporal variation, and power spectral density of the isolated 

components, a few artifacts were chosen to be removed, so that the information loss is minimal while 

increasing the SNR. Typically, two Independent Components that contain eye blink artifacts as 

shown in Figure 2 were selected per subject because eye blinks are typically 10 times larger in 

amplitude compared to ongoing EEG signals as depicted in Figure 3 which has a huge impact on the 

preferred data. Finally, the average baseline from -500 ms to 0 ms with respect to cue was subtracted 

as the final stage of the pre-processing. 

 

Figure 2. Characteristics of an eye blink artifact which was isolated and removed using infomax-

ICA. (a) shows the spatial activation topography, (b) shows power spectral density, and (c) shows 

representation in the time domain. 
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Channel Selection 

Electrode positioning in the 10-20 system corresponds to different brain regions and, the EEG signals 

obtained from each electrode represent activity in different brain areas. This research was conducted 

by extracting the frequency domain features from the EEG signals acquired from a set of selected 

electrodes, based on the spatial correspondence of the brain and muscles [25]. Considering the high 

probability of capturing electromagnetic activity which is correlated with the motor cortex that 

controls the muscles in the right upper limb [26], we selected FC5, FC3, FC1, C5, C3, and C1 

electrodes as shown in Figure 4. 

Figure 3. Time domain representation of the presence of the eye blink artifact (IC2) 

within the raw data of C3, showcasing their shared characteristics. 
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The C1, C3, and C5 channels were selected because they are located over the arm area of the motor 

homunculus of the left primary motor cortex, which is primarily responsible for right-side motor 

control [27]. FC1, FC3, and FC5 channels were selected as they were placed covering the left half 

of the pre-motor and the supplementary motor cortices. The supplementary motor cortex is mainly 

involved with motor planning whereas the pre-motor cortex is responsible for carrying out 

movement, sequences of movements, and the selection of movements based on sensory information 

[27]. As the next step in our approach, a single signal was derived by averaging each of the epochs 

over the selected channels, to consolidate the effects of all the signals that were highly correlated 

with motor movements. We expected the noise and brain signals outside the relevant brain area to 

get reduced while the signal from the relevant area remained by this technique. 

 

Feature Extraction 

The spontaneous EEG recordings, also known as spontaneous electrical activity, have distinct 

waveforms that predominate over a wide range of frequencies. Scientifically, there are five frequency 

Figure 4. Selected 6 electrodes for the channel averaging method. 
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bands of spontaneous EEG activity. Each of these frequency bands has a rhythmic activity that is 

characterized by a specific scalp distribution and biological importance [28]. 

 

The Mu (8-12 Hz) and the Beta (13-30 Hz) Sensory-Motor Rhythms (SMR) have proved to undergo 

modulations whenever there is a movement of a large body part which are most prominent in EEG 

signals acquired from C3 and C4 electrodes [29]. This is a phenomenon known as Event-related 

synchronization (ERS) and Event-Related Desynchronization (ERD) which occur during movement 

and relaxation respectively. These ERDs and ERSs which lead to short-lasting and circumscribed 

attenuation of mu and beta rhythms have played an essential role in implementing reliable EEG-

based BCI systems across the past three decades. Despite SMR bands not containing kinematic 

parameter information which has been confirmed by several studies [30], [31], they have been used 

to distinguish among different motor movements and they provide a reliable feature for BCI. 

Modulation of such EEG rhythms correlates with motor planning, motor movement, and motor 

imagery which can be used to classify brain states that relate to planning or imagination of different 

types of limb movements [32]. 

 

In this study, extracting the band-pass signal in the frequencies ranging between 8-12 Hz (Mu), 12-

30 Hz (Beta), and 8-30 Hz (Both Mu and Beta) from the wideband signal was performed using an 

FIR filter which has a linear phase response. Before calculating the band power, part of the signal 

was selected from -0.5 to 2.5 s from the given timing paradigm (Figure 1), considering the ERP over 

the selected epochs of the averaged signal.  

