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ABSTRACT 
 
The highly polygenic nature of human longevity renders cross-trait pleiotropy an indispensable 
feature of its genetic architecture. Leveraging the genetic correlation between the aging-related 
traits (ARTs), we sought to model the additive variance in lifespan as a function of cumulative 
liability from pleiotropic segregating variants. We tracked allele frequency changes as a function 
of viability across different age bins and prioritized 34 variants with an immediate implication on 
lipid metabolism, body mass index (BMI), and cognitive performance, among other traits, 
revealed by PheWAS analysis in the UK Biobank. Given the highly complex and non-linear 
interactions between the genetic determinants of longevity, we reasoned that a composite 
polygenic score would approximate a substantial portion of the variance in lifespan and 
developed the integrated longevity genetic scores (iLGSs) for distinguishing exceptional 
survival. We showed that coefficients derived from our ensemble model could potentially reveal 
an interesting pattern of genomic pleiotropy specific to lifespan. We assessed the predictive 
performance of our model for distinguishing the enrichment of exceptional longevity among 
long-lived individuals in two replication cohorts and showed that the median lifespan in the 
highest decile of our composite prognostic index is up to 4.8 years longer. Finally, using the 
proteomic correlates of iLGS, we identified protein markers associated with exceptional 
longevity irrespective of chronological age and prioritized drugs with repurposing potentials for 
gerotherapeutics. Together, our approach demonstrates a promising framework for polygenic 
modeling of additive liability conferred by ARTs in defining exceptional longevity and assisting 
the identification of individuals at higher risk of mortality for targeted lifestyle modifications 
earlier in life. Furthermore, the proteomic signature associated with iLGS highlights the 
functional pathway upstream of the PI3K-Akt that can be effectively targeted to slow down 
aging and extend lifespan. 
 
 
INTRODUCTION 
 
The human lifespan is a complex trait that reflects the interplay of numerous socioeconomic 
factors and genetic predispositions. Its narrow-sense heritability (��) has been estimated in the 
range of 15 to 33%1,2. Recently, a lower estimate (<10%) has been reported after correcting for 
assortative mating3. The magnitude of missing heritability suggests that a large portion of 
heritable variation in human survival may come from small effects of numerous loci spread 
widely across the entire genome4. In fact, findings from moderately powered genome-wide 
association analysis (GWASs)5–7 are consistent with the perceived polygenic architecture of 
human lifespan, healthspan, and longevity. 
 
The extensive polygenicity underlying human lifespan has some immediate implications. With a 
finite number of genes and a theoretically infinite number of age-related traits and 
endophenotypes, extensive pleiotropy would be inevitable8,9. The shared genetic component 
across the correlated traits tags the common mechanisms amenable for drug development to slow 
the aging process and increase the healthspan10,11. If only a handful of rare alleles would underlie 
exceptional longevity (here, longevity perceived as a fitness module), then these alleles were 
expected to rapidly ascend to high frequency and continuously shift the population mean life 
expectancy to a higher optimum. This is in contrast to the notion that there is, in fact, a limit to 
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the maximum human lifespan12. Furthermore, if only a few rare loci underlie exceptional 
longevity, then the mutational target would be extremely narrow and, therefore, highly sensitive 
to population dynamics. In populations with a small effective size (��) or appreciable founder 
effect, the strong impact of genetic drift would have supplanted other evolutionary forces and 
ultimately either drive the longevity-increasing rare variants to fixation or complete removal 
from the gene pool13. In the absence of earlier observations among bottlenecked and isolated 
populations who acquired such extraordinary longevity in an evolutionarily short period, the 
extent of missing heritability attributable to rare variants remains to be determined. 
 
We posited an infinitesimal model for longevity in which variation in human lifespan is 
primarily determined by the additive effect of many segregating common variants (MAF> 1%), 
each with a small effect size. Given the additive model, we reasoned that the polygenic score 
would approximate a substantial proportion variance in lifespan among long-lived individuals. 
Leveraging the pervasive pleiotropy, we modeled highly complex and non-linear interactions 
among segregating variants to construct the integrated longevity genetic scores (iLGSs) for 
distinguishing differential survival. We studied a cohort comprising 515 Ashkenazi Jewish 
centenarians and 442 ethnically matched controls with known age at death (Supplementary 
Figure S1). We validated the predictive capacity of iLGS for distinguishing enrichment of 
exceptional longevity among the Wellderly cohort (n = 510) and Medical Genome Reference 
Bank (MRGB) cohort (n = 2,570) and subsequently converted the model to 3.8 million single 
nucleotide polymorphism (SNP) weights using the European descent portion of the Genetic 
Epidemiology Research on Adult Health and Aging (GERA) cohort (n = 62,268). Finally, we 
investigated proteomic correlates of exceptional longevity using iLGS and identified drugs with 
repurposing potentials for ameliorating the aging process. A schematic overview of the study is 
provided in Extended Figure 1. 
 
 
RESULTS 
 
Tracking the allele frequency changes as a function of viability 
 
Selective pressure early in life favors maximization of the fetal viability and fecundity during 
adulthood, although later in life, it attenuates maximizing the homeostasis maintenance14–17. The 
adaptive response to changing selective pressure often entails allele frequency changes at many 
segregating loci influencing the trait9. Determinants of the evolutionary trade-off between 
viability and fecundity characterize the polygenic response that results in the fluctuation of allele 
frequencies across different age groups18. To identify variants underlying exceptional longevity, 
we adopted a regression framework similar to that of Bergman et al.19, which tracks allele 
frequency changes across different age bins. Variants with a negative impact on longevity are 
expected to be naturally purged from the centenarian gene pool, while ones with a positive 
contribution to healthy aging are expected to be enriched in the gene pools toward the 
extremities of the human lifespan.  
 
In constructing our sliding regression framework (see Materials and Methods), we assumed 
that due to the specific age structure of our discovery cohort (between the ages of 56 and 111), 
the fitness cost of pro-aging alleles monotonously decreases their presence in the gene pool, 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 11, 2023. ; https://doi.org/10.1101/2023.12.10.23299795doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.10.23299795
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

while pro-longevity alleles will monotonously increase in frequency. Neutral alleles with no 
effect on longevity will appear with constant frequency during aging. Hence, the regression slope 
would reflect the overall direction of the effect conferred at each variant by the minor allele. We 
tested 8,090,427 variants in total and identified 34 independent lead SNPs at the genome-wide 
significance threshold (P < 5E-8) (Supplementary Figure 2 and Supplementary Table 1). 
These variants are sex independent as allelic frequencies in each age bin were corrected for the 
gender effect (see Materials and Methods). Among the 34 variants, two are coding and the rest 
non-coding (mapping to intronic and intergenic regions), and 20 variants tagging expression 
Quantitative Trait Loci (eQTL) (Supplementary Table 2). As proof of principle, we also 
tracked the frequency of each of the three APOE haplotypes (ε2, ε3, and ε4) tagged by rs429358 
and rs7412 across directly genotyped and phased samples. As expected, we identified a 
significant negative effect (β = -21.84, P = 4.25E-7) for APOE-ε4 haplotype (Supplementary 
Figure 3).  
 
