Reperfusion strategies in patients with ST-segment elevation myocardial infarction during hospitalization in China: Findings from the Improving Care for Cardiovascular disease in China (CCC)-Acute Cronary Synrome project

Jun Wang^{a, b}, Zhiqiang Zhang^a, Jing Li^a, Xiaoxiang Tian^a, Xiaozeng Wang^{a*}, Yaling Han^{a*}, On behalf of CCC investigators

^aDepartment of Cardiology, The General Hospital of Northern Theater Command, Shenyang, Liaoning, China

^bThe Fifth People's Hospital of DALIAN, Dalian, Liaoning, China

* Correspondence to:

Xiaozeng Wang, MD, PHD

E-mail: wxiaozeng@163.com

Yaling Han, MD, PHD, FACC

Email: hanyaling@163.net

Department of Cardiology, General Hospital of Northern Theater Command, 83th Wenhua Road,

Shenhe District, Shenyang, Liaoning 110016, China

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

Abstract

Objective To analyze the current situation of reperfusion strategies of ST-segment elevation myocardial infarction (STEMI) in China and evaluate the efficacy and safety of different reperfusion strategies, especially pharmaco-invasive percutaneous coronary intervention (PI-PCI). **Methods** The CCC-ACS (Improving Care for Cardiovascular Disease in China-Acute Coronary Syndrome) project is a joint study between the American Heart Association and Chinese Society of Cardiology (CSC). STEMI patients who were recruited to the CCC-ACS project between November 2014 and December 2019 and admitted within 48 hours after symptom onset and treated by thrombolysis or percutaneous coronary intervention (PCI) were included in this cohort study. The primary efficacy outcomes were major adverse cardiac cerebrovascular events (MACCEs) that occurred during hospitalization. The primary safety outcomes were Thrombolysis in Myocardial Infarction (TIMI) major or minor bleedings criteria during hospitalization. Univariate regression logistic analysis, multivariable logistic regression analysis, propensity score-matched analysis, and inverse probability of treatment weighting analysis were performed to evaluate the efficacy and safety of different reperfusion strategies.

Results Of 37733 STEMI patients, 35019 patients received primary percutaneous coronary intervention (PPCI), 999 patients received thrombolysis and 1715 patients received PI-PCI. Compared with PPCI, the thrombolysis group had higher incidence of all cause death (1.6% vs 2.8%, P =0.003), MACCEs (2.0% vs 3.6%, P <0.001), and TIMI major bleedings (1.2% vs 2.2%, P=0.007). In the PI-PCI group, the incidence of MACCEs (2.0% vs 0.8%, P =0.001), all cause death (1.6% vs 0.4%, P =0.001), and cardiac death (1.5% vs 0.4%, P =0.001) were significantly lower than PPCI group; and the same conclusion was found in the subgroup of in time from first medical contact(FMC) to reperfusion \geq 3h. However, the risk of TIMI minor bleedings (5.1% vs 6.7%, P=0.008) was higher in the PI-PCI group in the subgroup of in time from FMC to reperfusion \geq 3h. Compared with timely PPCI group, the incidence of all cause death was significantly lower and the incidence of heart failure was higher in the scheduled PCI group. Compared with timely PPCI, the ratio of heart failure was statistically significant higher in the rescue PCI group. There was no significant difference in all outcomes in all models between rescue PCI group and late PPCI group. Moreover, compared with

scheduled PCI \leq 24h group, the scheduled PCI during 24h to 7d group had lower risk of TIMI major or minor bleedings and the scheduled PCI >7d group had the similar risk of bleedings; the scheduled PCI >7d group had lower risk of heart failure.

Conclusions This study demonstrates that in STEMI patients who could not perform timely PPCI, PI-PCI is feasible, including rescue PCI, which can reduce the rate of MACCEs and mortality during hospitalization. But the increased risk of bleedings also should be noted. In scheduled PCI after successful thrombolysis, appropriate extension the time window of scheduled PCI can be considered under stable clinical conditions.

Key words: ST-segment elevation myocardial infarction, primary percutaneous coronary intervention, pharmaco-invasive percutaneous coronary intervention, thrombolysis

1.Introduction

ST-segment elevation myocardial infarction (STEMI) is a clinical syndrome defined by the presence of myocardial ischemic symptoms, electrocardiographic (ECG) findings of new ST-segment elevations in two continuous leads or new left bundle branch block, and subsequent detection of biomarkers indicative of myocardial injury.¹

China is facing the dual pressure of aging population and continuous prevalence of metabolic risk factors, and the burden of cardiovascular diseases and the mortality of acute myocardial infarction is increasing.² Primary percutaneous coronary intervention (PPCI) has been the preferred reperfusion strategy for patients with STEMI. However, PPCI is not universally available, and delays in performing PPCI are common in real-world practice.³ Even in some large cities, patients have a high chance of presenting to hospitals not providing around-the-clock PPCI service. The outcome of STEMI is varied significantly in different hospitals. As the efficacy of PPCI is time-dependent, the no-reflow phenomenon in PPCI may lead to failure of myocardial reperfusion. Therefore, intravenous thrombolysis still remains a viable option for reperfusion, and plays an important role in modern STEMI management. However, the reoccurrence of myocardial ischemia after thrombolytic therapy is common. Pharmaco-invasive percutaneous coronary intervention (PI-PCI) strategy, an early reperfusion strategy encompassing initial prompt fibrinolysis with subsequent early catheterization, has been proposed as a therapeutic option for STEMI patients when timely PPCI is not available.^{4,5}

Current evidence on the efficacy and safety of the therapeutic strategies for PI-PCI in patients with STEMI remains limited. We aim to analyze the current situation of reperfusion strategies of STEMI in China and compare the efficacy and safety of different reperfusion strategies during hospitalization, especially PI-PCI.

2. Methods

2.1 Study design and patient selection

The CCC-ACS (Improving Care for Cardiovascular Disease in China-Acute Coronary Syndrome) project, a nationwide registry and quality improvement study focusing on quality of acute coronary syndrome (ACS) care, was launched in 2014 as a collaborative initiative of the American Heart Association and the Chinese Society of Cardiology across China. This study is registered at ClinicalTrials.gov (unique identifier: NCT02306616) and complies with the Declaration of

Helsinki. Detailed information on the design and methodology of the CCC-ACS project has been published previously.⁶ STEMI was defined in accordance with the Chinese Society of Cardiology guidelines for the diagnosis and management of patients with non-ST-segment elevation ACS and STEMI.^{7,8} From November 1, 2014 to December 30, 2019, a total of 113,651 patients with ACS were enrolled in the CCC-ACS project. Among them, 37733 inpatients with STEMI admitted within 48 hours after symptom onset and treated by thrombolysis or PCI were selected for analysis. The inclusion and exclusion criteria are shown in Figure 1.

Figure 1. Study flowchart

PCI=percutaneous coronary intervention; PPCI=Primary percutaneous coronary intervention; PI-PCI=Pharmaco-invasive percutaneous coronary intervention; STEMI=ST-segment elevation myocardial infarction; NSTEACS=non-ST-segment elevation acute coronary syndrome; CABG=coronary artery bypass graft; FMC=first medical contact

2.2 Definition of in-hospital outcomes

The primary efficacy outcomes were major adverse cardiac cerebrovascular events (MACCEs) that occurred during hospitalization. MACCEs were defined as cardiac death, non-fatal myocardial infarction, and acute stent thrombosis or ischemic stroke. The primary safety outcomes were defined as Thrombolysis in Myocardial Infarction (TIMI) major or minor bleeding during

hospitalization.⁹ The net clinical outcomes (NET) were defined as a composite of the primary efficacy outcomes and the primary safety outcomes. The cardiac net clinical outcomes (cNET) were defined as MACCEs, new onset heart failure or new onset heart shock during hospitalization.

2.3 Statistical analysis

Continuous variables were shown as mean \pm SD or median (interquartile range) according to different distributions and were compared using Student's t-tests or Mann-Whitney U test. Categorical variables were presented as the number (percentage) and compared using chi-square test or Fisher exact tests. A linear-by-linear association trend test (Mantel-Haenszel test for trend) was used to assess trends of the ratios of different reperfusion therapy strategies. In-hospital clinical events were evaluated using multivariable logistic regression and adjusted for confounding factors that have been reported more than once as having an effect on outcomes. Candidate adjustment variables included age, female, previous myocardial infarction (MI), hypertension history, diabetes mellitus (DM) history, renal failure history, heart failure (HF) history, stroke history, atrial fibrillation (AF) history, dyslipidemia history, peripheral artery disease (PVD) history, previous PCI, previous coronary artery bypass grafting (CABG), anemia at admission, heart rate, systolic blood pressure (SBP), diastolic blood pressure (DBP), Killip class, hospital grade, length of hospital stay, low-density lipoprotein cholesterol (LDL-C), estimated glomerular filtration rate (eGFR). To consolidate the findings, we also carried out propensity score (PS) method in the study A logistic regression was performed to estimate PS, adjusting for the variables consistent with the multivariate analysis. We established PS-matched and inverse probability of treatment weighting (IPTW) cohort based on the PS score and evaluated the impact of different reperfusion strategies in STEMI. By this means we obtained a stabilized weight for each case of the study cohort, avoiding any extreme values that may result in unreliable outcomes.

All tests were 2-sided, and a value of P < 0.05 was considered statistically significant. All statistical analyses were performed using Statistical Package for the Social Science (SPSS) 26.0 and R version 4.2.2.

3.Results

3.1 Situation of treatment strategies and clinical characteristics in STEMI

From November 2014 to December 2019, a total of 37733 patients were enrolled with a diagnosis of STEMI admitted within 48 hours after symptom onset and treated by thrombolysis or PCI.

Among them, 35019 patients received PPCI, 999 patients received thrombolysis and 1715 patients received PI-PCI. The ratios of different treatment strategies over the 5-year study period were shown in Figure 2. Between 2014 and 2019, The ratio of patients with STEMI received thrombolysis and PI-PCI increased over time while PPCI decreased.

