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Abstract 22 

Antibiotic resistance is an urgent global health challenge, necessitating rapid diagnostic tools to 23 

combat its escalating threat. This study introduces innovative approaches for expedited bacterial 24 

antimicrobial resistance profiling, addressing the critical need for swift clinical responses. Between 25 

February and April 2023, we conducted the Infection Inspection project, a citizen science initiative in 26 

which the public could participate in advancing an antimicrobial susceptibility testing method based 27 

on single-cell images of cellular phenotypes in response to ciprofloxacin exposure. A total of 5,273 28 

users participated, classifying 1,045,199 images. Notably, aggregated user accuracy in image 29 

classification reached 66.8%, lower than our deep learning model's performance at 75.3%, but 30 

accuracy increased for both users and the model when ciprofloxacin treatment was greater than a 31 

strain’s own minimum inhibitory concentration. We used the users’ classifications to elucidate which 32 

visual features influence classification decisions, most importantly the degree of DNA compaction and 33 

heterogeneity. We paired our classification data with an image feature analysis which showed that 34 

most of the incorrect classifications were due to cellular features that varied from the expected 35 

response. This understanding informs ongoing efforts to enhance the robustness of our deep learning-36 

based bacterial classifier and diagnostic methodology. Our successful engagement with the public 37 

through citizen science is another demonstration of the potential for collaborative efforts in scientific 38 

research, specifically increasing public awareness and advocacy on the pressing issue of antibiotic 39 
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resistance, and empowering individuals to actively contribute to the development of novel 40 

diagnostics. 41 

 42 

Lay summary 43 

Antibiotic resistance is a big health problem worldwide. We need fast ways to find out if bacteria are 44 

resistant to antibiotics. In our study, we develop new methods to do this quickly. We ran an online 45 

project called Infection Inspection from February to April 2023, in which 5,273 people took part. 46 

Together, they classified more than a million pictures of bacterial cells, helping our project use these 47 

pictures to detect antibiotic resistance. The volunteers performed well, getting near 67% of the 48 

answers right. We also learned which pictures helped or confused them. This will help us make our 49 

computer program better. This project didn't just help science; it also taught people about antibiotic 50 

resistance. Partnerships between the public and scientists can make a difference to developing 51 

technologies that protect our health. 52 

 53 

Introduction 54 

Antibiotic resistance is an escalating global health concern, necessitating the development of new 55 

technologies such as rapid tests for antibiotic-resistant bacteria to mitigate its impact. Rapid 56 

identification of which bacterial species is causing an infection and its resistance profile has been 57 

shown to both optimize antibiotic use and enhance patient outcomes1,2. Currently, typical diagnostic 58 

tests rely on time-consuming bacterial culture growth, taking a minimum of 12 to 48 hours to produce 59 

results. Alternative rapid tests focus on identifying resistance-associated genes, but these may not 60 

always directly correlate with phenotypic resistance3. Antibiotic resistance poses a significant threat 61 

to individual and public health by potentially rendering common antibiotics ineffective in treating 62 

bacterial infections, but public awareness of the use of antibiotics and the impact of antibiotic 63 

resistance remains incomplete4.  64 

 65 

Citizen science collaborations between volunteers and research teams can play an important role in 66 

educating the public about scientific concepts and have been instrumental in recognizing complex 67 

patterns within biological data, starting with research in ecology and extending to various biological 68 

fields, including protein folding, DNA sequence alignment, electron microscopy, and microbiology5–7. 69 

These projects enable individuals of diverse backgrounds and expertise levels to contribute to 70 

scientific data collection and analysis, empowering them to actively advance and acquire knowledge 71 

in various disciplines. Public involvement broadens the spectrum of available data, perspectives, and 72 

ideas, leading to more comprehensive and innovative research outcomes. Successful examples, such 73 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 11, 2023. ; https://doi.org/10.1101/2023.12.11.23299807doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.11.23299807
http://creativecommons.org/licenses/by-nc/4.0/


3 
 

as the Great Backyard Bird Count and the Merlin Bird ID app8,9, demonstrate citizen science's potential 74 

to enable large-scale data collection and analysis, raise awareness, inspire future scientists, and 75 

promote environmental and civic responsibility. 76 

 77 

The public can be effectively engaged in citizen science projects using various strategies, including 78 

hosting events, utilizing social media platforms, partnering with educational institutions and 79 

community organizations, and offering training and educational resources, but most of these 80 

approaches engage only 10s-100s of individuals. Online platforms which simplify access for large-81 

scale, global public engagement in targeted or diverse citizen science projects include Zooniverse10,11, 82 

SciStarter12, and Foldit13 amongst others14. For participants, Zooniverse offers a unique and engaging 83 

way to learn about science, participate in real research, and connect with like-minded individuals15. 84 

 85 

A previous project hosted on Zooniverse, Bash the Bug7, successfully engaged citizen scientists to look 86 

at images of bacterial growth and identify their resistance to antimicrobial drugs. This demonstrated 87 

how citizen science can be used for antimicrobial resistance research and the development of novel 88 

diagnostic tools. We are developing a diagnostic method that relies on a microfluidic device for the 89 

direct capture and identification of bacteria and associated antibiotic resistance from clinical samples 90 

using microscopy. We recently developed a deep-learning model which can classify individual E. coli 91 

cells as ciprofloxacin-sensitive or resistant with 80% accuracy (which results in high-confidence 92 

classifications of populations of bacteria) based on morphological changes to the sub-cellular 93 

structure16. The continued development of these single-cell, imaging-based classification methods 94 

requires robustness to bacterial heterogeneity, and an understanding of why certain cells within a 95 

sample are misclassified is essential. We therefore developed a project on Zooniverse called Infection 96 