Several genomic loci included multiple prioritized genes, including two of the previously 
reported contributors of aging, such as LPA and LDLR6. The strongest association signal for 
longevity (i.e., rs76430661) was on 5q35.3 where six genes were prioritized (COL23A1, 
HNRNPAB, N4BP3, ZNF454, ZNF879, and PRELID1. (Supplementary Figure 4). The variant 
physically maps to the second intron of COL23A1 and is an eQTL for all the prioritized genes 
apart from ZNF454 which is prioritized based on chromatin interactions. While none of the 
prioritized genes in the locus has been previously described in the context of aging, upregulation 
of a closely related family member of HNRNPAB is suggested to prevent age-dependent 
cognitive decline in Alzheimer’s disease (AD) mouse models20. 
 
The largest two risk loci on 6q26 and 19q13 (tagged by rs41272112 and rs147053538), each with 
16 and 50 genes respectively, represented the highest density of prioritized coding genes 
physically located in the locus (Supplementary Table 3). The lead SNP on 6q26 (rs41272112) 
maps to the exon 26 of LPA and the risk locus is an eQTL for 8 genes including LPA itself and 
PLG and showing chromatin interactions with IGF2R, AGPAT4, and FNDC1 (Supplementary 
Figure 5). Exposure to high Lp(a) (lipoprotein A) levels is associated with coronary heart 
disease21 and was recently shown to be causally related to shortened parental lifespan in the UK 
Biobank22; nevertheless, the relationship between Lp(a) concentrations and all-cause mortality 
among patients with established cardiovascular diagnosis is debated23. Given that the prioritized 
missense variant in the locus is not damaging (CADD: 0.06, PrimateAI: 0.30), it is likely that its 
negative association with longevity (β = -0.21, P = 4.2E-08) is mediated through a more stable 
Lp(a) resulting from the c.4262G>A mutation. It is worth noting that the risk locus also shows 
chromatin interactions with the insulin-like growth factor 2 receptor (IGF2R), which has been 
identified to be associated with parental longevity7. Furthermore, coding variant rs3798220, 
which is in complete LD with the prioritized tag SNP, has been identified to show the most 
substantial individual-level effect in "lost healthy life years" across the participants of the UK 
Biobank and FinnGen cohort24. 
 
The lead SNP rs147053538 on 19q13 maps to the intergenic region between PSG11 and PSG7, 
and the risk locus is an eQTL for six genes including ARHGEF1 and shows chromatin 
interactions with 13 additional genes including CEACAM1 (Supplementary Figure 6). Rho 
Guanine Nucleotide Exchange Factor 1 (ARHGEF1) was identified to be crucial in angiotensin 
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II-induced hypertension, and its inactivation has been suggested as an amenable target for the 
treatment of high blood pressure25. Given the proposed association of hypertension with late-
stage dementia and Alzheimer's disease26,27, the net effect of the risk loci in modulating the 
expression of ARHGEF1 merits further investigation. Remarkably, age-dependent upregulation 
of carcinoembryonic antigen‐related cell adhesion molecule 1 (CEACAM1) is identified to result 
in endothelial impairments and promotion of atherosclerotic plaque formation during aging28. 
Whether the favorable impact of the locus on longevity is mediated through the downregulation 
of ARHGEF1 expression or CEACAM1 (or both) is not clear, but we speculate that the locus 
implicates an important cardiovascular component of longevity that can be therapeutically 
targeted for ameliorating aging. 
 
The most prolific regulatory activity was observed by rs11556579, where 43 genes were 
prioritized by both eQTL mapping and chromatin interactions, including MAN1B1 on 9q34 
(Supplementary Figure 7). ER mannosidase I (Man1b1) is involved in the intracellular 
clearance of misfolded alpha1-antitrypsin29. Accumulation of misfolded α1-antitrypsin plaques 
in the lesions of AD is previously reported30, and it has been shown that properly folded protein 
protects against amyloid-β-induced toxicity in microglial cells31. Moreover, treatment of type-2 
diabetes mouse models with α1-antitrypsin rescues glucose intolerance and normalizes blood 
glucose levels32. In light of recent findings on the significance of heme homeostasis in longevity 
and the proposed mechanism of action for metformin33 that mimics α1-antitrypsin protection 
against heme oxidation, it is highly likely that the favorable impact of the locus is mediated 
through the regulation of MAN1B1 expression that ensures conformational acuity of α1-
antitrypsin. The expression of the gene is downregulated in AD34, and we speculate that the risk 
locus implicates the link between T2D and AD. 
 
Additionally, the lead SNPs on 2q24 and 2q32 (i.e., rs6757605 and rs59642822, respectively) 
tagged eQTL loci that regulate the expression of GPD2 and GLS1 respectively (Supplementary 
Figure 8). Suppression of gpd-2 in C. elegans is shown to further extend the life span of daf-2 
mutants35 and inhibition of GLS1 ameliorated age-related pathologies by eliminating senescent 
cells in aged mice36. Given that downregulation of both genes results in extended lifespan in 
animal models, it is likely that the favorable effect of these two loci on human longevity is 
mediated by attenuation of gene expression by eQTLs in LD with the lead SNPs.  
 
Overall, positional, eQTL, and chromatin interaction mapping prioritized 332 genes of which 
191 genes are exclusively the target of expression alteration by the 20 eQTLs. Gene-set analysis 
suggests a shared biological function that is enriched in the CD40 pathway, thyroid hormone-
mediated pathway, osteoblast proliferation, and apolipoprotein binding, however, significance 
levels do not withstand the multiple-test correction (Supplementary Table 4). 
 
iLGS model construction 
 
Multimorbidity is a common phenomenon during aging37. The shared genetic component among 
age-related traits (ARTs) and age-related diseases (ARDs) results in cross-trait pleiotropy and 
underlie certain multimorbidities38. Given the limited size of our discovery cohort, any polygenic 
derivation of additivity of effect solely based on the few associated signals (from our sliding 
regression framework) is massively underpowered and not capable of capturing the full spectrum 
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of additive variance underlying longevity. However, given the shared pathways among ARTs 
and ARDs39, we reasoned that combining the polygenic effect among age-related pleiotropic 
traits enables the robust approximation of the additive liability from variants in the common 
pathways related to human lifespan. 
 
To explore the pleiotropic landscape of the 34 variants identified in the sliding-regression 
framework, we carried out a phenome-wide association study (PheWAS) using GWAS summary 
statistics primarily from the UK Biobank (see Materials and Methods). Overall, we tested the 
association of 1,504 traits across 28 domains, of which 223 unique traits and diseases across 17 
domains were identified to be significantly associated with the candidate variants 
(Supplementary Table 5). The association signals were significantly enriched across three 
domains including Skeletal (P = 1.0E-05, OR = 4.39), Metabolic (P = 6.8E-05, OR = 1.90), and 
Cognitive domains (P = 6.3E-05, OR = 3.20) (Supplementary Table 6). The most significant 
associations across these three domains included traits such as heel bone mineral density 
(skeletal domain), impedance measures of body fat percentages (metabolic), and overall 
cognitive performance. 
 
Given the ubiquitous pleiotropy revealed in the PheWAS analysis, we constructed a model that 
integrates the complex interplay of pleiotropic ARTs in shaping longevity. Here, we consider 
genes as the units determining longevity and presume that total contribution to longevity is better 
approximated by the additive effect of their constituent functional variants on pleiotropic traits 
determining the evolutionary trade-offs throughout the life history of the species40. Traits 
identified by PheWAS analysis either causally influence longevity or simply arise from the 
spurious pleiotropy due to linkage disequilibrium (LD)41. Regardless of the true nature of the 
genetic correlation between these traits and longevity, we reasoned that a model summarizing the 
total additive genetic variance conferred by genetically correlated traits while accounting for 
multicollinearity among them would yield a descriptive statistic that can be used to distinguish 
survival. 
 