Compared with the PPCI group, the thrombolysis group had a higher proportion of previous MI, previous CABG, previous ischemic stroke history, Killip class I, statins at admission, anti-coagulation therapy, higher levels of blood pressure, LVEF and hemoglobin, and longer length of hospital stay. In contrast, the thrombolysis group had a lower proportion of previous PCI, DM, dyslipidemia, family history of coronary heart disease, tertiary hospital, β -blockers, warfarin, heart rate, the implantation of mechanical assist devices and temporary cardiac pacemaker during hospitalization, and lower levels of CK-MB, troponin I, troponin T, BNP and glucose (Table 1). Compared with the PPCI group, the PI-PCI group was younger, had a higher proportion of statins, higher levels of CK-MB, Troponin T and BNP, and longer length of hospital stay, lower levels of SBP and glucose, a lower proportion of female, tertiary hospital, previous PCI, hypertension, DM, stroke history, β -blockers, and the implantation of temporary cardiac pacemaker (Table 1).

Figure 2. The ratios of PPCI, thrombolysis and PI-PCI from 2014 to 201

Τa	able	1.	Baseline	c	harac	teri	isti	cs
----	------	----	----------	---	-------	------	------	----

		Thrombolysis		
Characteristics	PPCI (n=35019)		PI-PCI (n=1715)	P value
		(n=999)		

Age, y	61.1±12.5	60.5±12.1	58.6±11.2 ^b	<0.001
Female, n (%)	7047(20.1)	196(19.6)	299(17.4) ^b	0.024
Body mass index, kg/m ²	24.5±3.2	24.1±3.4	24.3±3.0 ^b	0.008
Hospital grade, n (%)				< 0.001
Secondary hospital	2471(7.1)	313(31.3) ^a	188(11.0) ^b	
Tertiary hospital	32548(92.9)	686(68.7) ^a	1527(89.0) ^b	
Previous history, n (%)				
Previous myocardial infarction	1623(4.6)	72(7.2) ^a	75(4.4)	0.001
Previous PCI	1715(4.9)	30(3.0) ^a	63(3.7) ^b	0.002
Previous CABG	53(0.2)	$6(0.6)^{a}$	3(0.2)	0.003
Hypertension	16914(48.3)	454(45.4)	722(42.1) ^b	< 0.001
Dyslipidemia	2062(5.9)	37(3.7) ^a	95(5.5)	0.013
Diabetes mellitus	6677(19.1)	163(16.3) ^a	275(16.0) ^b	0.001
Chronic kidney disease	271(0.8)	13(1.3)	8(0.5)	0.057
Atrial fibrillation	440(1.3)	15(1.5)	13(0.8)	0.143
Heart failure	153(0.4)	9(0.9)	10(0.6)	0.072
Cerebrovascular disease				
Hemorrhagic stroke history	241(0.7)	3(0.3)	2(0.1) ^b	0.006
Ischemic stroke history	2163(6.2)	85(8.5) ^a	80(4.7) ^b	< 0.001
Peripheral arterial disease	196(0.6)	1(0.1)	8(0.5)	0.136
COPD	320(0.9)	11(1.1)	19(1.1)	0.605
Coronary heart disease family history	1025(2.9)	15(1.5) ^a	42(2.4)	0.016
LVEF, %	54.5±9.4	55.3±10.1ª	54.4±9.5	0.006
Heart rate, beats/min	78.1±15.1	75.6±17.4 ^a	76.3±15.6	0.008
Systolic blood pressure, mmHg	127.3±23.7	129.4±25.6 ^a	126.1±22.6 ^b	< 0.001
Diastolic blood pressure, mmHg	78.1±15.1	80.6±16.3ª	78.5±15.1	0.004
Killip class, n (%)				0.067
Ι	26456(75.5)	780(78.1) ^a	1280(74.6)	
II or III	7074(20.2)	169(16.9)	365(21.3)	

IV	1489(4.3)	50(5.0)	70(4.1)	
Location of STEMI, n (%)				
Anterior	11998(34.3)	321(32.1)	603(35.2)	0.269
Inferior	12387(35.4)	367(36.7)	547(31.9) ^b	0.008
Posterolateral	987(2.8)	26(2.6)	35(2.0)	0.151
Others	10726(30.6)	325(28.4)	580(33.8) ^b	0.011
Length of hospital stay, d	9(7, 12)	11(8, 14) ^a	10(8, 14) ^b	< 0.001
Medications within 24 h, n (%)				
Aspirin	34214(97.7)	980(98.1)	1683(98.1)	0.706
P2Y12 inhibitors	34284(97.9)	975(97.6)	1676(97.7)	0.726
ACEI/ARB	15854(45.3)	429(42.9)	800(46.6)	0.174
β-blockers	18512(52.9)	489(48.9) ^a	950(55.4) ^b	0.005
Statins	33185(94.8)	965(96.6) ^a	1655(96.5) ^b	< 0.001
Warfarin	186(0.5)	1(0.1)	6(0.3)	0.107
Clinical Laboratory				
CK-MB, U/L	49.3(15.8, 148.0)	21.9(12.0, 62.1) ^a	52.7(16.0, 187.7) ^b	< 0.001
Troponin T, ng/mL	1.24(0.12, 6.36)	0.37(0.05, 4.49) ^a	2.20(0.35, 9.67) ^b	< 0.001
Troponin I, ng/mL	2.60(0.17, 23.07)	0.30(0.05, 2.70) ^a	1.92(0.16, 26.30)	< 0.001
eGFR, ml/(min*1.73m ²)	91.2(74.0, 102.4)	92.2(76.5, 102.8)	93.6(77.6, 104.4) ^b	< 0.001
NT-proBNP, pg/ml	402.0(110.0, 1313.0)	419.7(100.0, 1239.3)	473.4(128.9, 1266.0)	0.339
BNP, pg/ml	105.1(33.0, 332.0)	79.3(29.0, 236.0) ^a	99.7(30.4, 309.1)	0.025
LDL-C, mmol/L	2.82(2.23, 4.33)	2.76(2.24, 3.39)	2.71(2.14, 3.36)	< 0.001
Glucose, mmol/L	6.27(5.23, 8.14)	6.09(5.06, 7.90) ^a	6.15(5.08, 7.83) ^b	< 0.001
Hemoglobin, g/L	142.0(129.0, 153.2)	143.0(132.0, 155.0) ^a	142.0(130.0, 153.0)	0.005
HbA1C, %	6.0(5.6, 7.1)	5.9(5.5, 7.1)	6.0(5.5, 7.0)	0.078
Anti-coagulation therapy, n (%)	26591(75.9)	920(92.1) ^a	1304(76.0)	< 0.001
Mechanical circulatory assist device, n (%)	397(1.1)	$0(0.0)^{a}$	17(1.0)	< 0.001
Temporary cardiac pacemaker, n (%)	369(1.1)	2(0.2) ^a	8(0.5) ^b	0.002

Values are mean \pm SD, n (%), or median (IQR). a, compared thrombolysis with PPCI, P< 0.05; b, compared PI-PCI with PPCI, P< 0.05. PCI=percutaneous coronary intervention; CABG=coronary artery bypass graft; COPD, chronic obstructive pulmonary disease; LVEF=left ventricular ejection fraction; STEMI=ST-segment elevation myocardial infarction; ACEI=angiotensin-converting enzyme inhibitor; ARB=angiotensin receptor blockers; CK-MB=creatine kinase MB isoform; BNP,=B type natriuretic peptide; NT-proBNP=N-terminal pro-B type natriuretic peptide; eGFR=estimated glomerular filtration rate; LDL-C=low-density lipoprotein cholesterol; HbA1C=hemoglobin A1C; LMWH=low molecular weight heparin; PPCI=primary percutaneous coronary intervention; PI-PCI=pharmaco-invasive percutaneous coronary intervention

3.2 In-hospital outcomes between PPCI group and thrombolysis group

After adjustment using the PS-matching method, baseline characteristics were well balanced (Supplemental Table 1). The incidence of all cause death (1.6% vs 2.8%, P=0.003), MACCEs (2.0% vs 3.6%, P<0.001), cardiac death, non-fatal MI, stroke, TIMI major bleedings (1.2% vs 2.2%, P=0.007), the net clinical outcomes, the cardiac net clinical outcomes, cardiac shock, cardiac arrest and new onset heart failure were significantly higher in the thrombolysis group than in the PPCI group, similar results were found after adjustment using the multivariate logistic analyses and PS-matching methods (Table 2). There was no significant difference in the incidence of TIMI minor bleedings between two groups (Table 2).