Inspection to leverage the power of citizen scientists towards optimising our novel method, and to 97 

engage the public in an antibiotic resistance-focused project. We first trained volunteers to recognize 98 

cellular phenotypes associated with ciprofloxacin-sensitive and ciprofloxacin-resistant E. coli, and then 99 

used their classifications to learn what features facilitate accurate classification, and which lead to 100 

ambiguity and misclassifications. Our aim was to use their classifications and misclassifications to 101 

make our machine learning-based bacterial classifier more robust to atypical phenotypes, whilst 102 

simultaneously educating the citizen scientists about antibiotic resistance. 103 

 104 

Methods 105 

Image dataset 106 
The project dataset was made up of 49,074 individual images of ciprofloxacin-treated E. coli cells 107 

generated for previous work16. All bacteria had been chemically fixed and stained using 4′,6-108 
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diamidino-2-phenylindole (DAPI) as the nucleic acid stain and Nile Red as the membrane stain. The 109 

initial dataset was composed of 11,074 256x256 Red-Green-Blue (RGB) images of E. coli cells from 5 110 

clinical strains (EC1, EC2, EC3, EC5, and EC6, reported previously16) treated at 10 mg/L for 30 minutes, 111 

with clinical strains defined as ciprofloxacin-resistant (minimum inhibitory concentration [MIC] 112 

>0.5mg/L) or ciprofloxacin sensitive (MIC ≤0.25 mg/L) using European Union Council on Antimicrobial 113 

Susceptibility Testing (EUCAST) breakpoints17 . A second dataset of 38,000 images included the same 114 

E. coli strains treated at 9 concentrations ranging from 16 mg/L to 0.001 mg/L ciprofloxacin for 30 115 

minutes. All bacteria were imaged in an automated workflow as agarose-mounted samples in 116 

phosphate buffered saline (PBS) on a Nanoimager-S fluorescence microscope (Oxford Nanoimaging) 117 

using the multiple acquisition capability of the microscope with autofocusing on each field of view. 118 

The image segmentation for background removal was done with an optimised model of Mask-RCNN 119 

adapted from a standard implementation18,19. 120 

 121 

Development of Infection Inspection with the Zooniverse project builder workflow 122 
Infection Inspection was designed as a citizen science project on the Zooniverse platform 123 

(https://www.zooniverse.org/) using the Project Builder (https://zooniverse.org/lab), a free-to-use 124 

web browser application enabling research teams to build and contribute projects to the site. During 125 

the building process, we developed an initial workflow, tutorial, and project field guide. Datasets were 126 

added to the project as .png images using the Subject Set upload tool within the Zooniverse Project 127 

Builder.  128 

 129 

Infection Inspection was submitted for internal review in August 2022 and went to beta reviewers in 130 

September 2022. In response to beta feedback, we improved our project terminology, added 131 

explanations to the field guide and instructions for how to classify ambiguous or unusual cells. 132 

During the beta test, we noticed that user accuracy did not improve with the number of classifications 133 

done. To help users learn from their own misclassifications, we implemented user feedback for a set 134 

of 30 tutorial images. These images had a ground truth classification of “Sensitive,” “Resistant,” or 135 

“Image Processing Error” and users would receive feedback on their accuracy immediately after 136 

submitting a classification for one of these images. Tutorial images were shown to users with 137 

decreasing probability: 0.5 for the first 5-10 subjects, declining to 0.25 by 20 subjects, and 0.05 after 138 

50 subjects. The retirement limit was set to 20, meaning that each image was considered complete 139 

once it was classified by 20 unique volunteers. 140 

  141 

The tutorial and field guides were written in line with guidance on communicating with the public on 142 

antibiotic resistance from the Wellcome Trust20. We solicited and implemented feedback from non-143 
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experts, public engagement experts, and a secondary school biology teacher on the language used in 144 

the project before submitting for beta testing. 145 

 146 

Accuracy and participation analysis 147 

On completion of the project on 10th May 2023, the project data file which included all classifications 148 

was downloaded in .csv format from the Zooniverse site. Only classifications performed from go-live 149 

(7th Feb 2023 17:40 UTC) to full dataset completion (10 May 2023 21:40 UTC) were included in the 150 

analysis. Image identifiers were matched back to the original strain and metadata including known 151 

MIC, treatment concentration, clinical antibiotic susceptibility phenotype, and predicted 152 

classifications were assigned to each data point. The predicted classification was defined as the 153 

expected response of the strain for the antibiotic. For instance, if the MIC for a particular strain was 154 

0.03 mg/L and the treatment concentration was 10 mg/L, that strain was categorized as susceptible. 155 

Conversely, if the MIC was 72 mg/L and the treatment concentration was 10 mg/L, the strain was 156 

labelled as resistant. All usernames were anonymised to ‘User_1, _2, etc’. For the accuracy 157 

determination, any classifications of images that were part of the training/feedback dataset or 158 

classifications of “Image processing error” were removed. Summary statistics were performed in R (v 159 

4.2.3) using the R package vegan (v 2.6-4) and plotted with ggplot2 (v 3.4.4). Accuracy was graded as 160 

whether the user’s classification matched the image’s predicted classification as defined above. 161 