We applied a stacked ensemble method to construct the integrated longevity genetic score 
(iLGS). We first randomly split the Einstein LonGenity cohort into the derivation (n = 715) and 
validation (n = 237) sets. We then used polygenic risk scores of 53 select PheWAS-identified 
traits and 34 additional UK Biobank blood and urine biomarker traits (See Materials and 
Methods). We trained the ensemble model on 65% of the derivation dataset and tested it on the 
remaining 35%. Upon five-fold cross-validation, our model achieved an area under the curve 
(AUC) of 0.87. A schematic overview of the model construction is provided in Extended Figure 
2. The final stacked Elastic-net regression framework shrank the coefficients of ten traits to zero, 
and the final score was constructed using the coefficients of the remaining 72 traits and 297 
interaction terms (See Materials and Methods). The size of adjusted coefficients in the final 
model is provided in Supplementary Tables 7 & 8. As expected, the pattern of genetic 
correlation ���� among the traits included in our model revealed several distinct clusters (Figure 
1): (1) The biggest cluster includes different body impedance measures that are significantly 
correlated with different metabolic and cardiovascular traits (including systolic blood pressure, 
diabetes, birth weight, and the birth weight of first child), different metabolic traits and anxiety; 
(2) Impedance measures are negatively correlated with numerous reproductive traits, which 
include age at menarche, age at first sexual intercourse, age at first birth and age at menopause; 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 11, 2023. ; https://doi.org/10.1101/2023.12.10.23299795doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.10.23299795
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

(3) Fat impedance measures are also negatively correlated with different measures of fluid 
intelligence and usual walking pace; (4) Among the biomarker traits the greatest number of intra-
domain correlations belong to C-reactive protein and triglyceride (each with 28 significant inter-
domain genetic correlation), which accounts for most intra-domain correlations. 
 
Across the individual PGS (polygenic score) terms, high-density lipoprotein (HDL) cholesterol, 
fluid intelligence (chained arithmetic measure), and forced vital capacity are positive top 
contributors to longevity, while glycated hemoglobin (HbA1c), apolipoprotein B, and body mass 
index (BMI) are top negative contributors to longevity. Our model also entails the interactions 
among traits (Extended Figure 3 and Supplementary Figure 9). Since the iLGS is linearly 
correlated with longevity, traits with multiple interacting partners can potentially tag canonical 
longevity features. Several interesting insights are immediately discernible from the interacting 
pairs in our model. Across the 12 domains, traits in the “biomarkers” category have the most 
interacting partners. Out of the 35 blood and urine biomarkers included in the model, 32 interact 
with at least three other traits. The highest absolute number of interactions is mediated through 
the insulin-like growth factor 1 (IGF1) (17 interacting partners), which is followed by the 
rheumatoid factor (n = 15), alkaline phosphatase, and estradiol (both with 14 interacting 
partners) (Extended Figure 3). Among the remaining domains, traits within the “cognitive 
function” class have the second-highest number of interactions with other traits. In this domain, 
educational attainment interacts with 14 other traits, representing the most important non-
biomarker traits in describing the additive variance in our model (Extended Figure 3). Traits in 
the metabolic, immunological, and reproduction domains, each with 45, 34, and 29 total 
interactions, respectively, account for most of the remaining cross-trait interactions in our model. 
When traits were considered individually, age at first birth, anxiety, and walking pace has the 
most interacting partners, following educational attainment (Extended Figure 3). 
 
Based on our model, the interaction between fluid intelligence and serum total bilirubin has the 
most favorable contribution to longevity, and the interaction between IGF1 and direct bilirubin 
has the most negative effect on longevity. Across the individual PGS terms, high-density 
lipoprotein (HDL) cholesterol, fluid intelligence (chained arithmetic measure), and forced vital 
capacity were revealed as the top contributors to increased longevity, and Glycated hemoglobin 
(HbA1c), Apolipoprotein B, and body mass index (BMI) were identified as the top negative 
contributors to longevity. 
 
iLGS distinguishes differential survival 
 
Using the coefficients derived from our stacked model, we computed the iLGS across 59,534 
individuals with European ancestry in the GERA cohort and converted the scores to a set of 3.8 
million variant weights (See Materials and Methods and Supplementary Figure 10). We 
subsequently assessed the risk prediction performance of iLGS for distinguishing differential 
longevity in three independent cohorts. 
 
Using the validation portion of our in-house centenarian cohort (n = 238), we applied a 
multivariate Cox proportional hazard model to evaluate the association of iLGS with age at death 
while controlling for sex, APOE4 status, and their interaction with iLGS (See Materials and 
Methods). iLGS was associated with delayed age at death with a hazard ratio (HR) of 0.09 (95% 
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CI = [0.05, 0.18], P = 6.9E-13) per standard deviation of iLGS (Figure 2a). This is equivalent to 
a 3% decrease in the baseline mortality hazard per one unit increase in the iLGS. Sex is a well-
known factor involving in exceptional longevity42 and, expectedly, we identified a significantly 
increased hazard rate for mortality among males against the baseline hazard (Figure 2a; HR = 
1.84, 95% CI = [1.25, 2.73], likelihood ratio test in Cox proportional hazard model, P = 2.10E-
3). However, no statistical interaction between iLGS and sex was identified for mortality hazard 
(Figure 2a; HR = 0.43, 95% CI = [0.17, 1.10], P = 7.76E-2), which indicates that the association 
of iLGS with survival is largely sex-independent and cross-gender difference in overall survival 
is not influenced by any sex-specific effects of iLGS. Furthermore, given the well-known effect 
of APOE haplotypes on human longevity43,44, we also investigated the association of all these 
haplotypes with age at death and modeled the interaction of APOE-ε4ε4 genotype with the iLGS 
in our multivariate Cox regression model (See Materials & Methods). Neither of the APOE 
haplotypes was significantly associated with mortality in our validation set (Figure 2a). 
Similarly, the effect of iLGS on survival appears to be independent of APOE-ε4 status as we did 
not identify any evidence of statistical interaction between iLGS and the APOE-ε4ε4 haplotype 
(HR = 0.53, 95% CI = [0.12, 2.24], P = 3.87E-1) (Figure 2a). We carried out a stratified Kaplan-
Meier analysis across the quintiles of iLGS to investigate if survival curves are significantly 
different across the top and bottom quintiles compared to the interquintile range (IQR) (Figure 
2b and Extended Figure 4). The cumulative incidence of death was significantly different 
between the top quintile ������

� � and IQR (log-rank test, P = 247E-5) and between the bottom 
quintile ������

� � and IQR (P = 2.75E-27). A comparison of Kaplan-Meier functions across 
deciles revealed that, on average, individuals with iLGS in the top decile live up to 4.8 years 
longer. Furthermore, the risk of death for individuals in the bottom two quintiles (i.e., bottom 
40%) is maximum before the age of 85, while for individuals in the top quintiles, the risk of 
death does not peak until over the age of 95 years (Extended Figure 4). The better survival 
outcome across the top quintile of iLGS is consistent with the coefficient estimates from the Cox 
proportional hazards model assessing HRs across the quintiles of iLGS (Figure 2c). 
 