Supplemental Table 1. Comparison of baseline characteristics between PPCI and Thrombolysis groups in the whole, PS-matched and IPTW cohorts

	Unmatched Matched			Matched			
Characteristics	PPCI	Thrombolysis	D	PPCI	Thrombolysis	D	
	(n=35019)	(n=999)	I	(n=3815)	(n=975)	I	
Age, y	61.08±12.49	60.51±12.12	0.156	60.21±12.49	60.4±12.08	0.629	
Female, n (%)	7047(20.1)	196(19.6)	0.725	715(18.7)	188(19.3)	0.453	
Previous history, n (%)							
Previous myocardial	1623(4.6)	72(7.2)	<0.001	207(5.4)	52(5.3)	0.972	
infarction	1023(4.0)	12(1.2)	<0.001 207(3.4)		52(3.3)	5.972	

Previous PCI	1715(4.9)	30(3.0)	0.007	116 (3.0)	30 (3.1)	1.000
Previous CABG	53(0.2)	6(0.6)	0.002	9(0.2)	2(0.2)	1.000
Atrial fibrillation	440(1.3)	15(1.5)	0.589	61(1.6)	15(1.5)	1.000
Heart failure	153(0.4)	9(0.9)	0.055	23(0.6)	6(0.6)	1.000
Hypertension	16914(48.3)	454(45.4)	0.080	1689(44.3)	440(45.1)	0.657
Diabetes mellitus	6677(19.1)	163(16.3)	0.032	618(16.2)	157(16.1)	0.981
Dyslipidemia	2062(5.9)	37(3.7)	0.005	140(3.7)	35(3.6)	0.982
Cerebrovascular disease	2425(6.9)	93(9.3)	0.004	348(9.1)	88(9.0)	0.975
Peripheral arterial disease	196(0.6)	1(0.1)	0.085	6(0.2)	1(0.1)	1.000
COPD	320(0.9)	11(1.1)	0.657	32(0.8)	11(1.1)	0.506
Chronic kidney disease	271(0.8)	13(1.3)	0.094	49(1.3)	11(1.1)	0.818
Coronary heart disease family history	1025(2.9)	15(1.5)	0.011	45(1.2)	15(1.5)	0.461
Killip class, n (%)			0.026			0.491
Ι	26456(75.5)	780(78.1)		3020(79.2)	764(78.4)	
II or III	7074 (20.2)	169(16.9)		604(15.8)	165(16.9)	
IV	1489(4.3)	50(5.0)		191(5.0)	46(4.7)	
Systolic blood pressure, mmHg	127.3±23.67	129.3±25.65	0.007	129.3±24.14	129.38±25.56	0.958
Diastolic blood pressure, mmHg	78.14±15.14	80.59±16.31	<0.001	80.68±15.71	80.70±16.27	0.971
Heart rate, beats/min	78.01±16.16	75.60±17.44	< 0.001	75.88±15.60	75.76±17.44	0.830
LVEF, %	54.53±9.37	55.26±10.15	0.035	55.20±9.28	55.17±10.08	0.937
Hospital grade, n (%)						
Secondary hospital	2471(7.1)	313(31.3)	< 0.001	1038(27.2)	290(29.7)	0.124
Tertiary hospital	32548(92.9)	686(68.7)	< 0.001	2777(72.8)	685(70.3)	0.124

Medications in the first 24

h of medical contact, n

(%)

Aspirin	34217(97.7)	980(98.1)	0.482	3733(97.9)	956(98.1)	0.791
P2Y12 inhibitors	34284(97.9)	975(97.6)	0.584	3747(98.2)	952(97.6)	0.296
Statins	33185(94.8)	965(96.6)	0.012	3634(95.3)	942(96.6)	0.081
β-blockers	18516(52.9)	489(48.9)	0.016	1988(52.1)	477(48.9)	0.082
ACEI/ARB	15854(45.3)	429(42.9)	0.154	1665(43.6)	415(42.6)	0.568
Warfarin	186(0.5)	1(0.1)	0.100	25(0.7)	1(0.1)	0.064
Anti-coagulation therapy,	26591(75.9)	920(92.1)	<0.001	2982(78.2)	897(92.0)	<0.001
Mechanical circulatory assist device, n (%)	396(1.1)	0(0.0)	0.001	40(1.0)	0(0.0)	0.003
Location of STEMI, n (%)						
Anterior	11998 (34.3)	321 (32.1)	0.172	1254 (32.9)	312 (32.0)	0.632
Inferior	12387 (35.4)	367 (36.7)	0.392	1363 (35.7)	354 (36.3)	0.764
Posterolateral	987 (2.8)	26 (2.6)	0.757	88 (2.3)	25 (2.6)	0.723
Others	10726 (30.6)	325 (32.5)	0.211	1220 (32.0)	322 (33.0)	0.558
LDL-C ≤1.8mmol/L	3879 (11.1)	107 (10.7)	0.755	425 (11.1)	103 (10.6)	0.649
eGFR \leq 90ml/(min*1.73m ²)	16641 (47.5)	453 (45.3)	0.185	1724 (45.2)	442 (45.3)	0.965

Values are mean ± SD, n (%), or median (IQR). PCI=percutaneous coronary intervention; CABG=coronary artery bypass graft; COPD=chronic obstructive pulmonary disease; LVEF=left ventricular ejection fraction; ACEI=angiotensin-converting enzyme inhibitor; ARB=angiotensin receptor blockers; eGFR=estimated glomerular

filtration rate; LDL-C=low-density lipoprotein cholesterol; PS=propensity score; PPCI=primary percutaneous

coronary intervention

Voriables	DDCI	Thrombolysia	Unadjusted		Adjusted		PS-matched	
variables	PPCI	Thrombolysis –	OR (95%CI)	Р	OR (95% CI)	Р	OR (95% CI)	Р
All cause death, n (%)	553(1.6)	28(2.8)	1.797(1.223-2.641)	0.003	2.026(1.326-3.094)	0.001	2.901(1.758-4.789)	< 0.001
Cardiac death, n (%)	511(1.5)	26(2.6)	1.805(1.211-2.690)	0.004	2.111(1.361-3.276)	0.001	2.919(1.734-4.917)	< 0.001
MACCEs, n (%)	694(2.0)	36(3.6)	1.849(1.315-2.601)	< 0.001	1.939(1.341-2.804)	0.001	2.539(1.652-3.903)	< 0.001
Non-fatal MI, n (%)	108(0.3)	11(1.1)	3.599(1.929-6.714)	< 0.001	3.368(1.739-6.523)	0.001	3.329(1.487-7.454)	0.003
Stroke, n (%)	145(0.4)	14(1.4)	3.418(1.968-5.938)	< 0.001	3.810(2.112-6.874)	< 0.001	3.682(1.771-7.654)	< 0.001
Cardiac shock, n (%)	1090(3.1)	70(7.0)	2.345(1.826-3.013)	< 0.001	2.800(2.072-3.785)	< 0.001	2.473(1.814-3.371)	< 0.001
Cardiac arrest, n (%)	607(1.7)	30(3.0)	1.755(1.210-2.546)	0.003	1.562(1.045-2.336)	0.030	2.165(1.380-3.397)	0.001
Heart failure, n (%)	4308(12.3)	167(16.7)	1.431(1.208-1.695)	< 0.001	1.786(1.437-2.219)	< 0.001	1.418(1.168-1.721)	< 0.001
TIMI major and minor bleedings, n (%)	2177(6.2)	66(6.6)	1.067(0.828-1.375)	0.615	0.996(0.767-1.293)	0.975	1.055(0.796-1.398)	0.708
TIMI major bleedings, n (%)	431(1.2)	22(2.2)	1.807(1.172-2.787)	0.007	1.993(1.275-3.116)	0.002	1.807(1.086-3.009)	0.023
TIMI minor bleedings, n (%)	1746(5.0)	44(4.4)	0.878(0.647-1.192)	0.405	0.884(0.647-1.208)	0.222	0.866(0.620-1.210)	0.439
NET, n (%)	2766(7.9)	99(9.9)	1.283(1.039-1.584)	0.021	1.325(1.064-1.651)	0.012	1.330(1.046-1.691)	0.020
cNET, n (%)	4958(14.2)	216(21.6)	1.673(1.434-1.950)	< 0.001	2.028(1.727-2.511)	< 0.001	1.660(1.390-1.982)	< 0.001

Table 2. In-hospital outcomes between PPCI group and thrombolysis group

OR=odds ratio; CI=confidence interval; MACCEs=major adverse cardiac cerebrovascular events; TIMI=Thrombolysis in Myocardial Infarction; MI=myocardial infarction; PPCI=primary percutaneous coronary intervention; NET=net clinical outcomes; cNET=cardiac net clinical outcomes; PS=propensity score

3.3 In-hospital outcomes between PPCI group and PI-PCI group

After adjustment using the PS-matched method, baseline characteristics were well balanced (Supplemental Table 2). The incidence of MACCEs (2.0% vs 0.8%, P=0.001), all cause death and cardiac death were significantly lower in the PI-PCI group and similar results were found after adjustment using the multivariate logistic analyses and the PS-matching methods. The risk of new onset heart failure and the cardiac net clinical outcomes were higher in PI-PCI group and the difference were statistically significant after adjustment using the multivariate logistic analyses. There was no significant difference in the incidence of outcomes including stroke, cardiac arrest, cardiac shock, TIMI major or TIMI major bleedings and the net clinical outcomes between two groups. (Table 3).

	Unmatched			Matched			
Characteristics	PPCI	PI-PCI	D	PPCI	PI-PCI	D	
	(n=35019)	P (n=1715)		(n=6744)	(n=1707)	1	
Age, y	61.08 ± 12.49	58.61±11.23	< 0.001	58.32 ±12.46)	58.66 ±11.22	0.310	
Female, n (%)	7047(20.1)	299(17.4)	0.007	1152(17.1)	298(17.5)	0.740	
Previous history, n (%)							
Previous myocardial infarction	1623(4.6)	75(4.4)	0.657	272(4.0)	75(4.4)	0.547	
Previous PCI	1715(4.9)	63(3.7)	0.025	230(3.4)	63(3.7)	0.623	

Supplemental Table 2. Comparison of baseline characteristics between PPCI and PI-PCI groups in the whole, PS-matched and IPTW cohorts