We used the Gini coefficient to characterise the extent of inequality in the distribution of 162 

classifications by volunteers. The Gini coefficient derives from a metric for income inequality21 and has 163 

been applied to measure inequality in volunteer contributions previously15. We calculated the Gini 164 

coefficient with the following formula: 165 

 1 − (2  ×  
∑ (𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠) 
 

𝑡𝑜𝑡𝑎𝑙 𝑢𝑠𝑒𝑟𝑠
).  166 

 167 

Image feature analysis 168 

CellProfiler22 was used to extract image features from the dataset. The RGB .tif images were split into 169 

grayscale single-color images using the ColorToGray module. Then, the IdentifyPrimaryObjects 170 

module was used with default settings to identify the Membrane object from the red channel. For the 171 

Nucleoid object, two-class Otsu thresholding was used with default settings because it segmented 172 

diffuse nucleoid regions more accurately. Intensity measurements for each object were measured 173 

using the MeasureObjectIntensity module. Size and shape measurements were extracted using the 174 

MeasureObjectSizeShape module. All measurement data were exported using CellProfiler to an SQLite 175 

database23 and selected measurements were converted to .csv files with DB Browser for SQLite 176 

(version 3.12.2). 177 
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 178 

Further image feature analysis was completed in Python and R scripts, available at 179 

https://github.com/KapanidisLab. Images were excluded from analysis if more than half of their 180 

classifications were “Image Processing Error.” An accuracy threshold of 0.5 was chosen to compare 181 

images that were most frequently classified correctly or incorrectly. For example, if a cell’s predicted 182 

classification was Sensitive, based on its MIC and the treatment concentration, and it was classified as 183 

Sensitive by more than 50% of users, it would be labelled as Correct Sensitive. A cell from the same 184 

strain and treatment condition that was classified as Resistant by more than 50% of users would be 185 

labelled as Incorrect Sensitive. This yielded four sets of images whose features could be compared: 186 

Correct Sensitive, Correct Resistant, Incorrect Sensitive, and Incorrect Resistant. Images were called 187 

Most Correct if they were classified correctly with a ratio greater than 0.94, corresponding to roughly 188 

19 correct classifications of 20. 189 

 190 

For feature comparisons between groups of cells displaying ciprofloxacin-resistant or susceptible 191 

phenotypes, we performed two-sided t-tests with Bonferroni corrections for multiple comparisons 192 

using the ggpubr (version 0.6.0) and Rstatix (version 0.7.2) packages. We compared the distributions 193 

of the values associated with cellular phenotypic features to a normally distributed Random Noise 194 

feature generated by numpy.random.normal24. A principal component analysis with 2 principal 195 

components was performed using the 7 measured image features and the Scikit-learn PCA function25. 196 

Before analysis, all feature measurements were normalised with Standard Scaler from Scikit-learn25. 197 

For the dataset with multiple ciprofloxacin concentrations, the principal component analysis with 2 198 

principal components was performed in R with the prcomp function from the stats library (version 199 

4.1.3) and plotted with ggplot2 (version 3.4.3). 200 

 201 

Independently, we extracted the feature importance values from a Random Forest classifier with 100 202 

trees and a minimum of 3 samples per leaf that had been trained using Scikit-learn25 on images that 203 

were randomly allocated to a 75-25 train-test split and then scaled with Standard Scaler. The Random 204 

Forest classifier was evaluated by cross-validation by the Mean Absolute Error and was then applied 205 

to the test dataset to make predictions. 206 

 207 

For each image, we calculated SHAP (SHapley Additive exPlanation) values for each feature using 208 

Kernel SHAP, a model agnostic implementation for Python26. This method, which derives from game 209 

theory approaches, measures an importance value for each feature for each image classification, and 210 

has been shown to correspond well to intuitive human feature impact estimates26. 211 
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 212 

Results 213 

The Infection Inspection project engaged a large cohort of users 214 

Infection Inspection was launched on the Zooniverse platform on the 7th of February 2023 (Fig. 1a) 215 

and was promoted via multiple platforms, including webpages, print magazines, in-person outreach 216 

events, and emails for Zooniverse users. An initial dataset comprising of 30 training and 5,000 test 217 

images was available to users and completed within just 18 hours. A second dataset of 6,074 images 218 

was subsequently uploaded and completed in 72 hours, whilst a final dataset of 38,000 images was 219 

uploaded and completed in 35 days (840 hours). A total of 5,273 unique users performed at least one 220 

image classification and overall 1,045,199 classifications were made between the project launch date 221 

and May 10th, 2023. After removing classifications of the training dataset, a total of 4,927 users 222 

remained, covering 1,003,588 classifications (Fig. 1b). The median number of classifications performed 223 

by users was 38, however the variation in number of classifications per user was large, with 56 users 224 

performing >2,000 individual classifications. The maximum classifications undertaken by any given 225 

user was 46,289. 226 

 227 

Engagement with the project correlated with the upload of new data, with spikes in classifications 228 

occurring within 1-2 days after upload (Fig. 1c). Amongst the 20 most engaged users, return to the 229 

project was common, with these users returning to the project on several occasions throughout (Fig. 230 

1d). The Gini coefficient for our user participation was 0.81, which means that the most prolific 231 

volunteers contributed a large proportion of our project’s classifications, or our project attracted 232 

many casual users, or both. The Gini coefficient for Infection Inspection is close to the mean Gini 233 

coefficients of the most popular ecology (0.80), astronomy (0.82), and transcription (0.81) projects on 234 

Zooniverse and higher than the average Biomed project score of 0.67 based on a previous analysis15. 235 