We replicated the association of the top and bottom iLGS quintiles with three age categories (age 
at last contact: ≥ 95, [90, 94], and <90) in two independent cohorts, which include the Scripps 
Wellderly cohort45 and the Medical Genome Reference Bank (MRGB) cohorts, two independent 
cohorts specifically ascertained to comprise a healthy aging population. However, since the 
absolute “age at death” for participants of these two cohorts are not available, we formulated the 
null hypothesis (��) as no association between the top ������

� � and bottom ������
� � quintiles with 

age category at the last point of contact, and tested for evidence against �� using a Fisher’s Exact 
test. In the Wellderly cohort, the top quintile (�����

� � was significantly associated with both the 
≥95 and [90, 94] age categories (Figure 3a). Individuals in �����

�  are 3.67 times more likely to 
surpass 95 years of age (95% CI = [1.68, 7.95], P = 6.68E-4) and 2.49 times more likely to fall 
into the [90, 94] age bin (95% CI = [1.70, 3.73], P = 6.89E-6) than the rest of the iLGS strata. 
Here, the definitive lifespan is not known, and “age at last contact” is used as an approximate 
proxy for lifespan. As such, age categories further away from the two oldest age bins (i.e., ≥95 
and [90, 94]) are necessarily comprised of individuals who have already achieved their 
maximum lifespan and individuals who will live longer and proceed to higher age bins. 
Therefore, the odds of individuals with favorable polygenic background (i.e., �����

� ) is expected 
to be attenuated in the lower age bins and continue to increase as we move to upper age-bins. 
This is consistent with the observed 1.47-fold increase in the odds of association between the 
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�����
�  and the ≥95 age category (compared to the [90, 94] age bin). Since individuals of the 

Wellderly cohort are essentially devoid of age-related conditions, the lack of association between 
the bottom quintile iLGS ������

� � and age categories is not surprising (Figure 3a). In the MRGB 
cohort, �����

�  is significantly associated with both the ≥95 and [90, 94] age bins (Figure 3b). 
Here, individuals in �����

�  are 4.27 times more likely to surpass 95 years of age (95% CI = [3.43, 
5.33], P = 7.88E-47) and 3.66 times more likely (95% CI = [2.96, 4.53], P = 2.37E-30) to reach 
the [90, 94] age category than the rest of the population. Individuals with iLGS in the bottom 
quintile ������

� � were significantly depleted from the [90, 94] age bin (OR: 0.50, 95% CI = [0.25, 
0.90], P = 3.02E-2). Conversely, �����

�  was significantly enriched among individuals in the <90 
age bin (OR: 1.38, 95% CI = [1.08, 1.76], P =9.79E-3).  
 
In both replication cohorts, the strength of association between �����

�  and the older age categories 
is significantly stronger. Given that age at death in these cohorts is undetermined, we believe the 
stronger signal toward exceptional longevity arises from the more homogenous cohort construct 
among individuals achieving the upper limits of lifespan. Using the available clinical data in the 
MRGB cohort, we further investigated the association between �����

�  and three age-related traits: 
extreme obesity (BMI> 40 kg/m2), treatment history for high blood pressure and treatment 
history for high cholesterol. Despite the expected direction of effect across the three traits 
(Supplementary Figure 11), the protective effect of �����

�  is only statistically significant against 
treatment for high blood pressure (OR: 0.64, 05% CI = [0.98, 0.42], P = 3.82E-2). 
 
Burden of rare variants across �����

�  and �����
�  

 
Given the association of �����

�  with an extended lifespan, we compared the burden of rare 
pathogenic variants (PrimateAI score ≥ 0.9 and alternative allele frequency < 1%) among the top 
versus bottom quintile iLGS carriers across centenarians and non-centenarians in our longevity 
cohort. A significant difference in the number of rare pathogenic variants between the �����

�  and �����
�  centenarians was observed (Supplementary Figure 12). It appears centenarians in the top 

quintile iLGS collectively carry a higher burden of rare pathogenic variants compared to 
centenarian carriers of �����

� . This perhaps reflects the buffering effect of the favorable polygenic 
background that offset the higher burden of rare pathogenic variants among �����

�  carriers. This 
observation is consistent with a liability threshold model, where the accumulation of liabilities 
from pathogenic variants is favorably offset by the higher threshold rendered by the polygenic 
background46. 
 
Proteomics correlates of iLGS and anti-aging drug repurposing 
 
The quantitative size of iLGS is determined at birth and remains constant over an individual's life 
course. Given the association of iLGS with longevity, we searched for the proteomic correlates of 
the score among the 237 individuals (123 males and 115 females) in our validation set. In doing 
so, we reasoned that proteomic predictors of aging and longevity could be detected via the 
patterns of association between the proteome and the iLGS. Briefly, we tested the association 
between 4,265 proteomic markers and iLGS among males and females separately and identified 
significant associations with FDR < 0.05 (See Materials and Methods). Among females, 37 
proteins were positively associated with iLGS, while three – MAT2B, CLEC2B, and CMPK1 – 
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show negative association (Figure 4a). Among these 40 proteins,  30 were associated with 
chronological age among female Ashkenazi Jews47 (Supplementary Table 9), and ten were 
differentially expressed among centenarians with a consistent direction of effect48 
(Supplementary Table 9). The most significant positive association signals came from 
semaphorin 4B (SEMA4B, β = 4.94, P = 1.49E-6) and Pleiotrophin (PTN, β = 3.98, P = 1.49E-6) 
(Figure 4a). Previous studies have repeatedly replicated the association of pleiotrophin with both 
chronological age and extended lifespan48–50 and identified the association between the 
expression of SEMA4B and favorable proteomic signature of intermittent fasting51. On the other 
hand, methionine adenosyltransferase 2B (MAT2B) showed the most significant negative 
association with iLGS (β = -3.56, P = 2.05E-5) (Figure 4a). The connection of MAT2B to aging 
has not been studied, although its overexpression has been attributed to poor prognosis of triple-
negative breast cancer52 and critical illness in COVID-1953. 
 
Among male subjects (n = 123), only three proteins were significantly associated with iLGS 
(Figure 4b). R-spondin 4 (RSPO4) showed a positive association signal (β = 4.82, P = 1.85E-6), 
which was the most significant. This is consistent with an increased expression of RSPO4 among 
centenarians as previously reported48. We detected a positive association for Thioredoxin 
domain-containing protein 5 (TXNDC5, β = 4.25, P = 3.28E-6). Although the association of 
endoplasmic reticulum (ER) protein TXNDC5 with human longevity has not been previously 
reported, its transcriptional upregulation has been shown to be associated with age in long-lived 
red sea urchins54. We also identified a negative association for lysine methyltransferase 2D 
(MLL2,  β = -6.38, P = 4.19E-5). Among the 43 proteins significantly associated with iLGS in 
either males or females, the direction of effect was inconsistent between the genders for only 
three proteins: MAT2B, CELEC2B, and CMPK1 (although not significant in males) 
(Supplementary Table 9). This inconsistency might indicate the sex differences in the 
proteomic signature of aging. 
  
We queried the DrugBank database (version 5.1.8)55 to identify drugs targeting or interacting 
with the 43 iLGS-associated proteins. We only considered drugs with ongoing clinical trial status 
(see Materials & Methods). Our rationale was that the underlying mechanism of action for 
drugs interacting with iLGS-associated proteins might implicate the pathways relevant to 
longevity and they could be repurposed as anti-aging treatments. We identified 25 unique drugs 
interacting with 11 proteins (Table 1). One drug, fostamatinib, interacting with at least four 
longevity-promoting proteins, is a selective inhibitor of spleen tyrosine kinase (Syk)56 that acts 
upstream of the PI3K-Akt pathway, which is upregulated during aging and whose 
downregulation promotes improved cell survival in neurons57. The suppression of Syk attenuates 
the PI3K-Akt signaling, which inhibits mTOR and activates FOXO, leading to the activation of 
proapoptotic processes and cell cycle arrest. Although its precise mechanism of action is unclear, 
the active metabolite in fostamatinib has been recently found as a novel senolytic agent58. Given 
the extent of its interaction with longevity-promoting proteins, this drug merits further 
investigation as a potential anti-aging treatment. 
 