Previous CABG	53 (0.2)	3(0.2)	1.000	11(0.2)	3(0.2)	1.000
Atrial fibrillation	440(1.3)	13(0.8)	0.087	42(0.6)	13(0.8)	0.639
Heart failure	153(0.4)	10(0.6)	0.482	38(0.6)	9(0.5)	1.000
Hypertension	16914(48.3)	722(42.1)	< 0.001	2877(42.7)	722(42.3)	0.807
Diabetes mellitus	6677(19.1)	275(16.0)	0.002	1041(15.4)	274(16.1)	0.556
Dyslipidemia	2062(5.9)	95(5.5)	0.584	351(5.2)	95(5.6)	0.593
Cerebrovascular disease	2425(6.9)	83(4.8)	0.001	280(4.2)	83(4.9)	0.220
Peripheral arterial disease	196(0.6)	8(0.5)	0.733	27(0.4)	8(0.5)	0.856
COPD	320(0.9)	19(1.1)	0.489	79(1.2)	19(1.1)	0.941
Chronic kidney disease	271(0.8)	8(0.5)	0.197	25(0.4)	8(0.5)	0.717
Coronary heart disease family history	1025(2.9)	42(2.4)	0.281	154(2.3)	42(2.5)	0.731
Killip class, n (%)			0.539			0.685
Ι	26456(75.5)	1280(74.6)		5052(74.9)	1274(74.6)	
II or III	7074 (20.2)	365 (21.3)		1453 (21.5)	365 (21.4)	
IV	1489 (4.3)	70 (4.1)		239 (3.5)	68 (4.0)	
Systolic blood pressure, mmHg	127.32±23.67	126.14±22.59	0.043	126.46±22.96	126.12±22.55	0.593
Diastolic blood pressure, mmHg	78.14±15.14	78.47±15.15	0.376	78.91±15.25	78.46±15.12	0.283

Heart rate, beats/min	78.01±16.16	76.29±15.57	< 0.001	76.54±15.71	76.30±15.53	0.570
LVEF, %	54.53 ±9.37	54.37 ±9.50	0.534	54.67 ±9.25	54.33 ±9.50	0.231
Hospital grade, n (%)			< 0.001			0.837
Secondary hospital	2471 (7.1)	188 (11.0)		709 (10.5)	183 (10.7)	
Tertiary hospital	32548 (92.9)	1527 (89.0)		6035 (89.5)	1524 (89.3)	
Medications in the first 24 h of medical contact, n (%)						
Aspirin	34214 (97.7)	1683 (98.1)	0.285	6601 (97.9)	1675 (98.1)	0.588
P2Y12 inhibitors	34284 (97.9)	1676 (97.7)	0.684	6600 (97.9)	1668 (97.7)	0.775
Statins	33185 (94.8)	1655 (96.5)	0.002	6408 (95.0)	1647 (96.5)	0.012
β-blockers	18512 (52.9)	950 (55.4)	0.044	3567 (52.9)	947 (55.5)	0.060
ACEI/ARB	15854 (45.3)	800 (46.6)	0.275	2999 (44.5)	796 (46.6)	0.115
Warfarin	186 (0.5)	6 (0.3)	0.398	33 (0.5)	6 (0.4)	0.582
Anti-coagulation therapy, n (%)	26591 (75.9)	1304 (76.0)	0.948	5206 (77.2)	1296 (75.9)	0.279
Mechanical circulatory assist device, n (%)	396 (1.1)	17 (1.0)	0.676	54 (0.8)	17 (1.0)	0.522
Temporary cardiac pacemaker, n (%)	369 (1.1)	8 (0.5)	0.026	63 (0.9)	(0.4)	0.047
Percutaneous aspiration thrombectomy, n (%)	8395 (24.9)	215 (12.7)	< 0.001	1635 (25.3)	215 (12.8)	< 0.001
Stent implantation, n (%)	31394 (89.6)	1496 (87.2)	0.002	698 (10.3)	219 (12.8)	0.004

Location of STEMI, n (%)						
Anterior	11998 (34.3)	603 (35.2)	0.460	2356 (34.9)	600 (35.1)	0.890
Inferior	12387 (35.4)	547 (31.9)	0.004	2295 (34.0)	543 (31.8)	0.088
Posterolateral	987 (2.8)	35 (2.0)	0.066	186 (2.8)	35 (2.1)	0.121
Others	10726 (30.6)	580 (33.8)	0.006	2113 (31.3)	578 (33.9)	0.048
LDL-C≤1.8mmol/L	3879 (11.1)	231 (13.5)	0.002	873 (12.9)	227 (13.3)	0.728
eGFR≤90ml/(min*1.73m2)	16641 (47.5)	726 (42.3)	< 0.001	2774 (41.1)	725 (42.5)	0.329

Values are mean ± SD, n (%), or median (IQR). PCI=percutaneous coronary intervention; CABG=coronary artery bypass graft; COPD=chronic obstructive pulmonary disease; LVEF=left ventricular ejection fraction; ACEI=angiotensin-converting enzyme inhibitor; ARB =angiotensin receptor blockers; eGFR=estimated glomerular filtration rate; LDL-C=low-density lipoprotein cholesterol; PS=propensity score; IPTW=inverse probability of treatment weighting; PPCI=primary percutaneous coronary intervention; PI-PCI=Pharmaco-invasive percutaneous coronary intervention

Verichler	DDCI		Unadjusted		Adjusted		PS-matched	
variables	PPCI	PI-PCI	OR 95% CI	Р	OR 95% CI	Р	OR 95% CI	Р
All cause death, n (%)	553(1.6)	8(0.4)	0.292(0.145-0.588)	0.001	0.354(0.174-0.722)	0.004	0.408(0.196-0.846)	0.016
Cardiac death, n (%)	511(1.5)	7(0.4)	0.277(0.131-0.584)	0.001	0.340(0.159-0.726)	0.005	0.404(0.185-0.881)	0.023
MACCEs, n (%)	694(2.0)	14(0.8)	0.407(0.239-0.693)	0.001	0.468(0.273-0.802)	0.006	0.481(0.275-0.840)	0.010

Table 3. In-hospital outcomes between PPCI group and PI-PCI group

Stent thrombosis, n (%)	79(0.2)	3(0.2)	0.775(0.244-2.457)	0.665	0.749(0.235-2.383)	0.624	0.514(0.154-1.1715)	0.279
Non-fatal MI, n (%)	108(0.3)	6(0.3)	1.135(0.498-2.586)	0.763	1.195(0.521-2.742)	0.674	1.077(0.436-2.661)	0.872
Stroke, n (%)	145(0.4)	4(0.2)	0.562(0.208-1.520)	0.257	0.624(0.230-1.698)	0.356	0.526(0.185-1.494)	0.227
Cardiac shock, n (%)	1090(3.1)	52(3.0)	0.973(0.734-1.291)	0.851	1.093(0.801-1.491)	0.575	1.084(0.794-1.479)	0.614
Cardiac arrest, n (%)	607(1.7)	22(1.3)	0.737(0.480-1.130)	0.162	0.824(0.532-1.277)	0.387	0.923(0.579-1.473)	0.738
Heart failure, n (%)	4308(12.3)	233(13.6)	1.121(0.973-1.291)	0.115	1.316(1.101-1.573)	0.003	1.137(0.972-1.329)	0.108
TIMI major and minor bleedings, n (%)	2177(6.2)	126(7.4)	1.196(0.993-1.442)	0.060	1.119(0.925-1.355)	0.247	1.106(0.901-1.358)	0.333
TIMI major bleedings, n (%)	431(1.2)	29(1.7)	1.380(0.945-2.017)	0.096	1.450(0.990-2.124)	0.057	1.222(0.803-1.860)	0.349
TIMI minor bleedings, n (%)	1746(5.0)	97(5.7)	1.142(0.926-1.410)	0.215	1.199(0.970-1.483)	0.093	1.071(0.850-1.349)	0.559
NET, n (%)	2766(7.9)	139(8.1)	1.028(0.861-1.228)	0.757	1.104(0.922-1.323)	0.283	1.012(0.833-1.229)	0.904
cNET, n (%)	4958(14.2)	262(15.3)	1.093(0.955-1.251)	0.195	1.233(1.046-1.453)	0.012	1.099(0.947-1.274)	0.214

OR=odds ratio; CI=confidence interval; MACCEs=major adverse cardiac cerebrovascular events; TIMI=Thrombolysis in Myocardial Infarction; MI=myocardial infarction; PPCI=primary

percutaneous coronary intervention; PI-PCI=pharmaco-invasive primary percutaneous coronary; PS=propensity score; NET=net clinical outcomes; cNET=cardiac net clinical outcomes

3.4 Subgroup analysis

3.4.1 Comparison of outcomes between PPCI with PI-PCI groups in the time from onset to FMC

In the subgroup analyses, the time from onset to FMC \geq 3h, 22413 patients received PPCI and 1211 patients received PI-PCI. After adjustment using the PS-matching method, baseline characteristics were well balanced (Supplemental Table 3).

The incidence of all cause death (0.2% vs 1.6%, P =0.001) and cardiac death (0.2% vs 1.5%, P =0.002) were lower in the PI-PCI group than in the PPCI group in all models. The incidence of MACCEs (0.7% vs 1.9%, P =0.003) was lower in the PI-PCI group than in the PPCI group in unadjusted and adjusted models. The risk of TIMI major and minor bleedings was significantly higher in the PI-PCI group in all cohorts. The ratio of new onset heart failure, the net clinical outcomes and the cardiac net clinical outcomes were significantly higher in PI-PCI group in the multivariate logistic analyses cohort. There was no significant difference in outcomes including non-fatal MI, stent thrombosis, cardiac shock, cardiac arrest and stroke (Table 4).