 236 

Volunteers classified E. coli cellular phenotypes with accuracy comparable to deep learning  237 

We assessed the accuracy of user classifications in distinguishing bacteria as either ciprofloxacin-238 

resistant or susceptible, based on the ciprofloxacin treatment concentration relative to the Minimum 239 

Inhibitory Concentration (MIC) for each strain. When we aggregated the data from all three dataset 240 

uploads, users achieved an accuracy of 66.4% in classifying susceptible cells (Fig. 2a). The accuracy for 241 

classifying resistant cells was similar, standing at 67.3% (Fig.2a). We also employed the same images 242 

to test a deep-learning model16. Compared to the volunteers, the model was less accurate in 243 

classifying resistant cells (62.5%; Fig. 2a), but more accurate in classifying susceptible cells (88.2%). 244 

 245 
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Given that the number of classifications performed by users varied, we examined whether there was 246 

a correlation between accuracy and the total number of images classified. Despite having ten users 247 

who classified >10,000 images, we observed no significant relationship between accuracy and the total 248 

number of images classified (Fig. S1a). Additionally, the duration of user activity on the project did not 249 

influence classification accuracy (Fig. S1b). 250 

 251 

Classification accuracy depended on the antibiotic concentration used for treatment  252 

In the third dataset uploaded, we introduced cells treated at varying concentrations of ciprofloxacin; 253 

some of the concentrations used were below the MIC, and thus we expected to see no significant 254 

phenotypic changes; on the other hand, some of the concentrations were above the MIC, and should 255 

produce phenotypic changes. These treatments allowed us to investigate whether both users and our 256 

deep learning model could detect changes in cell structure based on a graduated treatment 257 

concentration. For one of the strains (EC1), users correctly classified the cellular changes close to 75% 258 

of the time for all treatment concentrations except the one closest to the known MIC of the strain 259 

(Fig. 2b). At this specific treatment concentration (0.01 mg/L), accuracy in identifying the response 260 

dropped to nearly 25%. A similar trend was observed in the model's predictions. While accuracy was 261 

highest at treatment concentrations of 0.1 mg/L and above, the greatest confusion was encountered 262 

when the treatment concentration approached the MIC of the strain (Fig. 2b). This pattern of 263 

increased confusion was also observed for the second strain (EC3), which had a different MIC (0.5 264 

mg/L). 265 

 266 

Differences in DNA morphology leads to the most confusion in correctly classifying images  267 

Some images were more frequently misclassified than others. In the first uploaded dataset of 3,015 268 

ciprofloxacin-sensitive and 3,212 ciprofloxacin-resistant cells treated at 10 mg/L, the classification 269 

accuracy histograms are left-skewed, with many images almost always classified correctly, and others 270 

almost never (Fig. 3). This suggested that, while many cells displayed the expected cellular phenotype 271 

when exposed to ciprofloxacin, there were sub-populations with atypical features. 272 

 273 

For this specific analysis, images were assigned to the “Incorrect” class if they were classified with less 274 

than 50% accuracy, and otherwise to the “Correct” class. Cells were excluded from the image feature 275 

analysis if they labelled as an “Image Processing Error” by more than half of the users who classified 276 

the image; this removed 230 images. 277 

 278 
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To explore why some cells were more frequently misclassified than others, human-interpretable 279 

image features were measured with CellProfiler27. Seven features were chosen for their potential 280 

biological relevance to the ciprofloxacin response (Fig. S2). To characterize the compaction, 281 

heterogeneity, and quantity of DNA, we measured the number of DNA regions per cell, the mean and 282 

standard deviation of the integrated intensity of the DNA regions, the mean standard deviation of the 283 

DNA intensity, and the area fraction occupied by the nucleoid regions. The cell shape was described 284 

by the form factor of the membrane and the major axis length was used to measure the cell size.  285 

 286 

The image features of susceptible and resistant cells that were most often classified correctly were all 287 

significantly different (Corrected t-test p<0.001) (Fig. S2). However, when comparing the features of 288 

cells that were most frequently classified incorrectly, there was no significant difference in the mean 289 

integrated intensity of the DNA regions (p=1), the mean standard deviation of intensity of the DNA 290 

regions (p=0.34), and Nucleoid Area Fraction (p=1) between sensitive and resistant bacteria (Fig. 4), 291 

consistent with the images of these cells having features that are too similar to distinguish. 292 

 293 

Images classified correctly and incorrectly cluster separately with distinct feature properties 294 

To understand the cellular phenotypes represented by our image features, a principal component 295 

analysis was performed. The principal component analysis allowed us to visualise the phenotypic 296 

variance in our image dataset by projecting the feature measurements of each cell into a 2-297 

dimensional space such that images with more similar features would cluster together. In addition, 298 

the loading vectors of each feature revealed the magnitude of its contribution to the ciprofloxacin-299 

sensitive and ciprofloxacin-resistant phenotypes. 300 

 301 

The variation in the first principal component was primarily driven by the number of DNA regions, the 302 

standard deviation of the integrated intensity of the DNA regions, and the cell major axis length; the 303 

second principal component was driven by the nucleoid area fraction and the mean integrated 304 

intensity of the nucleoid (Fig. 5). Images of susceptible or resistant bacteria that were in the correct 305 

class clustered separately, with some overlap, while images in the incorrect class clustered in the 306 

centre, with greater variation in the second principal component. This suggested that images that are 307 

frequently classified incorrectly have intermediate phenotypes, with DNA regions and cell lengths that 308 

were not clearly demonstrating signs of ciprofloxacin-resistance or sensitivity. 309 