 
DISCUSSION 
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In this study, we developed a predictive genetic score for lifespan based on GWAS summary 
statistics for a compendium of aging-related traits. We posited that the highly complex and 
polygenic architecture of human longevity is well approximated by an additive model that 
captures the cumulative liability conferred by pleiotropic traits associated with survival 
components. We assessed the performance of our model for distinguishing differential survival 
and showed, at the population level, iLGS predicts prolonged lifespan independent of gender or 
APOE haplotype status. We also established that the top quintile of iLGS is significantly 
enriched among individuals surpassing 95 years in the extant populations. Finally, we identified 
protein correlates of iLGS among centenarians and drugs that could be repurposed for potential 
anti-aging treatments. 
 
In building our model, a few key assumptions were made. First, we assumed a highly polygenic 
architecture underlying human longevity. Our assumption of high polygenicity and genome-wide 
distribution of associated variants is supported by the proportional correlation of lifespan 
heritability with chromosomal length (Supplementary Figure 13), which indicated that genomic 
loci with a non-neutral net effect on longevity are numerous and widely distributed across the 
genome. This is consistent with the overwhelmingly polygenic architecture inferred from a wide 
variety of complex traits59,60. Second, we posited that the deviation of an individual’s lifespan 
from the population mean is primarily due to the additive liability conferred by common variants 
and can be well approximated by an additive model. Our supposition of “additivity of effect” 
follows the premise of the “omnigenic model” of complex traits61, where a great portion of 
heritability is attributed to common variants with modest effect size62. Obviously, rare variants 
with sizable effects may still be relevant in the context of longevity, although such variants are 
primarily implicated for traits under a strong selective pressure9,63. Given the attenuated selective 
pressure during the aging14,16, variants with a substantially detrimental effect on survival are 
expected to be under a more lenient purifying selection. Consequently, their frequency is not 
necessarily bound to lower limits, and therefore, rare variants with large effect sizes on aging and 
longevity are expected to be scarce. Third, we modeled lifespan as a function of a set of traits 
that are directly or indirectly under selection. Of note, lifespan is the ultimate trait at the top of 
the fitness hierarchy and its variance is determined by the interplay of other fitness components, 
which include fertility, fecundity, and inclusive fitness. We used polygenic scores of nested traits 
(as a reasonable proxy for unmeasured trait values) to model the perceived interplay and derive a 
single composite genetic score for longevity. Unlike other biological age predictors (such as 
epigenetic clocks, telomere length, transcriptomic, and metabolic predictors) that are dependent 
on the actual chronological age and may vary over time, iLGS is stable throughout life and can 
be assessed from birth. Thus, the score can be incorporated with other quantitative predictors of 
age later in life when they become available to give a more accurate prediction of biological age. 
 
Our results showed that iLGS generalizes well in predicting lifespan in the extant populations 
when the age at death is not yet available. Furthermore, we showed that in the Wellderly and 
MRGB cohorts of healthy aging, the odds of individuals with top quintile iLGS (�����

� ) increased 
sharply in the ≥95 age bin. Although we identified a protective association between �����

�  and 
the treatment history for high blood pressure in the MRGB cohort, we did not observe a 
significant association between the iLGS and the age at onset (or post-intervention survival) for 
cardiovascular complications or three cancer types (breast, prostate, and skin) in a small portion 
(n= 390) of our in-house cohort with available data. A number of possibilities may explain this 
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lack of association: (1) The age distribution in our test set is relatively narrow (95 ~ 114 years) 
(Supplementary Figure 1), and therefore, our ability to discriminate individuals based on iLGS 
strata is reduced accordingly. In particular, these complications occur in such a narrow range 
after age 95 that the age at onset and the survival time are indistinguishable across iLGS strata; 
(2) Heterogeneity of the investigated conditions may play an important role that is 
underappreciated by our model. Specifically, the underlying cause of differences in the age at 
onset or survival time may not be completely polygenic in nature (hence not distinguishable by 
our model) and simply arise due to the acquired somatic mutations in the case of cancers and 
lifestyle differences in the case of cardiovascular complications. This is quite an interesting 
possibility since studies into the congestive heart failure diagnosis have also questioned the 
validity of prognostic markers among centenarians64; and (3) Given the limited sample size, our 
study was underpowered. 
 
The specific pattern of interaction between individual traits in our model shed new light on the 
approximate relationship between different traits on longevity. We observed that a great majority 
of these interactions are mediated through the insulin-like growth factor 1 (IGF1). This 
recapitulates the well-established significance of this hormone in human aging and underscores 
the relevance of interventions targeting IGF1-extended signaling network for longevity65. 
Consistent with this, we highlight the repurposing potential of fostamatinib as a senolytic drug 
candidate. It interacts with four iLGS-associated proteins (PTN, EPHA1, EPHB6, and DCLK1) 
and attenuates the PI3K-Akt signaling, which leads to a range of favorable outcomes that 
collectively promote longevity65. Further, we highlight the significance of our finding for 
proteins associated with iLGS. Unlike earlier studies into the proteomic correlates of longevity 
where it is not clear whether differential protein levels are truly causal or simply fluctuate due to 
aging, our results are not confounded by the chronological age. 
 
Nevertheless, our results should be considered in light of a few limitations. First, in constructing 
our model, we used GWAS summary statistics from individuals of primarily European ancestry. 
Polygenic scores are notoriously sensitive to allele frequencies and patterns of LD that vary with 
ancestry66,67. Thus, our model will likely underperform in populations of non-European descent. 
Second, it remains to be determined whether the association of iLGS with lifespan is independent 
of lifestyle factors. Although we showed that the association of iLGS with longevity is 
independent of gender and APOE status, using the available data, we could not rule out the 
confounding effect of lifestyle choices. If the effect of iLGS on longevity is mediated through a 
confounder such as dietary pattern or medication intake, we expect that protein correlates of 
iLGS to be also confounded. However, we could not test for this confounding in a replication 
cohort with available lifestyle data like the UK Biobank dataset since summary statistics for 
constructing iLGS were primarily obtained from UK Biobank GWAS studies. 
 
Taken together, we showed how pervasive pleiotropy could be leveraged in constructing a 
composite polygenetic score for longevity. The application of iLGS to the extant populations 
offers an opportunity for better risk management among individuals at the lower end of the score 
distribution. These individuals are more likely to develop age-related pathologies earlier in life 
and, therefore, benefit from lifestyle modifications. Moving forward, in expectation of more 
powerful GWAS studies in diverse populations, we believe our method offers a promising 
framework for stratifying life expectancy in the extant population. 
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METHODS 
 
Ethics statement 
 
In this study, we used datasets from the UK Biobank (application number 58069), as approved 
by the UK Biobank board, the Wellderly cohort (the Scripps Institute, La Jolla, USA) obtained 
from the European Genome-Phenome Archive (EGAS00001002306), the Medical Genome 
Reference Bank cohort obtained from the Garvan Institute of Medical Research, Australia, and 
the Genetic Epidemiology Research on Adult and Aging (GERA) obtained through dbGaP 
(request number 82588-1). The study and data access were approved by Albert Einstein 
Institutional Review Board, protocols 2019-9922 (reference number: 05294). All methods were 
carried out in accordance with the relevant guidelines and regulations, and informed consent was 
obtained from the research participants. 
 