Supplemental Table 3. Comparis	on of baseline characteristics between	PPCI group and PI-PCI g	group in the time from	onset to $FMC \ge 3h$
11 1				

Characteristics		Unmatched	PS Matched			
	PPCI(n=22413)	PI-PCI(n=1211)	Р	PPCI(n=4709)	PI-PCI(n=1202)	Р
Age, y	61.36±12.51	58.35±11.01	< 0.001	58.03±12.48	58.40±11.01	0.341
Female, n (%)	4681(20.9)	214(17.7)	0.008	827(17.6)	211(17.6)	1.000
Previous history, n (%)						
Previous myocardial infarction	941(4.2)	44(3.6)	0.376	179(3.8)	43(3.6)	0.780
Previous PCI	1005(4.5)	42(3.5)	0.109	176(3.7)	42(3.5)	0.754
Previous CABG	28(0.1)	3(0.2)	0.458	8(0.2)	2(0.2)	1.000
Atrial fibrillation	268(1.2)	7(0.6)	0.070	26(0.6)	7(0.6)	1.000

Heart failure	86(0.4)	8(0.7)	0.209	21(0.4)	8(0.7)	0.458
Hypertension	10938(48.8)	524(43.3)	< 0.001	2090(44.4)	523(43.5)	0.609
Diabetes mellitus	4231(18.9)	185(15.3)	0.002	701(14.9)	184(15.3)	0.749
Dyslipidemia	1203(5.4)	71(5.9)	0.498	294(6.2)	70(5.8)	0.636
Cerebrovascular disease	1581(7.1)	55(4.5)	0.001	224(4.8)	55(4.6)	0.851
Peripheral arterial disease	120(0.5)	5(0.4)	0.712	12(0.3)	5(0.4)	0.529
COPD	197(0.9)	15(1.2)	0.256	65(1.4)	15(1.2)	0.830
Chronic kidney disease	170(0.8)	4(0.3)	0.127	8(0.2)	4(0.3)	0.447
Coronary heart disease family history	567(2.5)	27(2.2)	0.578	99(2.1)	27(2.2)	0.844
Killip class, n (%)			0.976			0.980
Ι	17011(75.9)	916(75.6)		3565(75.7)	908(75.5)	
II or III	4460(19.9)	243(20.1)		941(20.0)	243(20.2)	
IV	942(4.2)	52(4.3)		203(4.3)	51(4.2)	
Systolic blood pressure, mmHg	127.55±23.69	126.77±22.92	0.263	126.87±23.58	126.79±22.84	0.909
Diastolic blood pressure, mmHg	78.43±15.20	79.21±15.35	0.081	79.41±15.75	79.19±15.31	0.664
Heart rate, beats/min	78.18±16.12	76.39±15.87	< 0.001	76.42±15.72	76.40±15.81	0.974
LVEF, %	54.25±9.31	54.48±9.26	0.440	54.44±9.28	54.42±9.26	0.945
Hospital grade, n (%)			< 0.001			0.664
Secondary hospital	1479(6.6)	147(12.1)		529(11.2)	141(11.7)	
Tertiary hospital	20934(93.4)	1064(87.9)		4180(88.8)	1061(88.3)	

Medications in the first 24 h of medical contact, n (%)

Aspirin	21951(97.9)	1196(98.8)	0.062	4632(98.4)	1187(98.8)	0.430
P2Y12 inhibitors	22019(98.2)	1195(98.7)	0.307	4631(98.3)	1186(98.7)	0.499
Statins	21348(95.2)	1179(97.4)	0.001	4541(96.4)	1170(97.3)	0.144
β-blockers	11741(52.4)	659(54.4)	0.177	2451(52.0)	656(54.6)	0.125
ACEI/ARB	10126(45.2)	558(46.1)	0.560	2116(44.9)	556(46.3)	0.430
Warfarin	119(0.5)	5(0.4)	0.727	29(0.6)	5(0.4)	0.546
Anti-coagulation therapy, n (%)	17251(77.0)	971(80.2)	0.011	3735(79.3)	963(80.1)	0.567
Mechanical circulatory assist device, n (%)	252(1.1)	6(0.5)	0.056	61(1.3)	6(0.5)	0.030
Temporary cardiac pacemaker, n (%)	244(1.1)	10(0.8)	0.471	47(1.0)	10(0.8)	0.718
Percutaneous aspiration thrombectomy, n (%)	5717(25.7)	160(13.3)	< 0.001	1238(26.5)	160(13.4)	< 0.001
Stent implantation, n (%)	20418(91.1)	1077(88.9)	0.012	4281(90.9)	1068(88.9)	0.034
Location of STEMI, n(%)						
Anterior	7848(35.0)	426(35.2)	0.933	1620(34.4)	423(35.2)	0.632
Inferior	8066(36.0)	375(31.0)	< 0.001	1650(35.0)	373(31.0)	0.010
Posterolateral	628(2.8)	26(2.1)	0.207	131(2.8)	26(2.2)	0.276
Others	6559(29.3)	421(34.8)	< 0.001	1448(30.7)	416(34.6)	0.011
LDL-C≤1.8mmol/L	2359(10.5)	164(13.5)	0.001	677(14.4)	162(13.5)	0.453
$eGFR \leq 90ml/(min*1.73m2)$	10476(46.7)	485(40.0)	< 0.001	1873(39.8)	483(40.2)	0.822

Values are mean ± SD, n (%), or median (IQR). PCI=percutaneous coronary intervention; CABG=coronary artery bypass graft; COPD=chronic obstructive pulmonary disease; LVEF=left ventricular ejection fraction; ACEI=angiotensin-converting enzyme inhibitor; ARB =angiotensin receptor blockers; eGFR=estimated glomerular filtration rate; LDL-C= low-density

lipoprotein cholesterol; MACCEs=major adverse cardiac cerebrovascular events; TIMI=Thrombolysis in Myocardial Infarction; MI=myocardial infarction; PS=propensity score; PPCI=primary percutaneous coronary intervention; PI-PCI=Pharmaco-invasive percutaneous coronary intervention; FMC=first medical contact

	PPCI	PI-PCI	Unadjusted		Adjusted		PS-matched	
Variables	(n=22413)	(n=1211)	OR 95% CI	Р	OR 95% CI	Р	OR 95% CI	Р
All cause death, n (%)	360(1.6)	3(0.2)	0.152(0.049-0.475)	0.001	0.177(0.056-0.558)	0.003	0.259(0.080-0.836)	0.024
Cardiac death, n (%)	342(1.5)	3(0.2)	0.180(0.051-0.500)	0.002	0.189(0.060-0.597)	0.005	0.278(0.086-0.899)	0.032
MACCE, n (%)	429(1.9)	8(0.7)	0.341(0.169-0.687)	0.003	0.388(0.190-0.793)	0.009	0.511(0.244-1.070)	0.075
Stent thrombosis, n (%)	41(0.2)	1(0.1)	0.451(0.062-3.281)	0.432	0.436(0.059-3.206)	0.415	0.559(0.069-4.550)	0.587
Non-fatal MI, n (%)	55(0.2)	4(0.3)	1.347(0.487-3.723)	0.566	1.453(0.520-4.063)	0.476	1.962(0.590-6.527)	0.272
Stroke, n (%)	71(0.3)	3(0.2)	0.781(0.246-2.485)	0.676	0.836(0.260-2.694)	0.765	1.056(0.737-1.512)	0.555
Cardiac shock, n (%)	707(3.2)	40(3.3)	1.049(0.759-1.450)	0.773	1.166(0.814-1.670)	0.401	1.056(0.737-1.512)	0.768
Cardiac arrest, n (%)	384(1.7)	16(1.3)	0.768(0.464-1.271)	0.304	0.862(0.515-1.445)	0.574	1.208(0.687-2.124)	0.511
Heart failure, n (%)	2760(12.3)	166(13.7)	1.131(0.956-1.339)	0.152	1.343(1.086-1.660)	0.006	1.097(0.911-1.321)	0.331
TIMI major and minor bleedings, n (%)	1412(6.3)	103(8.5)	1.383(1.122-1.704)	0.002	1.273(1.028-1.578)	0.027	1.277(1.013-1.610)	0.039
TIMI major bleedings, n (%)	268(1.2)	20(1.7)	1.388(0.878-2.194)	0.161	1.467(0.925-2.328)	0.104	1.248(0.752-2.072)	0.392
TIMI minor bleedings, n (%)	1144(5.1)	83(6.7)	1.368(1.086-1.723)	0.008	1.431(1.133-1.807)	0.003	1.274(0.987-1.646)	0.063
NET, n (%)	1782(8.0)	110(9.1)	1.157(0.945-1.415)	0.158	1.247(1.015-1.532)	0.036	1.171(0.937-1.463)	0.165
cNET, n (%)	3161(14.1)	190(15.7)	1.133(0.966-1.329)	0.124	1.319(1.086-1.601)	0.005	1.110(0.931-1.323)	0.245

Table 4. In-hospital outcomes between PPCI group and PI-PCI group in the time from onset to $FMC \ge 3h$

OR= odds ratio; CI= confidence interval; MACCEs=major adverse cardiac cerebrovascular events; TIMI=Thrombolysis in Myocardial Infarction; MI=myocardial infarction; PS=propensity score; PPCI=primary percutaneous coronary intervention; PI-PCI=Pharmaco-invasive percutaneous coronary intervention; FMC=first medical contact; NET=net clinical outcomes;cNET=cardiac net clinical outcomes

3.4.2 Comparison of outcomes between PPCI with PI-PCI groups according to the reperfusion timing

Baseline characteristics are summarized in Supplemental Table 4. Based on the reperfusion timing, we divided the PPCI group into the Timely PPCI (time from FMC to wire crossing of the infarction related artery ≤ 120 mins) and Late PPCI (time from FMC to wire crossing of the infarction related artery > 120 mins) groups; The PI-PCI is divided into scheduled PCI (PCI was scheduled within 24 hours after successful thrombolysis) and rescue PCI (PCI was performed immediately after thrombolysis failure) (Supplemental Table 5).

Compared with timely PPCI group, the incidence of all cause death was significantly lower in scheduled PCI group in all model. The incidence of MACCEs was statistically significant lower in the scheduled PCI group in the adjusted model. However, the incidence of heart failure was significantly higher in the scheduled PCI group in all models. The incidence of TIMI major or minor bleedings and the cardiac net clinical outcomes was statistically significant lower in scheduled PCI group in the unadjusted and adjusted models (Figure 3 A). Compared with late PPCI group, the incidence of all cause death, MACCEs were significantly lower in scheduled PCI group in all models and the incidence of heart failure was significantly higher in the scheduled PCI group in the unadjusted and adjusted models (Figure 3 B). Compared with timely PPCI, the ratio of heart failure was statistically significant higher in the rescue PCI group in the adjusted and PS-matched models and the ratio of the cardiac net clinical outcomes was higher in the rescue PCI group in the PS-matched model. (Figure 3 C). There was no significant difference in all outcomes in all models between rescue PCI group and late PPCI group (Figure 3 D).