 310 

For images where there was greater than 94% accuracy in classification (“Most Correct”), there was a 311 

distinct clustering observed with less overlap to the remaining correct images (Fig.S3). This highlighted 312 
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that images are more likely to be consistently classified correctly when they exhibit features that 313 

distinguish them well from the opposite class. 314 

 315 

Ciprofloxacin sensitive and resistant cells portray different features of importance with 316 

respect to correct classification 317 

We investigated which features might be most influential for classification (either by volunteers or a 318 

machine learning model) by computing SHAP contributions (SHapley Additive exPlanations)26. For the 319 

SHAP analysis, a Random Forest classifier was trained to classify images from our dataset as 320 

susceptible or resistant using our image feature measurements. An additional feature of normally 321 

distributed random numbers was added to determine which features held significance greater than 322 

random noise. This model achieved a Mean Absolute Error of 0.15 (accuracy = 85%) on a holdout 323 

dataset. The trained Random Forest model was then used to compute SHAP feature contribution 324 

scores for each image in the test holdout dataset. The average importance of a feature can be 325 

measured by the mean absolute value of the SHAP contribution for all images in the dataset. 326 

 327 

Using this approach, and when looking at the entire dataset of susceptible and resistant images, the 328 

most important features were the DNA mean standard deviation of intensity (median SHAP=0.109, 329 

p<0.0001), number of DNA regions (median SHAP=0.085, p<0.0001), and nucleoid area fraction 330 

(median SHAP=0.081, p<0.0001) (Fig.6). All of the measured features contributed more to the 331 

classification task than the normally distributed random noise (p<0.0001). 332 

 333 

Different phenotypes develop in resistant bacteria treated with high concentrations of 334 

ciprofloxacin 335 

In addition to the stark phenotypic differences between ciprofloxacin-treated susceptible and 336 

resistant bacteria treated at the same antibiotic concentration, our titration dataset revealed that an 337 

E. coli strain (EC3) with moderate resistance (MIC 0.5 mg/l) showed different features when treated 338 

at 8-, 16-, and 32-times the MIC (4, 8, and 16 mg/L, respectively) for 30 minutes compared to 2- and 339 

4-times MIC (1 and 2 mg/l, respectively) (Fig. S4). This matched the trend in classification accuracy for 340 

EC3 at these concentrations (Fig. 2b). 341 

 342 
Discussion 343 

The Infection Inspection project showed that misclassifications of ciprofloxacin-sensitive and 344 

ciprofloxacin-resistant E. coli are associated with diversity in the appearance of the bacterial DNA after 345 

antibiotic treatment. Ciprofloxacin is a fluoroquinolone antibiotic that inhibits the enzymes involved 346 

in bacterial DNA replication and repair28. In susceptible bacteria this can result in the compaction of 347 

the DNA and the inability to separate to dividing cells. Whilst our previously reported computer model 348 
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could achieve a classification accuracy as high as 80%16 there remains a degree of confusion with 349 

respect to certain images, especially near the minimum inhibitory concentration of the strain (Fig. 2b). 350 

By image feature analysis, we found that images most likely to be classified incorrectly did not show 351 

the phenotypic features of correctly classified ciprofloxacin-susceptible or resistant cells, indicating 352 

that these bacteria develop ambiguous or intermediate phenotypes. 353 

 354 

We used a feature analysis and computed SHAP contribution scores to determine that DNA mean 355 

standard deviation of intensity, the nucleoid area fraction, and the number of DNA regions were the 356 

most important features when deciding how to classify an image. This means that the degree of DNA 357 

compaction and heterogeneity, and the space it occupies within the cell, are the key features that can 358 

be used to determine whether an E. coli bacterium is responding to ciprofloxacin treatment. 359 

 360 

The successful participation of the public with Infection Inspection and the speed at which users 361 

classified the images highlights the interest in and value of the public in tackling the problem of 362 

antimicrobial resistance. It is clear that citizen science platforms like the Zooniverse provide a valuable 363 

resource for recruiting large groups of the public to engage with research 5,6. 364 

 365 

Our project demonstrates the utility of citizen science volunteers in interpreting large biomedical 366 

datasets. Biomedical projects are a minority on the Zooniverse platform. A 2019 study showed only 3 367 

biomedical projects of 63 projects surveyed (5%)15 were included on the platform; as of November 13, 368 

2023, this fraction remained low, with only 5/100 (5%) of active projects in a biomedical discipline. 369 

The Gini coefficient is a measure of inequality that has been used to assess the degree to which many 370 

casual volunteers and some super-users contribute to the shared work of Zooniverse projects. On 371 

average, biomedical projects were found to have a notably lower average Gini coefficient than 372 

astronomy projects, which could be the result of fewer return volunteers, or because biomedical 373 

projects more successfully attract many casual contributors15. Infection Inspection attracted 3,137 374 

volunteers while it was active, with a Gini coefficient of 0.81, higher than the average biomedical 375 

project studied. We speculate that our single-step, fast workflow encouraged more classifications than 376 

the average biomedical research project. 377 

 378 

Despite its successes, the Infection Inspection project had limitations. It relied on voluntary 379 

contributions from citizen scientists, which introduced variability in data quality and quantity. We had 380 

no information on the users participating in the study, and no quantitative feedback on the impact of 381 

our tutorials on informing the public about AMR. The study focused on a single antibiotic and cells 382 
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obtained from a small number of bacterial strains, limiting the generalizability of findings to other 383 

antibiotics and pathogens. Since the workflow was limited to a single classification step, information 384 