Data sets 
 
Einstein LonGenity cohort. We performed our analysis on a sub-cohort of 1,740 (722 males 
and 1018 females) offspring of Ashkenazi Jewish centenarians and controls recruited 
longitudinally in the LonGenity project at the Albert Einstein College of Medicine68. These 
individuals were genotyped on a custom array at 635,623 SNPs and subsequently underwent 
whole-exome sequencing (WES). Details pertaining to DNA sample preparation and sequencing 
are explained elsewhere69. 
 
Wellderly cohort. For replication, we used the whole-genome sequence data from the 510 
healthy elderly individuals recruited through the Scripps Institute Wellderly study. These 
individuals are all healthy and aged between 80 to 105 years without any chronic conditions or 
medication-taking history. Details pertaining to the cohort demography and the genome 
sequencing procedure are explained in an earlier study45. 
 
MRGB cohort. For replication, we also used the whole-genome sequence data from 2,570 
individuals (1,251 males & 1,319 females) in the Medical Genome Reference Bank (MRGB) 
cohort. This cohort comprises Australians who lived at least 70 years of age without any history 
of cancer, dementia, and cardiovascular disorders at baseline entry or study follow-ups. Gender-
stratified age distributions across participants are provided in Supplementary Figure 14. The 
cohort demography and genome sequencing details are explained elsewhere70. 
 
GERA cohort. We used a GERA (Genetic Epidemiology Research on Aging) sub-cohort of 
62,268 individuals with European ancestry to convert iLGS to SNP weights. We used pre-
computed principal component scores released by the GERA consortium to filter out 16,151 
individuals with non-European ancestry. 
 
Quality control (QC) 
 
We applied standard GWAS QC measures71 implemented in PLINK v1.90b72. Briefly, we 
removed individuals with a mismatch between the reported and inferred gender from the sex 
chromosomes. We restricted our analysis to unrelated individuals for all cohorts by excluding the 
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younger participants from each pair of close relationships (up to second-degree). Our QC 
measures at the sample level also included removing individuals with <95% call rate, individuals 
with extensive runs of homozygosity, or non-European ancestry as determined by the PCA 
analysis. The Einstein LonGenity cohort analysis exclusively focused on the Ashkenazi Jewish 
cluster. At the variant level, our QC measure involved removing SNPs with < 1% minor allele 
frequency (MAF), SNPs with < 95% call rate among all individuals, or an extreme deviation 
from the Hardy-Weinberg equilibrium (HWE) at P ≤ 1E-6, which most likely represents poor 
genotyping. 
 
We imputed the QC'ed genotypes across filtered individuals using the Michigan Imputation 
server73 and 1000 Genomes phase 3 haplotypes as the reference panel. For the UK Biobank sub-
cohort, we directly obtained version 3 of the imputed genomes from the consortium. Post-
imputation QC measures across all cohorts included removing SNPs with IMPUTE2 info score < 
0.5, MAF < 1%, or an extreme deviation from HWE at P ≤ 1E-6. For the Einstein LonGenity 
cohort, we merged the post-imputation genotypes with the exome data while correcting for the 
strand orientation. Prior to merging, genotypes from the exome data were restricted to bi-allelic 
loci only, and INDELs were removed. Wherever the imputed genotype was different from the 
exome data, we replaced the inferred alleles with the observed nucleotides from the whole-
exome sequencing (WES) data. 
 
Principal component analysis (PCA) 
 
To avoid stratification bias, we restricted our analysis to a single ancestry (ASJ for the Einstein 
LonGenity cohort and European ancestry for the replication cohorts). We used pre-imputed 
genotypes to calculate principal components in KING v2.2.574. Before running KING, we 
applied a more stringent QC measure using PLINK (v.1.90b) to remove SNPs and individuals 
with <99% call rate. Samples were pruned to include founders only. Additionally, SNPs with 
MAF< 5% were removed and pruned to include uncorrelated SNPs at pairwise �� � 0.2. The top 
three PCAs were projected to that of 1000 Genomes phase 3 data, and samples with European 
ancestry were selected for downstream analysis. 
 
Sliding regression framework 
 
Unrelated ASJ samples from the Einstein LonGenity cohort (n = 952) were divided into 48 
overlapping bins according to their reported age at death. Bins were constructed to contain 30 
individuals and an overlapping size of 15 individuals between the neighboring windows. The 
allelic frequency across 8,090,428 imputed SNPs was calculated in each bin. Details about the 
age distribution of participants in each bin are provided in the Supplementary Table 10. To 
remove the sex effect in the ultimate model and correct for the different male/female ratios 
across bins, calculated allele frequencies were regressed on to the number of females in each bin 
and residuals were then used in the ultimate regression model so that: 
 � �  � �	�	 

 
where � is the age at death, �	  is the slope of regression, �	  is the sex-corrected frequency from 
the prior regression, and α is the intercept of regression defined by the expected mean age at 
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death in our discovery cohort (~70 years). We tested for an effect of gender-corrected allele 
frequency (ej) by a two-tailed t-test where we constructed our test hypothesis as below: 
 ���: ��	 � 0� ��: ��	 � 0�  
 
We interpreted positive �	  and negative �	  as pro-longevity and pro-aging, respectively. For 
each �	 , we calculated the standard error using the formula below: 
 

��
�
�  � ∑ �� � ����� � 2����	 � �	���

�

 

 
where, � is the age at death, �� is the estimated age at death, n is the total number of bins, �	  is 
the frequency residual and �	  is the mean of frequency residuals. Variants surpassing the 
genome-wide significant threshold (P < 5E-8) were selected for replication analysis in the UK 
Biobank dataset and downstream analysis. 
 
The number of variants in all age bins was consistent across all autosomes (Supplementary 
Figure 9). 
 
Functional enrichment analysis 
 
To identify functionally relevant SNPs, we used FUMA75 to analyze the summary statistics from 
the sliding regression analysis. Variant coordinates in all analyses were defined according to the 
Hg19/GRCh37 assembly. We identified significant independent SNPs as variants surpassing the 
genome-wide significant threshold (P < 5E-08) and are independent of each other at r2 < 0.1. We 
defined LD blocks surrounding the lead SNP according to the whole-genome LD maps of the 
European population76 and included all known SNPs in the LD block (regardless of being 
included in the sliding regression) that are in LD with the lead SNP at r2 ≥ 0.5 for eQTL and 
chromatin interaction mapping. The defined risk loci, therefore, may contain SNPs that were not 
available in the summary statistic input from the sliding regression but are linked to the 
significant independent SNPs according to the 1000G reference panel. For each risk locus, we 
only retained SNPs with MAF ≥ 0.1 in the Ashkenazi Jewish population. Additionally, where the 
distance between two risk loci in neighboring LD blocks was less than 250 kb, the neighboring 
LD blocks were merged to a single larger risk locus. We mapped SNPs to the nearest gene within 
a 10 kb window for positional mapping. For eQTL and Chromatin interaction mapping, 
annotation was carried out over the entire risk region and genes within the risk locus, and those 
located outside that are linked to the SNPs in the genomic risk locus were prioritized. 
 