For further analysis, according to the time to PCI after thrombolysis in scheduled PCI group, we divided the patients into 3 groups: scheduled PCI \leq 24h group, scheduled PCI during 24h to 7d group, and scheduled PCI>7d group. Compared with scheduled PCI \leq 24h group, the rate of TIMI major or minor bleedings and the net clinical outcomes were lower in scheduled PCI during 24h to 7d group in all models, and the rate of heart failure was also lower in scheduled PCI during 24h to 7d group in unadjusted model (Figure 3 E). In addition, compared with scheduled PCI \leq 24h group, the scheduled PCI >7d group had lower risk of heart failure in all models, and lower cardiac net clinical outcomes in IPTW model (Figure 3 F).

Verichler	Scheduled PCI	Scheduled PCI	Scheduled PCI	Rescue PCI	Timely	Late PPCI
variables	≤24h(n=571)	1-7d(n=383)	>7d(n=377)	(n=384)	PPCI(n=17818)	(n=7979)
Age, y	58.49±11.25	57.67±10.77	59.34±11.02	59.02±11.84	60.82±12.41	61.43±12.57
Female, n (%)	103(18.0)	48(12.5)	79(21.0)	69(18.0)	3501(19.6)	1672(21.0)
Previous history, n (%)						
Previous myocardial infarction	22(3.9)	23(6.0)	20(5.3)	10(2.6)	757(4.2)	395(5.0)
Previous PCI	22(3.9)	14(3.7)	18(4.8)	9(2.3)	824(4.6)	404(5.1)
Previous CABG	1(0.2)	1(0.3)	1(0.3)	0(0.0)	17(0.1)	13(0.2)
Atrial fibrillation	1(0.2)	3(0.8)	3(0.8)	6(1.6)	197(1.1)	98(1.2)
Heart failure	4(0.7)	5(1.3)	0(0.0)	1(0.3)	58(0.3)	38(0.5)
Hypertension	237(41.5)	163(42.6)	165(43.8)	157(40.9)	8567(48.1)	3913(49.0)
Diabetes mellitus	93(16.3)	56(14.6)	63(16.7)	63(16.4)	3331(18.7)	1488(18.6)
Dyslipidemia	19(3.3)	22(5.7)	25(6.6)	29(7.6)	918(5.2)	457(5.7)
Cerebrovascular disease	24(4.2)	16(4.2)	25(6.6)	18(4.7)	1229(6.9)	549(6.9)
Peripheral arterial disease	4(0.7)	0(0.0)	3(0.8)	1(0.3)	82(0.5)	47(0.6)
COPD	5(0.9)	5(1.3)	8(2.1)	1(0.3)	144(0.8)	76(1.0)

Supplemental Table 4. Comparison of baseline characteristics between subgroups

Chronic kidney disease	2(0.4)	2(0.5)	3(0.8)	1(0.3)	107(0.6)	71(0.9)
Coronary heart disease family history	16(2.8)	12(3.1)	7(1.9)	7(1.8)	508(2.9)	186(2.3)
Killip class, n (%)						
Ι	408(71.5)	281(73.4)	300(79.6)	291(75.8)	13949(78.3)	5751(72.1)
II or III	129(22.6)	87(22.7)	67(17.8)	82(21.4)	3133(17.6)	1871(23.4)
IV	34(6.0)	15(3.9)	10(2.7)	11(2.9)	736(4.1)	357(4.5)
Systolic blood pressure, mmHg	125.32±22.84	126.59±21.77	128.20±22.96	124.89±22.57	127.10±23.39	128.46±24.50
Diastolic blood pressure, mmHg	78.53±14.85	78.79±14.99	79.41±15.45	77.16±15.42	78.31±15.05	78.81±15.61
Heart rate, beats/min	77.50±15.61	74.20±14.27	75.02±16.14	77.83±15.90	78.30±15.91	77.27±16.50
LVEF, %	54.59±9.06	56.26±9.91	53.15±9.62	53.26±9.33	54.63±9.24	54.50±9.40
Hospital grade, n(%)						
Secondary hospital	79(13.8)	43(11.2)	35(9.3)	31(8.1)	1686(9.5)	492(6.2)
Tertiary hospital	492(86.2)	340(88.8)	342(90.7)	353(91.9)	16132(90.5)	7487(93.8)
Medications in the first 24 h of medical contact, n (%)						
Aspirin	561(98.2)	376(98.2)	370(98.1)	376(97.9)	17477(98.1)	7804(97.8)
P2Y12 inhibitors	563(98.6)	370(96.6)	371(98.4)	372(96.9)	17507(98.3)	7833(98.2)
Statins	551(96.5)	369(96.3)	365(96.8)	370(96.4)	16989(95.3)	7617(95.5)

β-blockers	305(53.4)	237(61.9)	203(53.8)	205(53.4)	9479(53.2)	4166(52.2)
ACEI/ARB	245(42.9)	203(53.0)	176(46.7)	176(45.8)	7982(44.8)	3642(45.6)
Warfarin	2(0.4)	1(0.3)	2(0.5)	1(0.3)	87(0.5)	44(0.6)
Anti-coagulation therapy, n (%)	448(78.5)	284(74.2)	311(82.5)	261(68.0)	13568(76.1)	6135(76.9)
Mechanical circulatory assist device, n(%)	5(0.9)	1(0.3)	3(0.8)	8(2.1)	165(0.9)	101(1.3)
Temporary cardiac pacemaker, n (%)	4(0.7)	1(0.3)	1(0.3)	2(0.5)	196(1.1)	88(1.1)
Stent implantation, n (%)	500(87.6)	322(84.1)	335(88.9)	339(88.3)	16187(90.8)	7310(91.6)
Location of STEMI, n (%)						
Anterior	195(34.2)	135(35.2)	131(34.7)	142(37.0)	6334(35.5)	2597(32.5)
Inferior	185(32.4)	132(34.5)	102(27.1)	128(33.3)	6577(36.9)	2719(34.1)
Posterolateral	11(1.9)	6(1.6)	5(1.3)	13(3.4)	536(3.0)	196(2.5)
Others	198(34.7)	122(31.9)	146(38.7)	114(29.7)	4950(27.8)	2660(33.3)
$LDL-C \le 1.8 mmol/L$	73(12.8)	66(17.2)	44(11.7)	48(12.5)	1746(9.8)	955(12.0)
$eGFR \leq 90ml/(min*1.73m^2)$	232(40.6)	162(42.3)	155(41.1)	177(46.1)	8112(45.5)	3875(48.6)

Values are mean ± SD, n (%), or median (IQR). PCI=percutaneous coronary intervention; CABG=coronary artery bypass graft; COPD=chronic obstructive pulmonary disease; LVEF=left ventricular ejection fraction; ACEI=angiotensin-converting enzyme inhibitor; ARB=angiotensin receptor blockers; eGFR=estimated glomerular filtration rate; LDL-C=low-density lipoprotein

cholesterol; MACCEs=major adverse cardiac cerebrovascular events; TIMI=Thrombolysis in Myocardial Infarction; MI=myocardial infarction; PS=propensity score; IPTW=inverse probability of treatment weighting; PPCI=primary percutaneous coronary intervention; PCI=percutaneous coronary intervention; FMC=first medical contact

Vorishlar	Scheduled	PCI Scheduled	PCI Scheduled PCI >	Rescue	PCI	Timely	PPCI	I_{oto} DDCI (n=7070)
variables	≤24h(n=571)	1-7d(n=383)	7d(n=377)	(n=384)		(n=17818)		Late FFC1 (II=7979)
All cause death, n (%)	2(0.4)	1(0.3)	0(0.0)	5(1.3)		255(1.4)		138(1.7)
Cardiac death, n (%)	2(0.4)	1(0.3)	0(0.0)	4(1.0)		238(1.3)		131(1.6)
MACCE, n (%)	4(0.7)	2(0.5)	2(0.5)	6(1.6)		306(1.7)		170(2.1)
Cardiac shock, n (%)	14(2.5)	9(2.3)	15(4.0)	14(3.6)		508(2.9)		286(3.6)
Cardiac arrest, n (%)	5(0.9)	5(1.3)	3(1.4)	5(1.3)		277(1.6)		164(2.1)
Heart failure, n (%)	96(16.8)	46(12.0)	38(10.1)	53(13.8)		2010(11.3)		1075(13.5)
TIMI major and minor bleedings, n (%)	50(8.8)	18(4.7)	34(9.0)	24(6.3)		1022(5.7)		544(6.8)
TIMI major bleedings, n (%)	10(1.8)	5(1.3)	11(2.9)	3(0.8)		174(1.0)		102(1.3)
TIMI minor bleedings, n (%)	40(7.0)	13(3.4)	23(6.1)	21(5.5)		848(4.8)		442(5.5)
NET, n (%)	53(9.3)	20(5.2)	36(9.5)	30(7.8)		1292(7.3)		683(8.6)
cNET, n (%)	100(17.5)	54(14.1)	49(13.0)	59(15.4)		2337(13.1)		1226(15.4)

Supplemental Table 5. In-hospital outcomes between subgroups

MACCEs=major adverse cardiac cerebrovascular events; TIMI=Thrombolysis in Myocardial Infarction; PCI=primary percutaneous coronary intervention; NET=net clinical outcomes;

cNET=cardiac net clinical outcomes

medRxiv preprint doi: https://doi.org/10.1101/2023.12.10.23299554; this version posted December 11, 2023. The copyright holder for this preprint doi: https://doi.org/10.1101/2020.12.10.2020304, this version posted December 11, 2020. The copyright holder for a preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.

