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ABSTRACT  48 

Aims Histological assessment is essential for the diagnosis and management of celiac 49 

disease. Current scoring systems, including modified Marsh (Marsh–Oberhuber) score, lack 50 

inter-pathologist agreement. To address this unmet need, we aimed to develop a fully 51 

automated, quantitative approach for histology characterisation of celiac disease. 52 

Methods Convolutional neural network models were trained using pathologist 53 

annotations of haematoxylin and eosin-stained biopsies of celiac disease mucosa and 54 

normal duodenum to identify cells, tissue and artifact regions. Human interpretable features 55 

were extracted and the strength of their correlation with Marsh scores were calculated using 56 

Spearman rank correlations. 57 

Results Our model accurately identified cells, tissue regions and artifacts, including 58 

distinguishing intraepithelial lymphocytes and differentiating villous epithelium from crypt 59 

epithelium. Proportional area measurements representing villous atrophy negatively 60 

correlated with Marsh scores (r=−0.79), while measurements indicative of crypt hyperplasia 61 

and intraepithelial lymphocytosis positively correlated (r=0.71 and r=0.44, respectively). 62 

Furthermore, features distinguishing celiac disease from normal colon were identified.  63 

Conclusions Our novel model provides an explainable and fully automated approach for 64 

histology characterisation of celiac disease that correlates with modified Marsh scores, 65 

facilitating diagnosis, prognosis, clinical trials and treatment response monitoring. 66 
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MeSH terms: 68 

• Artificial intelligence 69 

• Celiac disease 70 
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• Machine learning 72 
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KEY MESSAGES  74 

What is already known on this topic 75 

� Prior research has utilised machine learning (ML) techniques to detect celiac disease 76 

and evaluate disease severity based on Marsh scores. 77 

� However, existing approaches lack the capability to provide fully explainable tissue 78 

segmentation and cell classifications across whole slide images in celiac disease 79 

histology. 80 

� The need for a more comprehensive and interpretable ML-based method for celiac 81 

disease diagnosis and characterisation is evident from the limitations of currently 82 

available scoring systems as well as inter-pathologist variability.  83 

What this study adds 84 

� This study is the first to introduce an explainable ML-based approach that provides 85 

comprehensive, objective celiac disease histology characterisation, overcoming inter-86 

observer variability and offering a scalable tool for assessing disease severity and 87 

monitoring treatment response. 88 

How this study might affect research, practice or policy 89 

� This study's fully automated and ML-based histological analysis, including the 90 

correlation of Marsh scores, has the potential to enable more precise disease severity 91 

measurement, risk assessment and clinical trial endpoint evaluation, ultimately 92 

improving patient care.  93 
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INTRODUCTION  94 

Celiac disease, an autoimmune disease triggered by dietary gluten, affects around 1% of the 95 

population.1 Its diagnosis can be challenging due to symptom diversity, spanning from no 96 

symptoms to severe malabsorption.1 2 Patients with celiac disease face a slightly increased 97 

overall risk of developing bowel lymphoma in comparison to the general population.2  98 

Histological assessment is crucial for the diagnosis and management of celiac 99 

disease,3 as well as for endpoint assessment in clinical trials,4 with findings of intraepithelial 100 

lymphocytosis, crypt hyperplasia and villous atrophy indicative of the presence of the 101 

disease.5 Clinical study endpoints often rely on a quantification of disease activity, 102 

demonstrated by changes in histology and characterised according to disease severity by 103 

classification systems such as the modified Marsh (Marsh–Oberhuber) score.3 6 However, 104 

inter-observer agreement is low for these metrics.6 The United States Food and Drug 105 