Phenome Wide Association analysis (PheWAS) 
 
We tested the association of the shortlisted variants with 1,504 well-powered traits and disease 
endpoints ascertained primarily from the UK Biobank. Each SNP was interrogated for 
association independently, and traits surpassing the Bonferroni corrected threshold for multiple 
testing were reported as significantly associated. To test whether the extent of observed 
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pleiotropy is higher than expected in specific trait domains, we defined the null distribution as an 
equal number of positive signals across all domains (under the null hypothesis of no differences 
in domain-specific pleiotropy). We used a one-sided Fisher’s exact test to compute odd ratios. 
 
Polygenic risk score (PRS) calculation 
 
We calculated the additive effect of common variants on the genetic liability of traits associated 
with candidate variants. We used the clumping and thresholding strategy implemented in PRSice 
software. We computed polygenic scores for each trait independently using the formula below: 

���� �   

	

�	 ! ";  " $ �0, 1, 2' , 
where �	  is the effect size (or log odds ratio (OR) for binary traits) of the allele j, � is the allele 
dosage for SNP j, and M is the total number of SNPs after pruning. 
 
We followed the best practice recommendation for PRS calculation78. Briefly, we calculated the 
chip heritability (h2

SNP) across each independent trait using the LD score regression79 and 
confirmed h2

SNP > 0.05. Designations of the effect allele across all summary statistics were 
harmonized to match those of the UK Biobank. We used PRSice-280 to calculate PRSs. We 
implemented the standard “clumping + thresholding” method to remove highly correlated SNPs 
(r2 > 0.1) and retain only the most significant associations. Since the optimal SNP association P-
value for inclusion in the PRS calculation is unknown a priori, we generated PRS across a range 
of p-value thresholds and selected the threshold providing the highest Nagelkerke R2. 
 
We calculated the PRS correlation (rPRS) as Pearson’s correlation of standardized PRS across the 
87 traits. As expected, PRS scores for traits within the same domain and related biomarkers 
showed a higher correlation. 
 
Derivation of Composite Polygenic Scores 
 
We modeled the age at death using the scaled PRS scores across the 87 traits (53 traits from 
PheWAS analysis and 34 blood and urine biomarker traits). All PRSs were standardized to the 
unit scale (i.e., zero mean and unit standard deviation) across the entire dataset. We split our 
cohort into derivation (n = 715) and validation set (n = 237). To increase the statistical power of 
the model for predicting longevity, the derivation set was enriched for samples with age at death 
over 95 years. 
 
We used a stacked model for predicting age at death based on trait PRSs. From the 87 distinct 
traits and endophenotypes, we first used an Elastic-net regression with five-fold cross-validation 
to remove non-informative PRSs. Next, the remaining PRSs were used in a polynomial 
regression to derive the informative interactions between the PRS scores, and finally, all 
interaction terms and individual PRS scores were plugged into the final elastic-net regression to 
remove the non-informative interaction terms. In all penalized regression steps, we tested a range 
of penalties to decide the optimum penalty threshold and selected the best performing model in 
terms of cross-validated AUC. We derived the iLGS from the formula below: 
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()*� �  �
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��	����� ! ���	� , 
 
where ��  is the coefficient of PRS for trait ( in the ultimate model, and ��	  is the non-zero 

coefficients for the interaction terms between PRSs ( and + drawn from ,�

�
-, in which n = 77 is 

the total number of PRSs with non-zero coefficient from the primary elastic-net regression.  
 
Derivation of iLGS SNP weights 
 
We used a subsample of 62,268 individuals with European ancestry from the GERA cohort to 
derive the SNP weights. We imputed genotypes across autosomes using the Michigan Imputation 
Server73 and 1000 Genomes phase 3 haplotypes as the reference panel. We excluded SNPs with 
IMPUTE2 info score < 0.5 and carried out standard QC on the remaining SNPs. To enhance the 
calibration of statistics derived from our generalized linear model, we removed loci with minor 
allele counts less than 20 in PLNIK (version 2.0). We calculated kinship coefficients (��) in 
KING (version 2.2.5)74 and removed related individuals up to the second degree, which is 
defined as �� . 0.088. Imputed and QC'ed genotypes from the remaining 59,534 individuals 
were used in a generalized linear regression formwork to derive iLGS SNP weights according to 
the formula below: 
 ()*� � *	�	 � ��0� � 1 � �0� � 2�3 � 4. 0 � �2�3 ! 4. 0���� �  5 

 
where ()*� is the vector of scores, *	  is the dosage matrix for variant j, ��0� � 1 � �0� �2�3 � 4. 0 � �2�3 !  4. 0�� is the fixed-covariate matrix correcting for the top 10 principal 
components, sex, birth cohort (B.C), and the interaction of sex with birth cohort and � is the 
residual error subject to least-square minimization. 
 
Survival regression analysis 
 
We evaluated the utility of iLGS in distinguishing differential longevity in the validation set. We 
used the Lifelines package81 (version 0.25.11) to fit a non-parametric Cox’s proportional hazard 
model according to the formula below: 
 6�3� �  6��7� �38�()*�. �� � 2�3. �� � �()*� ! 2�3�. ��   
 
where, 6��7� is the baseline hazard estimated using Breslow’s method. To increase the stability 
of estimates we included a penalizer term of 0.0005 and L1-ratio of 1.0 to shrink the magnitude 
of �9 �  according to: 
 0.0005 ! �1 � )� �;7(<2 =|�|=

�

� � )� �;7(<=|�|=
�
� . 

 
The significance of individual regression coefficients was investigated using the likelihood ratio 
test. The absence of deviation from proportional hazard assumptions was validated using the 
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global test for Schoenfeld residuals. We also calculated the cumulative risk of death (as a 
function of age) across the five quintiles of iLGS based on the equation below: 
 1 � ?���@ � 1 ��38 �38 A�6����

B · �38�()*��� · �� � 2�3 · ���D  , 
 
where ����

E  is the cumulative survival at the given time �7�, 6����
B is the estimated baseline hazard 

at time t and ()*���
 is the quintile of the iLGS score. 

 
Evaluation of the iLGS 
 
We estimated survival curves across different quintiles of iLGS using the Kaplan-Meier 
estimator: 
 

��7�E �  F
�: ��� �

G� � H�G�

 , 
 
where, ��  is the number of death events at a particular time 7� , and ��  is the fraction of the 
population at risk of death prior to time 7� . We investigated whether there is a significant 
difference in survival probability across quintiles of iLGS using the log-rank test. 
 
We tested the performance of iLGS for distinguishing the “age at diagnosis” of three late-life 
cardiovascular pathologies (i.e., angina, arrhythmia, and interventional cardiac procedures) and 
three types of cancers (i.e., breast, prostate, and skin cancer) across 390 Ashkenazi Jewish 
individuals with available clinical and genotypic data. Kaplan-Meier survival curves across the 
top and bottom quintile of iLGS was compared using the log-rank test. We calculated the 
survival time post-diagnosis for each trait as the difference between the “age at death” and the 
“age at diagnosis”. In addition, we investigated the association of dummy iLGS quintiles with 
post-diagnosis medical intervention survival time using an ordinary least square regression while 
controlling for the gender effect. 
 