about the volunteer’s decision-making process was lost.  385 

 386 

Looking ahead, citizen scientists can continue to play a pivotal role in our research and in addressing 387 

global health challenges related to antibiotic resistance. Future engagements could involve exploring 388 

dynamic responses of bacterial cells to antibiotics, expanding the scope to cover a broader range of 389 

antibiotics and conditions, improving training materials and guidelines, raising public awareness, and 390 

integrating an assessment of the impact of these tools on user education about the scientific topics 391 

being studied. On the project discussion board, some volunteers started discussions about images that 392 

appeared to be cells in the process of cell division or images that looked unusual. While the project 393 

was not designed to classify images in such detail, it is encouraging to realise that that users could be 394 

asked to consider stages of cell growth in a future task. Our project, and other researchers working 395 

with citizen scientists, can take advantage of this scientific intuition in understanding their datasets. 396 

 397 

In conclusion, the Infection Inspection project exemplifies the potential of citizen science platforms to 398 

engage the public in scientific research, enhance the analysis of large datasets, and contribute to our 399 

understanding of complex issues like antibiotic resistance. The collaboration between citizen scientists 400 

and researchers not only advances scientific methodologies but also fosters a sense of shared 401 

responsibility in addressing global health challenges. Despite its limitations, this project has opened 402 

doors to further exploration and collaboration, highlighting the promising role of citizen science in the 403 

future of biomedical research and public health. 404 

 405 

Acknowledgements 406 

The Zooniverse Volunteer Community: This publication was made possible by the contributions of 407 

volunteers in the Infection Inspection project. We thank them all for their dedication and engagement 408 

with the project. We would also like to thank the Zooniverse platform leaders, Helen Spiers, Mary 409 

Westwood, and Cliff Johnson. This work was supported by the Oxford Martin School (by the 410 

establishment of the Oxford Martin School Programme on Antimicrobial Resistance Testing; to A.N.K., 411 

N.S., C.N., D.C. and M.A.), by Wellcome Trust grant 110164/Z/15/Z (to A.N.K.), by the Clarendon Fund 412 

Scholarships (to A.F.), and by UK Biotechnology and Biological Sciences Research Council grants 413 

BB/N018656/1 and BB/S008896/1 (to A.N.K.). The research was additionally supported by the 414 

National Institute for Health Research (NIHR) Health Protection Research Unit in Healthcare 415 

Associated Infections and Antimicrobial Resistance (NIHR200915) at the University of Oxford in 416 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 11, 2023. ; https://doi.org/10.1101/2023.12.11.23299807doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.11.23299807
http://creativecommons.org/licenses/by-nc/4.0/


13 
 

partnership with United Kingdom Health Security Agency (UKHSA) and by the NIHR Oxford Biomedical 417 

Research Centre. N.S. is an NIHR Oxford BRC Senior Research Fellow. 418 

 419 

Data availability 420 

The raw data images used to build this project are available from the Oxford University Research 421 

Archive: https://ora.ox.ac.uk/objects/uuid:12153432-e8b3-4398-a395-abfb980bd84e. The individual 422 

segmented single cell images and classification metadata are available at: 423 

https://zenodo.org/doi/10.5281/zenodo.10301352.  424 

 425 

Conflict of interest 426 

The original image data were obtained using a wide-field microscope from Oxford Nanoimaging, a 427 

company in which A.N.K. is a co-founder and shareholder. The other authors declare no competing 428 

interests. 429 

 430 
Bibliography 431 

1. Van Heuverswyn, J. et al. Association between time to appropriate antimicrobial treatment 432 

and 30-day mortality in patients with bloodstream infections: a retrospective cohort study. 433 

Clinical Infectious Diseases 76, 469–478 (2023). 434 

2. Barenfanger, J., Drake, C. & Kacich, G. Clinical and financial benefits of rapid bacterial 435 

identification and antimicrobial susceptibility testing. J Clin Microbiol 37, 1415–1418 (1999). 436 

3. van Belkum, A. et al. Developmental roadmap for antimicrobial susceptibility testing systems. 437 

Nat Rev Microbiol 17, 51–62 (2019). 438 

4. McNulty, C., Read, B., Quigley, A., Verlander, N. Q. & Lecky, D. M. What the public in England 439 

know about antibiotic use and resistance in 2020: A face-to-face questionnaire survey. BMJ 440 

Open 12, e055464 (2022). 441 

5. Spiers, H. et al. Deep learning for automatic segmentation of the nuclear envelope in electron 442 

microscopy data, trained with volunteer segmentations. Traffic 22, 240–253 (2021). 443 

6. Cooper, S. et al. Predicting protein structures with a multiplayer online game. Nature 466, 444 

756–760 (2010). 445 

7. Fowler, P. W. et al. A crowd of BashTheBug volunteers reproducibly and accurately measure 446 

the minimum inhibitory concentrations of 13 antitubercular drugs from photographs of 96-447 

well broth microdilution plates. Elife 11, e75046 (2022). 448 

8. The Cornell Lab. Merlin Bird ID. https://merlin.allaboutbirds.org/ (2023). 449 

9. Van Vliet, K. & Moore, C. Citizen science initiatives: engaging the public and demystifying 450 

science. J Microbiol Biol Educ 17, 13–16 (2016). 451 

10. Zooniverse. The Zooniverse Community. zooniverse.org (2023). 452 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 11, 2023. ; https://doi.org/10.1101/2023.12.11.23299807doi: medRxiv preprint 

https://ora.ox.ac.uk/objects/uuid:12153432-e8b3-4398-a395-abfb980bd84e
https://zenodo.org/doi/10.5281/zenodo.10301352
https://doi.org/10.1101/2023.12.11.23299807
http://creativecommons.org/licenses/by-nc/4.0/