Administration recommends using a clinically accepted histological scale such as the Marsh 106 

score for screening samples in clinical studies of treatments for celiac disease, to ensure 107 

patient eligibility at enrolment. Furthermore, histology is also recommended as a co-primary 108 

endpoint in these studies.7  109 

Celiac disease is often underdiagnosed due to variation between pathologists in their 110 

assessment of biopsy tissue samples,8 even if multiple biopsies are obtained.3 5 Poor quality 111 

of biopsy tissue and overlapping histopathology features between related conditions may 112 

contribute to this variability.5 8 9 Recently, there has been increased interest in applying 113 

machine learning (ML) to pathology,10 11 including to improve the accuracy and efficiency of 114 

celiac disease diagnosis.12  115 

Such automation is expected to significantly reduce variability,12 13 enabling smaller 116 

clinical studies to attain sufficient statistical power to demonstrate treatment effects. Indeed, 117 

convolutional neural network (CNN) tissue and cell model predictions from gastrointestinal 118 

samples have been used to create human interpretable features (HIFs) that enable the 119 
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quantitative assessment of inflammatory pathological changes in non-celiac gastrointestinal 120 

diseases.16 121 

While previous research has successfully employed ML to detect celiac disease and 122 

assess disease severity based on Marsh scores,13 this study aims to bridge critical gaps in 123 

the current research landscape. The work presented here represents the first report of an ML 124 

application for celiac disease that provides fully explainable tissue segmentation and cell 125 

classifications across whole slide images (WSIs) of duodenal mucosal biopsies. Through this 126 

approach, we have enabled the extraction of HIFs, such as cell densities, cell count 127 

proportions, and tissue area proportions, all of which exhibit correlations with Marsh scores. 128 

By utilising ML-based quantification, this study aims to objectively and exhaustively 129 

characterise celiac disease histology, address the limitations of manual histological 130 

assessments, and provide granular data for translational research and clinical trials. We 131 

believe such an approach has tremendous potential as a scalable tool for measuring disease 132 

severity and monitoring treatment response. 133 

134 
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MATERIALS AND METHODS  135 

Data set characteristics 136 

WSIs of haematoxylin and eosin (H&E)-stained biopsies of duodenal mucosa of varying 137 

celiac disease severity (N=318) and mucosa of normal duodenum (N=58) were collected 138 

from PathAI Diagnostics (Memphis, USA) (supplemental figure 1).  139 

The cohort size was determined based on the project’s scope and the availability of 140 

small intestine biopsies encompassing the full spectrum of celiac disease histology at the 141 

central laboratory. Slides were scanned at 40× objective magnification using the Aperio 142 

GT450 slide scanner (Leica Biosystems, Wetzlar, Germany). Celiac disease slides were split 143 

into training (n=230; 72.3%), validation (n=60; 18.9%) and test (n=28; 8.8%) datasets to 144 

ensure the even distribution of available patient metadata. For normal duodenum, slides 145 

were divided into a similar ratio of training (n=40; 69.0%), validation (n=12; 20.7%) and test 146 

(n=6; 10.3%) datasets.  147 

Machine learning-based tissue model development 148 

We developed a model to identify and quantify relevant tissue regions, and we also utilised a 149 

previously trained model to identify and quantify cell types and artifact regions16 on H&E-150 

stained WSIs of celiac disease and normal duodenum (figure 1). Using these identified cells 151 

and tissue regions, histological features relevant to celiac disease and representing 152 

surrogate measures of modified Marsh score components were quantified, including the 153 

proportion of intraepithelial lymphocytes to enterocytes in villous epithelium and the surface 154 

areas of villous epithelium and crypt epithelium. The latter two features assess villous height 155 

and crypt hyperplasia respectively.  156 

WSIs were annotated by board-certified gastrointestinal pathologists. In total, 8356 157 

tissue region annotations were collected. Annotations of crypt epithelium, villous epithelium, 158 

crypt lumen, lamina propria, blood vessels, muscularis mucosa and other tissue (including 159 

Brunner’s glands and submucosa) were used to train a HIF-based tissue segmentation 160 
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region model. From these annotations, a CNN model was trained to produce pixel-level 161 

predictions of small intestinal mucosa tissue regions. Previously developed models to detect 162 

and exclude tissue artifacts and identify and classify the cells in colon tissue were also 163 

deployed.16 Tissue and cell model predictions were visualised as heatmaps on WSIs. 164 