Validating iLGS performance in additional cohorts 
 
We investigated the performance of iLGS for distinguishing survival in two additional cohorts. 
We used whole-genome sequences from 2,570 participants (male= 1,251; female= 1,319) of the 
Medical Genome Reference Bank (MGRB) cohort70. This cohort comprises healthy elderly 
individuals depleted for aging-related disorders and cancers. We derived the age of participants 
based on their respective dates of birth. At the time of analysis, the age of participants ranged 
from 75 to 102 years old (mean= 86; SD= 5.13). We corroborated participants' reported sexes 
with X-chromosome heterozygosity estimates. Prior to the PRS calculation, we removed variant 
calls with read-depth (DP) I 10 or FisherStrand bias (FS > 60). Furthermore, we excluded 
INDELs and multi-allelic variants and subjected the data to the standard QC procedure as 
explained above. This resulted in 8,496,911 autosomal SNPs to be used to compute iLGS. We 
also replicated the performance of iLGS across the 510 participants (194 males and 316 females) 
of the Wellderly cohort (Supplementary Table 10)45. Since these samples were sequenced using 
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the Complete Genomics platform (Complete Genomics), we initially converted the 
“transvariants” calls to the conventional VCF format. We subsequently removed indels, multi-
allelic SNPs, and variants with low read-depth DP I 10 or variants flagged as “VQLOW”. Upon 
standard QC, 3,383,869 autosomal SNPs were used for iLGS calculation. Since age at death in 
these two cohorts was undetermined, we first binned participants of each cohort into three age 
categories: < 90, [90, 94], and ≥ 95. Then, we applied a two-sided Fisher’s exact test to 
investigate the association of top (�����

� ) and bottom quintile iLGS (�����
� ) with age categories in 

each cohort independently. 
 
Proteomic analysis across quintiles 
 
The proteomic assessment was carried out using the SomaScan assay V.4.0. Details related to the 
experimental design and quantification of the protein levels were described earlier47. Briefly, the 
relative concentration of 5,209 human-specific SOMAscan aptamers and 75 non-human and 
control aptamers were measured among 1,027 participants of the Einstein LonGenity cohort. 
Normalized aptamer concentrations in the relative fluorescent unit (RFU) were used to remove 
proteins and individuals with significant variation across array runs, according to Candia et al.82. 
Upon QC and removal of aptamers targeting non-human specific proteins, a total of 4,265 
protein signals were obtained and used for proteomic analysis. 
 
We quantified the association between the protein levels and the iLGS using a robust regression 
with MM-estimator for each gender group separately (123 males and 115 females). For protein 
targets tagged by multiple aptamers, only the most significant association signals were analyzed. 
To enhance the reliability of the regression in the presence of anomalous protein-levels, we used 
Cook’s distance to remove outliers with a residual value > 4/n. We carried out a gender-stratified 
comparison between the �����

�  (top quintile iLGS) versus �����
�  (bottom quintile iLGS) across 

individuals in the ≥95 age bin, and applied the empirical Bayes moderated t-test using the Limma 
package83 to compare normalized RFU intensities. All P-values were corrected for multiple 
hypothesis testing using the Benjamini-Hochberg method (FDR < 0.05). Significant proteins 
were used to search for potential drug candidates for repurposing opportunities in the DrugBank 
database (version 5.1.8)55. We restricted our analysis to drugs with clinical phase assignment as 
“experimental”, “investigational”, or “approved” status, corresponding to clinical trial phase Ι, ΙΙ, 
and ΙΙΙ, respectively. 
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Figure 1: Heatmap plot showing the pattern of genetic correlation and the magnitude of narrow-
sense heritability across the 78 traits used for constructing the iLGS. 

 

Pairwise genetic correlation (��, n= 3,003) across the 78 traits used in constructing iLGS was 
calculated using bivariate LD score regression. Positive and negative genetic correlations are 
shown in green and red respectively. P-values for the significance of genetic correlations are 
FDR corrected using the Benjamini-Hochberg method. The magnitude of the �� significance is 
indicated by the asterisks. The bars at the bottom of the plot show the magnitude of narrow-sense 
heritability across the 78 traits. The colour of each bar corresponds to the respective domain of 
the trait; (ALB: Albumin, ALP: Alkaline phosphatase, ALT: Alanine aminotransferase, APOA: 
Apolipoprotein A, APOB: Apolipoprotein B, AST: Aspartate aminotransferase, BILD: Direct 
bilirubin, BUN: Urea, CA: Calcium, CHOL: Cholesterol, CRE: Creatinine (in serum), CYS: 
Cystatin C, GGT: Gamma glutamyltransferase, GLU: Glucose, HBA1C: Glycated haemoglobin, 
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HDL: HDL cholesterol, IGF1: Insulin growth factor-1, LDLD: LDL cholesterol, LPA: 
Lipoprotein A, PHOS: Phosphate, SHBG: Sex hormone binding globulin, TBIL: Total bilirubin, 
TES: Testosterone, TP: Total protein, TRIG: Triglycerides, UA: Urate, UCR: Creatinine in urine 
(enzymatic), URK: Potassium in urine, URMA: Microalbumin in urine, VITD: Vitamin D, FVC: 
Forced vital capacity, FEV1: Volume that has been exhaled at the end of the first second of 
forced expiration). 
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Figure 2: The association of iLGS with longevity and differential survival across the quintiles of 
iLGS. 
 

 
a. Cox regression hazard ratios (HR) for the association of gender, APOE haplotypes and 

iLGS with age at death. An HR greater than 1 suggests an increased risk of death, and an 
HR below 1 indicates a smaller risk. Expectedly, the risk of earlier death is increased 
among males. Neither of the APOE haplotypes was revealed to be significantly 
associated with age at death in the study population. However, the direction of HRs was 
consistent with the unfavourable effect of APOE �4 haplotypes on longevity. We also 
modelled the interaction of iLGS with APOE �4 haplotype and gender to confirm that the 
association is independent of the gender effect of APOE haplotype status. 
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b. Stratified Kaplan-Meier curves showing differential survival across the top  ������

� � and 
bottom quintile of iLGS  ������

� � in comparison to the survival of individuals with iLGS 
in the interquintile range (log-rank test between the top quintile ������

� � and IQR: 
p=2.47e-5, log-rank test between the bottom quintile ������

� �  and IQR: p= 2.75e-27) 
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c. Plot depicting the Cox regression HRs for the association of iLGS quintile with age at 
death. Given that our inhouse cohort is primarily ascertained to include centenarians, we 
adopted the �����

�  as the baseline hazard and calculated the HRs for the remaining 
quintile against the hazards of �����

� . We also included gender as a covariate to adjust for 
the sex effect.
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Figure 3: Replication of iLGS association with age at last contact in the Wellderly and MRGB 
cohort. 
 

 
a. Plot illustrating enrichment of top and bottom quintile iLGS scores (�����

�  & �����
� ) 

across three age bins (age at last contact: ≥ 95, [90- 94] and <90) of the Wellderly cohort. 
(asterisks identify significant associations). 
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b. Enrichment of top and bottom quintile iLGS scores (�����

�  & �����
� ) across three age bins 

(age at last contact: ≥ 95, [90- 94] and <90)) of the MRGB cohort. (asterisks identify 
significant associations).
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Figure 4: Proteomic correlates of iLGS. 
 

 
 
 

Volcano plot showing the association of serum proteins with iLGS among female (a) and male (b) subsets of the validation set (n= 
115 and 123 respectively). The x-axis denotes the “effect size”, and the y-axis shows -log10 Benjamini–Hochberg corrected p-
value of association. Proteins clustered to the right are positively correlated with iLGS and proteins clustered to the left are 
negatively associated with iLGS. Proteins surpassing the significance threshold at BH< 0.05 are identified by red asterisks. 
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