14 
 

11. Woodcock, J. et al. Crowdsourcing citizen science: exploring the tensions between paid 453 

professionals and users. Journal of Peer Production (2017). 454 

12. Hoffman, C., Cooper, C. B., Kennedy, E. B., Farooque, M. & Cavalier, D. Scistarter 2.0: A digital 455 

platform to foster and study sustained engagement in citizen science. in Analyzing the role of 456 

citizen science in modern research 50–61 (IGI Global, 2017). 457 

13. Miller, J. A., Khatib, F., Hammond, H., Cooper, S. & Horowitz, S. Introducing Foldit education 458 

mode. Nat Struct Mol Biol 27, 769–770 (2020). 459 

14. Liu, H.-Y., Dörler, D., Heigl, F. & Grossberndt, S. Citizen science platforms. The Science of 460 

Citizen Science 22, 439–459 (2021). 461 

15. Spiers, H. et al. Everyone counts? Design considerations in online citizen science. Journal of 462 

Science Communication 18, A04 (2019). 463 

16. Zagajewski, A. et al. Deep learning and single-cell phenotyping for rapid antimicrobial 464 

susceptibility detection in Escherichia coli. Commun Biol 6, 1164 (2023). 465 

17. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for 466 

interpretation of MICs and zone diameters. Version 13.1, 2023. http://www.eucast.org. 467 

(2023). 468 

18. He, K., Gkioxari, G., Dollár, P. & Girshick, R. Mask r-cnn. in Proceedings of the IEEE 469 

international conference on computer vision 2961–2969 (2017). 470 

19. Waleed Abdulla. Mask R-CNN for object detection and instance segmentation on Keras and 471 

TensorFlow. https://github.com/matterport/Mask_RCNN (2017). 472 

20. Wellcome Trust. Reframing Resistance. (2019). 473 

21. Gastwirth, J. L. The estimation of the Lorenz curve and Gini index. Rev Econ Stat 306–316 474 

(1972). 475 

22. Carpenter, A. E. et al. CellProfiler: image analysis software for identifying and quantifying cell 476 

phenotypes. Genome Biol 7, 1–11 (2006). 477 

23. Piacentini, M. About SQLite. https://sqlitebrowser.org/about/. 478 

24. Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020). 479 

25. Pedregosa, F. et al. Scikit-learn: Machine learning in python. Journal of Machine Learning 480 

Research 12, 2825–2830 (2011). 481 

26. Lundberg, S. M. & Lee, S.-I. A Unified Approach to Interpreting Model Predictions. in vol. 30 482 

(Curran Associates, Inc., 2017). 483 

27. Stirling, D. R. et al. CellProfiler 4: improvements in speed, utility and usability. BMC 484 

Bioinformatics 22, 1–11 (2021). 485 

28. Fisher, L. M. et al. Ciprofloxacin and the fluoroquinolones: new concepts on the mechanism 486 

of action and resistance. Am J Med 87, S2–S8 (1989). 487 

  488 

 489 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 11, 2023. ; https://doi.org/10.1101/2023.12.11.23299807doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.11.23299807
http://creativecommons.org/licenses/by-nc/4.0/


15 
 

 490 

 491 

Figure 1. Engagement of users with Infection Inspection. (a) Task page for users of Infection 492 

Inspection. Users were presented with an image of a bacterial cell and were asked to select from one 493 

of three options to classify the image. Accessing the field guide provided examples of each cell type 494 
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as exampled in the subset panel (b) Distribution of the number of classifications by user (n=5273 users, 495 

n=1,045,199 classifications). Each dot represents an individual user that performed a classification on 496 

at least 1 non-training set image. The box represents the middle 50% (IQR) of the users and mid-line 497 

indicates the median number of classifications. (c) The distribution of classifications performed on 498 

each day of the project. Red arrows indicate the time of each data batch upload. (d) Density mapping 499 

of activity for each of the top 20 users (by number of classifications) over the course of the project 500 

highlighting the differences in patterns of contribution. Day 1 on the x-axis represents the first day 501 

that the user engaged with the project. 502 

 503 

 504 
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Figure 2. Classifications of images by Infection Inspection users.  (a) An aggregated plot of how 505 

accurate users or model were at categorising an image into either the resistant or sensitive category 506 

based on the expected phenotype for the given sample. DL model denotes the deep learning model 507 

applied. (b) The line plots visualise the percentage of images that were correctly categorised as either 508 

resistant or susceptible as expected based on the treatment concentration, by the users or model. 509 

Each subplot shows the data for a different E. coli strain with the treatment concentration on the x-510 

axis. The known, predetermined MIC for each strain is indicated on the plot using arrows.   511 

 512 

 513 

 514 

 515 

516 

Figure 3. User accuracy varies by image for both resistant and sensitive cells. Histograms of the user 517 

accuracy on images of E. coli treated at 10 mg/L for resistant and sensitive cells. Representative images 518 

of resistant and sensitive cells with low classification accuracy (0.20), intermediate classification 519 

accuracy (0.65) and high accuracy (≥0.95) are shown. Both resistant and sensitive cells show a left 520 

skew, with many cells being classified correctly nearly always and some almost never. However, both 521 

populations also have many ambiguous images that were classified correctly by around half of the 522 

users. 523 

 524 

 525 

 526 

  527 
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 528 

 529 

530 

Figure 4. Cells that were classified incorrectly have more similar features. For three image features 531 

related to DNA heterogeneity and compaction, illustrations and definitions of which are shown above, 532 

the Incorrect Resistant and Incorrect Sensitive feature distributions are not significantly different, as 533 

shown in the box plots. A cell is called “Incorrect” if more than 50% of user classifications disagreed 534 

with the cell’s predicted classification, based on its MIC and the antibiotic treatment concentration. 535 