Heatmap transformations were used to remove artifact regions (e.g. debris, tissue folds, out-165 

of-focus regions), extracting features only from high-quality tissue.  166 

Validation and review of cell and tissue models  167 

A PathAI pathologist (F.N.) performed quality control of the tissue labels used for model 168 

training and qualitatively reviewed the tissue and cell overlays representing model 169 

predictions on H&E-stained WSIs. This qualitative review helped guide the iterative model 170 

development (supplemental figure 2). 171 

To establish ground truth for cell model prediction accuracy, representative image 172 

frames were sampled (75 μm×75 μm; N=160). Frames were exhaustively annotated for all 173 

model-predicted cell types by five gastrointestinal pathologists. Hierarchical clustering was 174 

performed on these annotations and model predictions as previously described to identify 175 

cell locations.16 To account for potential pathologist bias and variability, Bayesian-estimated 176 

ground truths were used to quantify and compare the performance of the annotators and the 177 

model (supplemental figure 3).  178 

Evaluation of model-derived HIFs 179 

HIFs (e.g. the proportional area of villous epithelium relative to lamina propria) were 180 

extracted from WSIs of normal duodenum (N=52) and scored celiac disease (N=118). HIFs 181 

were correlated with modified Marsh scores (type 0, normal lesions; type 1, infiltrative 182 

lesions; type 2, hyperplastic lesions; and types 3a, 3b and 3c, destructive lesions)6 using 183 

Spearman rank correlations. Scores only assessed the presence of >30 intraepithelial 184 

lymphocyte cells when differentiating scores 0 from 1 rather than quantifying any further 185 

increase in intraepithelial lymphocyte cells with increasing disease severity.  186 
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After establishing correlations between HIFs and modified Marsh scores, potential 187 

differences in the model-derived features between celiac disease and normal duodenum 188 

were evaluated.  189 

Statistical analysis 190 

To assess cell model performance, the harmonised average of precision and sensitivity (F1 191 

score) was calculated for both the cell model predictions and each pathologist annotation 192 

compared to the consensus on representative image frames. To evaluate the model-193 

generated HIFs, each HIF was assessed for correlation with consensus modified Marsh 194 

scores using Spearman rank correlations. Data analyses in this study used the programming 195 

language Python (OpenEDG Python Institute, West Pomerania, Poland) for tissue and cell 196 

model development. Additionally, OpenSlide Python (Carnegie Mellon University, Pittsburgh, 197 

PA, USA) was used to load WSIs, Matplotlib (John D Hunter, Matplotlib Development Team 198 

and NumFOCUS, Austin, TX, USA) was used for plotting graphs, and PyTorch (PyTorch 199 

Foundation, the Linux Foundation, San Francisco, CA, USA) was used for tissue and cell 200 

model development. 201 

To associate model-derived features of celiac disease following correlations with 202 

modified Marsh scores, mean (standard deviation) feature levels were used to show 203 

differences between celiac disease and normal duodenum. P values were calculated by 204 

independent t-test.   205 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 11, 2023. ; https://doi.org/10.1101/2023.12.11.23299520doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.11.23299520
http://creativecommons.org/licenses/by-nc/4.0/


 Page 10 of 22 

RESULTS  206 

Model development for quantitation of celiac disease histological features 207 

The tissue model developed, as well as the previously trained cell and artifact models,16 were 208 

deployed on H&E-stained WSIs of celiac disease and normal duodenum. Relevant cell types 209 

identified included neutrophils, plasma cells, enterocytes, intraepithelial lymphocytes, non-210 

intraepithelial lymphocytes, eosinophils and goblet cells (figure 2); all other cell types are 211 

predicted as “other cells”. In addition, tissue regions identified included villous epithelium, 212 

crypt epithelium, lamina propria, muscularis mucosa and blood vessels (figure 3). Tissue 213 

regions such as total epithelium and mucosa could also be extracted from the tissue 214 

segmentation overlays. The tissue model distinguished villous epithelium from crypt 215 

epithelium.  216 

The cell model’s performance was validated by comparing it with pathologists' 217 

annotations using Bayesian-estimated ground truths. Here, we sought to concentrate this 218 