 

The Welch’s Power Spectral Density (PSD) was calculated for each averaged signal with a window 

length of 1000 sample points (2s) with an overlapping of 500 sample points (1s). PSD values within 

each band of each epoch were considered as the features. The extraction of spectral features involved 

several steps as follows (equations 2, 3, and 4). 
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𝑝𝑐(𝑓, 𝑠) =
1

𝑊
∑  

𝑤

2
−1

𝑛=−
𝑤

2

|𝑦𝐶𝐴𝑅 (𝑐, 𝑛 +
𝑤

2
+ 1, 𝑠) ⋅ 𝐻(𝑛) ⋅ exp (𝑗

2𝜋

𝑤
𝑓𝑛)|

2

            …(2) 

𝐻(𝑛) =
1+cos(

2𝜋𝑛

𝑊
)

2
                                       …(3)  

Where pc(f,s) denotes the PSD at channel c and frequency f for segment s. H(n) is the Hanning 

window of window length W set as 1000 sample points. PSD for each trial was normalized by, 

𝑃𝐶(𝑓, 𝑠) = log (
𝑝𝑐(𝑓,𝑠)

1

𝑀
∑ 𝑝𝑐(𝑓,𝑠)𝑀

𝑠=1

)                                       …(4) 

Where PC (f,s) is the normalized PSD of each segment with symbols f, c, s, and M denoting frequency, 

channel number, segment, and the total number of segments. 

 

Feature Classification 

The data were randomly split into training and testing sets constituting 70% and 30% of the data 

collected respectively. Training data consisted of 35 trials since each subject had 50 epochs for each 

movement, whereas the remaining epochs were considered as the testing data. Subjects containing 

less than 35 epochs from either up or down movements after the removal of bad trials were neglected. 

MATLAB [33] classification learner Toolbox was used to run automated hyperparameter 

optimization using Bayesian optimization, which yielded SVM and KNN as the best-performing 

algorithms for the extracted features. The validation results were obtained by feeding the 70 training 

epochs (35 epochs for each movement type) to the classification learner with a K-fold value of 5. 

The classification accuracy was evaluated using the Geometric mean (G mean) of the sensitivity and 

specificity of the classifiers (equations 5, 6, and 7). 

𝐺𝑚𝑒𝑎𝑛 = √𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 × 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦             …(5) 

Where,  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃𝑅

𝑇𝑃𝑅+𝐹𝑁𝑅
               …(6) 

And, 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁𝑅

𝑇𝑁𝑅+𝐹𝑃𝑅
                                                                          …(7) 
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RESULTS 

In the proposed method, three different frequency bands from the measured wideband EEG signals 

were extracted, intending to identify a particular feature in the frequency domain, that corresponded 

to upward and downward movements of the upper limb, and two different classifiers were used to 

differentiate the extracted features. According to the mean confusion matrices obtained by the 

proposed method, as depicted in Figure 5 and Figure 6, both upward and downward movements were 

classified with an average accuracy of 60% without getting biased for any of the movement types.  

 

Figure 5. The mean confusion matrices (%) obtained from the SVM classifier. (a) corresponded to 

the 8-12Hz (b) corresponded to the 12-30Hz (c) corresponded to the 8-30Hz. 

Figure 6. The mean confusion matrices (%) obtained from the KNN classifier. (a) corresponded to 

the 8-12Hz (b) corresponded to the 12-30Hz (c) corresponded to the 8-30Hz. 
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Figure 7 depicts the histograms for both SVM and KNN classifiers, for each selected frequency band, 

using the G-mean values obtained for each of the selected subjects. The highest classification 

accuracy for a single subject was 76% from SVM and 74% from KNN classifiers utilizing the 8-12 

Hz band. 

 

Based on the results in Table 1, both the SVM and KNN classification techniques demonstrate 

average accuracies of approximately 60 ± 1.5% across all three frequency bands significantly 

outperforming a random chance (p-value < 0.00005). Figure 8 summarizes the performance of 

selected classifiers on the data. 

 

Figure 7. Distribution of accuracies across selected classification methods and SMR bands. 

Subfigures show the performance of SVM classifiers in (a) Mu, (b) Beta, and (c) Mu and Beta bands, 

as well as KNN classifiers in (d) Mu, (e) Beta, and (f) Mu and Beta. 
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Table 1. Overall results of SVM and KNN classifiers across the selected frequency bands. 

Indicated p-values are for the obtained accuracies with each method compared to a random chance 

of 0.5.  

 
 SVM   KNN  

8-12Hz 12-30Hz 8-30Hz 8-12Hz 12-30Hz 8-30Hz 

𝜇 0.60 0.60 0.59 0.60 0.63 0.62 

±𝜎 0.065 0.044 0.059 0.056 0.047 0.053 

p-Value (× 10−5) 0.435     0.006     0.288     0.048     0.0001     0.002 

 

 

DISCUSSION 

Considering the separation of the same limb movements in recent studies, five different complex 

activities executed by the same limb which activates different regions of the brain were differentiated 

with an average classification accuracy of 94.0 ± 2.7% by Mohseni et al.[14]. However, when the 

movement types become similar to each other the discrimination becomes difficult as the activation 

regions draw closer among movements. Xu et al. have obtained about 60% and 40% accuracy in 2-

class and 3-class classifications respectively using EEG signals that occurred due to MI-hand, MI-

forearm, MI-arm, and rest with 4 different sets of electrodes [34] while Ma et al. have separated 