Notches are drawn showing the median value for each feature, and outliers are shown as spheres. 536 

The Bonferroni-corrected p-values were calculated for each pairwise comparison, and the features 537 

that were not significantly different are shown with brackets; all the other pairwise comparisons were 538 

significantly different with p < 0.0001.  539 

 540 
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541 

 542 

Figure 5. Incorrectly classified images have intermediate phenotypes. Top: In a 2-dimensional 543 

Principal Component Analysis, images of Resistant and Sensitive cells that were classified correctly 544 

more than 50% of the time (Correct Sensitive and Correct Resistant) cluster together, with some 545 

overlap. Bottom: Images that were classified incorrectly more than 50% of the time cluster near the 546 

centre of the principal component plot, with greater variance in the second principal component than 547 

correctly classified images. 548 

 549 

 550 

 551 

 552 
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553 

Figure 6. Feature significance for all images measured by SHAP values. The absolute value of the 554 

SHAP contribution for each feature is shown on a box plot, with p-values for each pairwise comparison 555 

with a Random Noise feature (t-test with Bonferroni correction for multiple comparisons). In order of 556 

their median SHAP contribution, the features are DNA Mean Standard Deviation of Intensity (0.109), 557 

Number of DNA Regions (0.085), Nucleoid Area Fraction (0.081), Membrane Form Factor (0.037), 558 

Membrane Major Axis Length (0.035), DNA Mean Integrated Intensity (0.028), DNA Standard 559 

Deviation of Integrated Intensity (0.013), and Random Noise (0.008). All the features are significantly 560 

different from Random Noise (p<0.0001), and all features are significantly different from each other 561 

(p<0.0001), except Membrane Major Axis Length and Membrane Form Factor (no significance). 562 

 563 

 564 
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 565 

Figure S1. Accuracy of users based on engagement. Each boxplot represents the median image 566 

classification accuracy for users based on: (a) the total number of images they classified, or (b) total 567 

numbers of days they accessed the project. Boxplots highlight the middle 50% of data (IQR) with the 568 

median image classification accuracy for users shown in the central line.  569 

 570 

 571 

 572 
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 574 

Figure S2. The definition and distributions of the seven measurements used for image feature 575 

analysis. Seven measurements were chosen for their potential to reflect responses to ciprofloxacin 576 

treatment. The features, with illustrative diagrams, are shown on the left; box plots of the feature 577 

distributions for all cells are shown on the right, coloured by whether the cell was Sensitive or 578 

Resistant and whether they were most often classified Correctly or Incorrectly. Notches indicate the 579 

median value and outliers are plotted as black dots. The Membrane Major Axis Length and the 580 

Membrane Form Factor measure cell size and cell shape, respectively. The Form Factor of a perfectly 581 

round object is equal to 1, so most bacilli will have form factors <1. The Nucleoid Area Fraction is a 582 

measurement of DNA compaction, DNA size, and cell size. The Number of DNA Regions detected by 583 

CellProfiler also reflects DNA compaction and cell cycle stage. Other measurements of the nucleoid, 584 

such as the Mean Integrated Intensity, Mean Standard Deviation of Intensity, and Standard Deviation 585 

of the Integrated Intensity of DNA regions, measure the changes in DNA heterogeneity and 586 

compaction as E. coli respond to ciprofloxacin. These measurements also capture the variations in 587 

nucleoid morphology that can be seen within the same cell. For each feature, pairwise t-tests were 588 

performed for the Correct Resistant, Incorrect Resistant, Incorrect Sensitive, and Correct Resistant 589 
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distributions. The p-value with Bonferroni correction for multiple comparisons is <0.0001 except 590 

where labelled. 591 

 592 

 593 

Figure S3. Features distinguishing the most correctly classified cells. Images were considered part of 594 

the Most Correct dataset if they were classified with greater than 94% accuracy (e.g. more than 19 595 

times out of 20). The most influential features for the first Principal Component are the Number of 596 

Nucleoids and the Nucleoid Standard Deviation of Integrated Intensity, a measure of the variation in 597 

nucleoid region brightness within the cell. The Most Correct Resistant cells and Most Correct Sensitive 598 

cells form distinct clusters, indicating that there are certain populations of cells that exhibit 599 

characteristic Resistant and Sensitive features, and are therefore likely to be classified accurately. 600 

 601 
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 611 

Figure S4. Resistant E. coli treated with high concentrations of ciprofloxacin cluster together. This 612 

ciprofloxacin-resistant clinical isolate (EC3; MIC = 0.5 mg/L) was treated at varying concentrations of 613 

ciprofloxacin for 30 minutes. This principal component analysis shows that features of cells treated at 614 

extremely high concentrations of ciprofloxacin (8-, 16-, and 32-times MIC; 4, 8, and 16 mg/L) form a 615 

separate cluster from those treated at lower concentrations, even when those concentrations are 616 

above the MIC. Geometric shapes are plotted with different colours to show the regions with point 617 

density above 0.07. 618 
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