validation on overlapping cells, focusing on cell confusion. The cell model demonstrated 219 

acceptable sensitivity for most cell types (figure 4).  220 

Cell model predictions were compared with labels from five gastrointestinal 221 

pathologists on representative image frames to determine model accuracy. We reported 222 

elements of the F1 score for both cell model predictions and pathologists’ labels for each of 223 

the cell types (figure 5A,B). Overall, cell model specificity remained relatively consistent and 224 

was similar to that of the pathologists for most cell types, with a slight difference being seen 225 

for plasma cells, while sensitivity was more variable outside the intraepithelial lymphocyte 226 

class.  227 

Correlation of surrogate features with modified Marsh score 228 

HIFs from our models were analysed to assess correlation with modified Marsh scores. The 229 

area of villous epithelium relative to mucosa was negatively correlated with modified Marsh 230 

score (Spearman r=−0.79, p<0.0001) (figure 6A). The area of crypt epithelium in tissue 231 
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(figure 6B) positively correlated with modified Marsh score (Spearman r=0.71, p<0.0001), as 232 

did the number of intraepithelial lymphocyte cells relative to enterocyte cells in villous 233 

epithelium (figure 6C) (Spearman r=0.44, p<0.0001). These results are summarised in 234 

supplemental table 1. 235 

The HIFs extracted from the cell and tissue models distinguished normal biopsies from 236 

those with celiac disease. For example, the proportional area of villous epithelium relative to 237 

mucosa and the proportional area of villous epithelium relative to crypt epithelium were both 238 

lower in celiac disease tissue compared with normal tissue, while the proportional area of 239 

crypt epithelium relative to total epithelium, the proportional area of lamina propria over 240 

mucosa and the density of intraepithelial lymphocytes in villous epithelium were higher in 241 

celiac disease (p<0.0001 for all comparisons) (table 1). 242 
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Table 1 Association of model-derived features with celiac disease  243 

  Normal duodenum Celiac disease  
 Feature Mean (SD) Mean (SD) P value 

Features 
quantifying 
villous atrophy 

Area proportion of villous epithelium over mucosa in 
tissue 0.33 (0.08) 0.15 (0.07) <0.0001 

Area proportion of villous epithelium over all 
epithelium in tissue 0.58 (0.10) 0.36 (0.14) <0.0001 

Area proportion of villous epithelium over lamina 
propria in tissue 1.11 (0.35) 0.36 (0.23) <0.0001 

Features 
quantifying crypt 
hyperplasia 

Area proportion of crypt epithelium over usable tissue 0.21 (0.05) 0.23 (0.07) 0.12 
Area proportion of lamina propria over crypt 
epithelium in tissue 1.38 (0.49) 1.90 (0.82) <0.0001 

Area proportion of crypt epithelium over all epithelium 
in tissue 0.42 (0.10) 0.64 (0.14) <0.0001 

Area proportion of crypt epithelium over mucosa in 
tissue 0.24 (0.05) 0.27 (0.07) <0.01 

Surrogate 
features for 
villous height/ 
crypt depth ratio 

Area proportion of villous epithelium over crypt 
epithelium in tissue 1.54 (0.87) 0.64 (0.47) <0.0001 

Features 
quantifying 
intraepithelial 
lymphocyte 
infiltration 

Count proportion of intraepithelial lymphocytes over 
enterocytes in villous epithelium 0.20 (0.07) 0.31 (0.11) <0.0001 

Density of intraepithelial lymphocytes in villous 
epithelium 910.27 (303.15) 1446.27 

(463.91) <0.0001 

Features 
quantifying 
expansion of 
inflammatory 
cells in lamina 
propria 

Count proportion of plasma cells over all cells in 
lamina propria 0.23 (0.05) 0.29 (0.10) <0.001 

Density of plasma cells in lamina propria 2131.66 (593.54) 2725.74 
(1171.97) <0.001 

Density of lymphocytes in lamina propria 2483.02 (793.40) 1808.05 
(641.31) <0.0001 