Figure 3. Main outcomes in subgroup analysis between PPCI with PI-PCI groups according

to the reperfusion timing

А		Timely PPCI	Scheduled P	PCI	Unadjusted		Adjusted		PS-matched	
	Variable	(n=17878)	≤24h(n=57)	1)		OR(95% CI)		OR(95% CI)		OR(95% CI)
	All cause death	255(1.4)	2(0.4)		-	0.242(0.060-0.976)	•	0.127(0.026-0.612)	•	0.301(0.093-0.975)
	MACCE	306(1.7)	4(0.7)		•	0.404(0.150-1.086)		0.319(0.110-0.925)	-	0.469(0.201-1.098)
	Heart failure	2010(11.3)	96(16.8)			1.589(1.270-1.989)		1.611(1.206-2.152)		1.274(1.035-1.567)
	TIMI bleeding	1022(5.7)	50(8.8)			1.577(1.172-2.123)		1.547(1.142-2.095)		1.269(0.952-1.690)
	NET	1292(7.3)	53(9.3)			1.309(0.981-1.746)		1.290(0.961-1.732)		1.119(0.851-1.471)
	Cardiac NET	2337(13.1)	100(17.5)			1.406(1.129-1.753)	-	1.320(1.000-1.743)		1.179(0.966-1.439)
								7		
				0	1 2 3		0 1 2	3	0 1 2 3	

0 1 2 3 0 1 2 3 Favours Scheduled PCI Favours Timely PPCI Favours Scheduled PCI Favours Scheduled PCI Favours Timely PPCI

В		Late PPCI	Scheduled	PCI Unadjus	ted	Adjusted		PS-mate	ched
	Variable	(n=7979)	\leq 24h(n=5	71)	OR(95% CI)		OR(95% CI)		OR(95% CI)
	All cause death	138(1.7)	2(0.4)	•	0.200(0.049-0.809)	-	0.116(0.022-0.612)	•	0.195(0.061-0.624)
	MACCE	170(2.1)	4(0.7)		0.324(0.120-0.877)		0.288(0.098-0.849)	-	0.309(0.134-0.712)
	Heart failure	1075(13.5)	96(16.8)		1.298(1.033-1.631)		1.496(1.112-2.013)		1.195(0.972-1.467)
	TIMI bleeding	544(6.8)	50(8.8)		1.312(0.969-1.776)		1.351(0.989-1.845)	-	1.097(0.827-1.454)
	NET	683(8.6)	53(9.3)		1.093(0.815-1.466)		1.122(0.830-1.518)		0.910(0.696-1.190)
	Cardiac NET	1226(15.4)	100(17.5)		1.169(0.935-1.463)		1.232(0.92-1.636)		1.121(0.920-1.366)
				0 1 2	3	0 1 2	3	0 1 2	3
			Favours Sched	uled PCI Favours	Late PPCI Favours Schee	fuled PCI Favours	Late PPCI Favours Schedu	uled PCI Favour	s Late PPCI

C	Timely PPCI	Rescue PCI	Unadjusted		Adjusted		PS-matched	
Variable	(n=17818)	(n=384)		OR(95% CI)		OR(95% CI)		OR(95% CI)
All cause death	255(1.4)	5(1.3)	·•	0.909(0.373-2.215)		1.084(0.405-2.900)		1.050(0.347-3.183)
MACCE	306(1.7)	6(1.6)		0.908(0.402-2.051)		1.042(0.446-2.437)		1.095(0.404-2.968)
Heart failure	2010(11.3)	53(13.8)		1.259(0.939-1.689)		1.577(1.109-2.241)		1.466(1.045-2.057)
TIMI bleeding	1022(5.7)	24(6.3)		1.096(0.721-1.664)		1.111(0.727-1.698)		1.148(0.718-1.834)
NET	1292(7.3)	30(7.8)		1.084(0.744-1.580)		1.136(0.775-1.664)		1.153(0.751-1.772)
Cardiac NET	2337(13.1)	59(15.4)		1.203(0.908-1.592)		1.413(1.019-1.959)		1.377(0.999-1.899)
		Favours Rescue	0 1 2 3 PCI Favours Tir	nelv PPCI Favours Resc	0 1 2 3 ne PCI Favours T	imely PPCI Favours Resc	0 1 2 3 ue PCL Envours Tin	why PPC1

D		Late PPCI	Rescue PCI	Unadjus	ted	Adjusted	l .	PS-match	hed
	Variable	(n=7979)	(n=384)		OR(95% CI)		OR(95% CI)		OR(95% CI)
	All cause death	138(1.7)	2(0.4)	••••	0.750(0.305-1.840)		1.035(0.387-2.769)		0.982(0.366-2.633)
	MACCE	170(2.1)	4(0.7)		0.729(0.321-1.657)	· • · · ·	0.909(0.381-2.166)		0.871(0.357-2.125)
	Heart failure	1075(13.5)	96(16.8)		1.028(0.764-1.384)		1.374(0.964-1.959)		1.321(0.944-1.848)
	TIMI bleeding	544(6.8)	50(8.8)		0.911(0.597-1.390)	-	0.960(0.624-1.476)	-	0.970(0.611-1.540)
	NET	683(8.6)	53(9.3)		0.905(0.619-1.325)		0.970(0.658-1.429)	-	0.981(0.646-1.488)
	Cardiac NET	1226(15.4)	100(17.5)	· · ·	1.000(0.753-1.328)	, ,	1.249(0.898-1.738)		1.243(0.904-1.709)
			Favours Rescue	0 1 2 PCI Favours	3 Late PPCI Favours Reso	0 1 2 3 ue PCI Favours L	ate PPCI Favours R	0 1 2 3 escue PCI Favours lat	e PPCI

F		Scheduled PCI	Scheduled PCI	Unadjusted		Adjusted		IPTW	
	Variable	≤24h (n=571)	>7d(n=377)		OR(95% CI)		OR(95% CI)		OR(95% CI)
	MACCE	4(0.7)	2(0.5)		• 0.756(0.138-4.148)	•	→ 0.986(0.106-9.210)		0.297(0.054-1.653)
	Heart failure	96(16.8)	38(10.1)	+	0.555(0.372-0.828)	-	0.473(0.268-0.834)	-	0.593(0.427-0.823)
	TIMI bleeding	50(8.8)	34(9.0)		1.033(0.654-1.630)		0.824(0.484-1.404)	-	0.901 (0.587-1.383)
	NET	53(9.3)	36(9.5)		1.032(0.661-1.610)	-	0.827(0.491-1.394)		0.860(0.567-1.300)
	Cardiac NET	100(17.5)	49(13.0)	•••	0.704(0.486-1.018)		0.709(0.427-1.175)	-	0.719(0.525-0.985)
					1	0 1 2	3	0 1 2	3
			Favours	s > 7d Favours s	5 ⊴24h Favou	rs > 7d Favours	≤24h Favor	rs > 7d Favours	≤24h

Based on the reperfusion timing, we divided the PPCI group into the Timely PPCI (time from FMC to the wire crossing of the infarction related artery \leq 120min) and Late PPCI (time from FMC to the wire crossing of the infarction related artery > 120min) groups; The PI-PCI is divided into scheduled PCI (PCI was scheduled within 24 hours after successful thrombolysis) and rescue PCI (PCI was performed immediately after thrombolysis failure); According to the time to PCI after thrombolysis in scheduled PCI group, we divided the patients into 3 groups: scheduled PCI \leq 24h group, scheduled PCI during 1d to 7d group and scheduled PCI > 7d group.

(A) Comparing scheduled PCI with timely PPCI in main outcomes by unadjusted model, adjusted model and PS-matched model;

(B) Comparing scheduled PCI with late PPCI in main outcomes by unadjusted model, adjusted model and PS-matched model;

(C) Comparing rescue PCI with timely PPCI in main outcomes by unadjusted model, adjusted model and PS-matched model;

(D) Comparing rescue PCI with late PPCI in main outcomes by unadjusted model, adjusted model and PS-matched model;

(E) Compared scheduled PCI ≤24h with scheduled PCI during 1~7d in main outcomes used by unadjusted model, adjusted model and IPTW model;

(F) Comparing scheduled PCI \leq 24h with scheduled PCI > 7d in main outcomes by unadjusted model, adjusted model and IPTW model.

OR=odds ratio; CI=confidence interval; MACCEs=major adverse cardiac cerebrovascular events; TIMI=Thrombolysis in Myocardial Infarction; PCI=primary percutaneous coronary intervention; PS=propensity score; IPTW=inverse probability of treatment weighting; PPCI=primary percutaneous coronary; FMC=first medical contact; PI-PCI=Pharmaco-invasive percutaneous coronary intervention

4. Discussion

In our study, nearly 10% patients with STEMI received thrombolysis, in which 2.6% of the patients received thrombolysis alone. Consistent with the previous reports, our study showed that patients with STEMI were more male and had comorbidities, such as hypertension, DM and ischemic diseases (including previous coronary heart diseases, ischemic stroke, and PAD).¹⁰ ¹¹Although PPCI is the reperfusion strategy of choice in STEMI patients when performed by an experienced team in a timely manner, thrombolysis therapy is still more feasible and often the only available, even the mainstay reperfusion strategy for STEMI in resource-poor settings without advanced technology or access to specialized care, especially in county-level hospitals. 10,12

Thrombolytic therapy can improve the perfusion of the coronary artery and the microcirculation system. The following points should be noted in the thrombolysis. Firstly, the effect of thrombolysis has a clear time-dependence, both clinical guidelines and previous studies indicated that onset time \leq 3h was independent predictors of successful thrombolysis.^{7,11,13-17} However, the proportion of patients from the time of onset to thrombolysis \leq 3h in China was only 27.9%, while the proportion in the same period (2014) was as high as 54% in the United States of America, indicating that the pre-hospital delay of thrombolysis in STEMI patients in China is still serious problem.¹⁸ Secondly, the use of fibrin-specific thrombolytic agents was also a key factor in the success of thrombolysis therapy. In our study, the proportion of patients used non-fibrin-specific agents in thrombolysis group was 32.1%, which may lead to the poor efficacy of thrombolytic therapy. At last, hemorrhage is the most common complication of thrombolysis therapy, especially intracranial hemorrhage (0.9-1%). In our study, the rate of TIMI major bleedings was also significantly higher in thrombolysis group. The CAMI study showed that compared with urokinase, alteplase and reteplase had a higher rate of thrombolytic success, but more in-hospital bleeding events.¹⁵ Previous research found that prourokinase, as a novel and fibrin-specific anticoagulant, not only effectively recanalized blood vessels and improve the cardiac function of patients with STEMI, but also had very low rate of bleeding complications, which may provide an alternative and appropriate thrombolytic drug option for STEMI patients.^{19, 20}

Besides, this study showed that patients receiving thrombolysis alone had worse in-hospital ischemic outcomes. Previous studies have shown that plaque rupture and plaque erosion are the 2 most common underlying mechanisms for sudden cardiac death and acute coronary syndrome. It

has been well known that the necrotic core is 6 times more thrombogenic than all other plaque components.^{21,22,23} Confirmed by optical coherence tomography(OCT), residual thrombus burden 1 day after fibrinolysis was greater in a rupture compared with erosion in patients with successful fibrinolysis for STEMI.²⁴ The advantage of the thrombolytic therapy is to dissolve the large, medium, and microthrombus in coronary arteries, which can improve the perfusion of the coronary artery and the microcirculation system. However, the reoccurrence of myocardial ischemia after thrombolytic therapy is common. Therefore, thrombolysis therapy alone is not sufficient for patients with STEMI.