Figure 8. Classification accuracy comparison by both SVM and KNN classifiers. 
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imagery movement of the right hand, right elbow, vs resting with eyes open at an average accuracy 

of 68.68 ± 2.44% [35]. It is worth mentioning that in some research studies, the reported overall 

accuracy for multiclass movement classification includes the "rest" category. As a result, the 

accuracy tends to be higher because distinguishing between movement and rest is generally done 

with greater accuracy. Several seminal studies have confirmed that kinematic parameters of motor 

movements (e.g., position, velocity) are embedded in SMR bands below 2Hz [30], [36], [37]. Using 

time domain features in low-frequency EEG Ofner et al. have achieved accuracies of 55% 

(movement vs. movement), 87% (movement vs. rest) for executed movements, and 27% (movement 

vs. movement), 73% (movement vs. rest) for imaginary movements, elbow flexion, elbow extension, 

forearm supination, forearm pronation, hand close, and hand open [38]. However, decoding 

accuracies of kinematic information from low-frequency SMR bands have been reported to be poor 

[39] and, the average accuracies of 46.8% in the 5-class scenario and 53.4% in the 4-class scenario 

obtained from Ma et al. for four different joints and the resting state, using time distributed attention 

networks show that information within alpha and beta frequency ranges in MI task perform better 

[40]. Achanccaray & Hayashibe et al. have achieved maximum mean accuracies of 78.46 ± 12.50% 

and 76.72 ± 11.67% for two (flexion/extension) and three (flexion/extension/grasping) class MI tasks 

respectively using deep learning algorithms [12]. Further, it is evident through results that 

movements involving different joints are better distinguishable than movements involving the same 

joints [38]. However, an effective approach in extracting features that yields satisfactory accuracies 

for discriminating movements about the same joints remains elusive in current research to the best 

of our knowledge. 

 

In comparison to state-of-the-art, the findings of our study reveal that it is possible to distinguish 

similar joint movements by analyzing the power spectral density of both the alpha and beta bands 

with reduced computational complexity. The reduction of the number of electrodes to 6 channels that 

relate to primary motor, premotor, and supplementary motor cortices, also improves the reliability 
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and reduces the required computational power of the EEG acquisition. Furthermore, when utilizing 

electrodes that cover the entire head to extract features, the analysis encompasses information from 

the entire brain, including responses to external stimuli like visual or auditory instructions. In such 

cases, movements might be classified based on potentials induced by these external factors. In 

contrast, our method concentrates solely on electrodes centered around the motor cortex, the 

potentials involved with the analysis have a high probability of containing motor movement-related 

information. 

 

The following limitations of our study can be identified. Due to subject variability, each subject has 

to be trained separately which takes a significant time to train. Although artifactual epochs can be 

removed in offline analysis by visual inspection, a real-time BCI system operates under the constraint 

of processing these potentially problematic epochs in real-time conditions.  Further, Preprocessing 

filter kernels were non-causal to avoid time delays, but a real-time application must employ causal 

kernels which adds a delay. 

 

Further studies need to explore the effect of the selected electrodes and the use of time-frequency 

features for classification performance. As the new evidence suggests it may not be that important to 

remove artifacts, and in some cases, it can actually be detrimental due to the loss of statistical power 

[41]. Therefore, the impact of the exclusion of preprocessing needs to be explored considering the 

importance of implementing a cost-effective real-time BCI. 

 

CONCLUSION 

The lower spatial separation makes it challenging to classify EEG signals induced due to the same 

joint movements. Therefore, this study was carried out with the intention of detecting unique features 

in the frequency domain directly correlated with the same joint motor activities. 
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During the feature extraction process, the EEG signals induced by up and down right-hand 

movements recorded by the electrodes corresponding to brain cortices, significantly correlated with 

motor movement activities were averaged. Subsequently, two different frequency bands (mu and 

beta) and both together were isolated from the averaged signal to explore the impact of Welch’s PSD 

values on the EEG signals. In the classification process, we employed SVM and KNN methods to 

achieve robust results. 

 

Our findings reveal promising insights into the potential effectiveness of frequency domain features 

in EEG signals for distinguishing the same joint movements by using a computationally simple and 

pragmatic model. This study contributes valuable knowledge to the field of EEG signal analysis and 

may pave the way for enhanced understanding and practical applications in Brain-Computer 

Interfacing (BCI) research. 
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