Count proportion of lymphocytes over all cells in 
lamina propria 0.27 (0.06) 0.19 (0.06) <0.0001 
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Area proportion of lamina propria over mucosa in 
tissue 0.31 (0.04) 0.47 (0.08) <0.0001 

Total number of cells in lamina propria 54,013.02 
(28142.69) 

89,593.13 
(50,629.86) <0.0001 

Other features 
quantifying 
inflammatory 
cells 

Count proportion of neutrophils over all cells in 
mucosa 0.03 (0.01) 0.05 (0.02) <0.0001 

Count proportion of eosinophils over all cells in 
mucosa  0.02 (0.01) 0.03 (0.01) <0.0001 

SD, standard deviation.  244 
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DISCUSSION  245 

Histological assessment of celiac disease plays a crucial role in diagnosing disease and 246 

evaluating the effectiveness of clinical interventions.3 However, inter-observer variability can 247 

affect the consistency and accuracy of results.6 To overcome this limitation and augment 248 

pathologists’ assessments of disease severity, we aimed to develop a fully automated and 249 

explainable approach to quantify the cellular and tissue-based features of celiac disease in 250 

H&E-stained clinical samples. The HIFs extracted from this model reflected histological 251 

changes that were measured by modified Marsh scores, potentially providing a quantitative 252 

and reproducible means to assess celiac disease severity.  253 

Our model produced continuous feature measurements that can be interpreted as 254 

surrogate markers of celiac disease pathology (supplemental table 1). The relationship of 255 

these features with the ordinal Marsh score categories can be used as a benchmark to 256 

measure the model’s performance. For example, we examined the area of villous epithelium 257 

relative to the area of mucosa as an indicator of villous blunting, a hallmark of celiac disease, 258 

and found a negative correlation with higher modified Marsh scores. To gauge crypt 259 

hyperplasia, a more subtle feature, we examined the area of crypt epithelium relative to total 260 

epithelial area, revealing a positive correlation between this feature and Marsh scores at a 261 

Marsh score of 2 and above. The trained cell model directly quantitated the proportion of 262 

intraepithelial lymphocytes relative to the number of enterocytes within the villous structures. 263 

As expected, these values increased with disease severity. 264 

Existing celiac disease scoring systems, such as the modified Marsh score, primarily 265 

rely on qualitative and descriptive categorisations, leading to subjectivity and limited 266 

sensitivity to subtle changes.17 In this study, we propose an alternative approach, utilising ML 267 

techniques to enable continuous, quantitative evaluation of the histological changes in celiac 268 

disease. By capturing histological alterations on a granular and objective scale, this novel 269 

approach offers enhanced sensitivity to changes in intraepithelial lymphocyte density, as well 270 
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as villous and crypt epithelial surface area, overcoming limitations of the qualitative 271 

assessments of conventional manual scoring systems. 272 

Some of our model-extracted HIFs directly quantified features of intraepithelial 273 

lymphocytes. This cell type is an essential consideration during disease assessment, as the 274 

presence of >30 intraepithelial lymphocytes per 100 enterocytes in the duodenum is a 275 

defining feature of celiac disease.18 The HIFs extracted from our model include count 276 

proportions and/or density of intraepithelial lymphocytes, specifically in the villous epithelium. 277 

This model also allowed for the extraction of features relating to intraepithelial lymphocytes in 278 

crypt epithelium and a comparison of their density in villous and crypt epithelium, providing a 279 

comprehensive overview of the spatial distribution of this cell type within distinct epithelial 280 

regions. Additional relevant features included the proportional area of villous epithelium 281 

(quantifying the change related to villous atrophy), the proportional area of crypt epithelium 282 

(quantifying crypt hyperplasia) and the ratio of villous epithelium area to crypt epithelium area 283 

(quantitatively capturing the relationship of villous height to crypt depth).19 284 

The key strengths of this study become apparent when considering that these model-285 

generated features not only bear relevance to the modified Marsh scoring system but are 286 

also essential components of the histological hallmarks of celiac disease (table 1).19 These 287 

HIFs encompass features not previously incorporated into any formalised scoring system, 288 

such as relative numbers and density of inflammatory cells (including lymphocytes, plasma 289 

cells, eosinophils and neutrophils) in lamina propria or in mucosa. These metrics 290 

characterise the immune micro-environment within celiac biopsies, as well as the total area 291 

and area proportion of lamina propria, capturing the expansion of lamina propria, a 292 

phenomenon known to be associated with disease activity.19  293 

Furthermore, one of the key strengths of this study lies in our model’s capacity to 294 

discern between normal duodenum and celiac disease through the quantification of features 295 

associated with the disease microenvironment in mucosal biopsies. As expected, quantifying 296 

features of villous atrophy, as evidenced by reduced area proportion of this feature, and the 297 
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augmented area proportion signifying mucosa crypt hyperplasia, distinguished between the 298 

histology of unaffected biopsies and those indicative of celiac disease. Supplementary 299 

quantitative attributes of the inflammatory microenvironment known to be associated with 300 

celiac disease, encompassing the infiltration of chronic inflammatory cells like lymphocytes 301 

and plasma cells within the lamina propria, coupled with the associated expansion of this 302 

layer,19 further distinguished normal biopsy samples from those with celiac disease. 303 

Discernible differences between the two groups were also observed in the quantitative 304 

evaluation of granulocytes, which has been previously described.20 21 305 

While our model was limited by the small sample size, additional assessment involving 306 

larger cohorts will allow future refinement of the model’s performance. The cell model can 307 

also be trained specifically on duodenum biopsies and expanded to predict features 308 

associated with additional cell types (e.g. Paneth cells). An additional limitation of the current 309 

approach is related to the extraction of HIFs across a specific tissue area in the entire slide, 310 

which overlooks the potential variation between different tissue fragments. In a manual 311 

assessment of celiac disease in biopsies, pathologists often determine disease severity 312 

based on the most severely affected tissue region. To address this limitation, future work will 313 

focus on reporting HIFs separately for specific regions of interest within the tissue sample. 314 

This strategy is expected to allow for a more comprehensive and accurate assessment of 315 

disease severity within distinct tissue regions. 316 

We foresee that ML-supported histological analysis will play a pivotal role in the 317 

advancement of precision medicine for patients with celiac disease. To our knowledge, this is 318 

the first report of fully explainable ML-based tissue and cell classifications across the WSIs of 319 

mucosal biopsies in celiac disease, enabling the extraction and statistical analysis of HIFs to 320 

empower translational research and clinical trials. The resulting quantitative model-generated 321 

HIFs can be used to build predictive models of existing Marsh scores or function as a 322 

continuous measurement, tracking histological change in celiac biopsies. Expanding upon 323 

this foundation, as we proceed to develop classification models aimed at predicting clinical 324 
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outcomes alongside slide-level scores, we anticipate that the interpretability enabled by the 325 

utilisation of HIFs is poised to serve a dual purpose: validating the integrity of these models 326 

and revealing novel insights into disease biology. We believe that this ML-based assessment 327 

has tremendous potential as a scalable tool for measuring disease severity, risk stratification, 328 

prognostic evaluation, evaluating endpoints in clinical trials and monitoring of treatment 329 

responses; ultimately, advancing the care of patients with celiac disease.   330 
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FIGURE LEGENDS  

Figure 1 Proof-of-concept development of models based on HIFs on training data. 

CNN, convolutional neural network; H&E, haematoxylin and eosin; HIF, human interpretable 

feature; WSI, whole slide image.  

Figure 2 Overlays generated by cell segmentation model for model deployment. 

Figure 3 Tissue segmentation model showing distinct tissue regions. CD, celiac 

disease; ND, normal duodenum. 

Figure 4 Cell model confusion matrix showing sensitivity across different cell types. 

Figure 5 Accuracy of cell model predictions compared with pathologists. (A) Specificity 

comparison. (B) Sensitivity comparison. 

Figure 6 Example cell and tissue segmentation model correlation with modified Marsh 

score. (A) Surrogate features of villous blunting. (B) Surrogate features of crypt hyperplasia. 

(C) Surrogate features of intraepithelial lymphocyte infiltration.  
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