Previous studies showed that PI-PCI was not inferior to PPCI, and even better in follow-up in ischemic or mortality events. In the STREAM study, the composite end point of death, cardiac shock, congestive HF, and reinfarction was numerically but non-statistically significant lower in the pharmaco-invasive (PI) arm at 30 days.²⁵ The EARLY-MYO Trial indicated that a PI strategy with half-dose alteplase and timely PPCI offered more complete epicardial and myocardial reperfusion compared with PPCI in patients with STEMI presenting ≤ 6 hours after symptom onset but with an expected PCI-related delay in China.²⁶ The STREAM-2 study, enrolling in patients aged ≥ 60 years with STEMI, showed that there were no differences in lytic versus PPCI patients, either in symptom onset to start of reperfusion time, or in final TIMI 3 flow after PCI or last angiography, despite a higher baseline TIMI 0/1 flow prior to PCI in the intervention group.²⁷ The results of this study indicated that PI-PCI was superior to PPCI in mortality and MACCEs during hospitalization, also in the subgroup of the time from onset to FMC \ge 3h. However, PI-PCI had higher risk of TIMI major or minor bleedings than PPCI in the subgroup of the time from onset to $FMC \ge 3h$. A Norway Study showed similar results in patients who did not have PPCI performed within 120 mins.²⁸An increased risk of bleeding may be caused by simultaneous application of thrombolytic and anticoagulant drugs in PI-PCI strategy. In our study, the incidence of heart failure was higher in the PI-PCI group. Movement of patients during transport increase the cardiac burden and more early reperfusion of PI-PCI increase the occurrence of malignant arrhythmia, which may increase the occurrence of in-hospital new onset HF in PI-PCI.

A meta-analysis compared pharmacoinvasive therapy (PIT, defined as administration of thrombolytic drugs followed by immediate PCI only in case of failed thrombolysis) with PPCI, showing that PIT significantly decreased short-term mortality [OR=1.46(1.08 to 1.96), I2=0%,

P=0.01] in those studies with a 200 mins of symptom-onset-to-device time.²⁹ Jamal *et al.* found that patients who underwent late PPCI had higher mortality rates than those underwent a PI strategy.³⁰ In our study, compared with timely PPCI and late PPCI, scheduled PCI group was better in in-hospital mortality and MACCEs, which indicated early thrombolytic therapy may further shorten the myocardial ischemia time and reduce the ischemic events. The rate of heart failure was higher in the scheduled PCI, which may be caused by the worse condition of the scheduled PCI group, especially in the ratio of Killip II-IV class.

European Society of Cardiology (ESC) and Chinese guidelines recommend a door-to-balloon time of <120 minutes.^{7,11} American College of Cardiology and American Heart Association (ACC/AHA) guidelines recommend a door-to-balloon time of <90 minutes.¹⁴ There are various conditions, including occupancy of cardiac catheterization laboratory, will of patients and their families, and unsuitable clinical conditions of patient, inevitably increase the time to revascularization in the clinic and leading to increased risk of in-hospital mortality. At present, the total ischemic time rather than door-to-balloon time is the principal determinant of outcomes in STEMI. PI-PCI is a possible strategy better than PPCI in patients requiring transfer. PI-PCI can shorten the time of myocardial ischemia, significantly reduce the occurrence of no-reflow, markedly increase the proportion of TIMI 3 flow, expand the subsequent PCI time by early thrombolysis, and reduce the mortality rate.³¹ Therefore, for patients who cannot perform timely PCI, the reperfusion strategy of PI-PCI is relatively effective and safe. The factors needs to be considered including symptom-onset to first medical contact time, expected time of transfer to a PCI-capable hospital, and patients risk factors. However, it is notable that PI-PCI may increase the risk of bleeding during hospitalization. In suitable patients, PI-PCI should be evaluated in large clinical trials to assess its clinical and safety outcomes.

Our study also compared the in-hospital efficacy of performing PCI at different times after successful thrombolysis. Compared with scheduled PCI \leq 24h group, the scheduled PCI during 24h to 7d group had lower risk of TIMI major or minor bleedings, which may be caused by simultaneous application of thrombolytic drugs and anticoagulant drugs within a short time. However, the scheduled PCI >7d group had the similar risk of bleedings with scheduled PCI \leq 24h group, which may show that the prolonged using of anticoagulants achieved a high bleeding risk similar to the simultaneous application of anticoagulants and thrombolytic drugs. In addition,

the proportion of receiving anti-coagulation therapy in the scheduled PCI during 24h to 7d group was lower than both the scheduled PCI \leq 24h group and the scheduled PCI >7d group, which may another reason for the low incidence of bleeding. Besides, compared with scheduled PCI \leq 24h group, the scheduled PCI >7d group has lower risk of heart failure. This study is a retrospective study, the treatment strategy of patients depends on the judgment of the doctor, and patients with serious clinical conditions are more inclined toward early revascularization. In the baseline data, the ratio of Killip II-IV class in scheduled PCI >7d group was the lowest (20.4%) among all the subgroups, which supported the above speculation. Therefore, it is feasible to appropriately prolong the scheduled PCI time in STEMI patients, accompanied by more stable clinical conditions, such as hemodynamic stability, stable symptoms, etc.

5. Limitation

First, this was a retrospective observational study, so we could not rule out unmeasured potential confounders. Second, because the participating hospitals were not randomly selected, which may not reflect the clinical situation of all hospitals in China. Finally, this study only analyzed in-hospital outcomes and did not include long-term follow-up.

6. Conclusions

In STEMI patients who could not perform timely PPCI, PI-PCI is feasible, including rescue PCI, which can reduce the rate of MACCEs and mortality during hospitalization. But the increased risk of bleedings also should be concerned.In scheduled PCI after successful thrombolysis, appropriate extension the time window of scheduled PCI can be considered under stable clinical conditions.

Declaration of competing interest

The authors declare that they do not possess any conflict of interest.

Acknowledgement

The authors thank Dr Jun Liu (Department of Epidemiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China) for her technical assistance. We acknowledge all participating hospitals for their contributions to CCC-ACS Project (Supplemental Table 6).

Funding

The CCC-AF project was supported by a collaborative project of the American Heart

Association and the Chinese Society of Cardiology. The American Heart Association received funding from Pfizer through an independent grant for learning and change and AstraZeneca as a quality improvement initiative.

References

1. Thygesen K, Alpert JS, Jaffe AS, et al; Executive Group on behalf of the Joint European Society of Cardiology (ESC)/American College of Cardiology (ACC)/American Heart Association (AHA)/World Heart Federation (WHF) Task Force for the Universal Definition of Myocardial Infarction. Fourth Universal Definition of Myocardial Infarction (2018). Circulation 2018;138(20):e618–e651

2. The National Center for Cardiovascular Diseases. Interpretation of Report on Cardiovascular Health and Disease in China 2021. Chinese Circulation Journal, 2022, 36: 553-578. DOI:10.3969/j.issn.1000-3614.2022.06.001.

3.Gershlick AH, Banning AP, Myat A. Reperfusion therapy for STEMI: is there still a role for thrombolysis in the era of primary percutaneous coronary intervention? Lancet. 2013;382:624–632. doi: 10.1016/S0140-6736(13)61454-3.

4.Steg PG, James SK, Atar D, Badano LP, Blomstrom-Lundqvist C, Borger MA, Di Mario C, Dickstein K, Ducrocq G, Fernandez-Aviles F, Gershlick AH, Giannuzzi P, Halvorsen S, Huber K, Juni P, Kastrati A, Knuuti J, Lenzen MJ, Mahaffey KW, Valgimigli M, van 't Hof A, Widimsky P, Zahger D. ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J. 2012;33:2569–2619.

5. O'Gara PT, Kushner FG, Ascheim DD, Casey DE Jr, Chung MK, de Lemos JA, Ettinger SM, Fang JC, Fesmire FM, Franklin BA, Granger CB, Krumholz HM, Linderbaum JA, Morrow DA, Newby LK, Ornato JP, Ou N, Radford MJ, Tamis-Holland JE, Tommaso CL, Tracy CM, Woo YJ, Zhao DX, Anderson JL, Jacobs AK, Halperin JL, Albert NM, Brindis RG, Creager MA, DeMets D, Guyton RA, Hochman JS, Kovacs RJ, Kushner FG, Ohman EM, Stevenson WG, Yancy CW; American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/ American Heart Association Task Force on Practice Guidelines. Circulation. 2013;127:e362–e425. doi: 10.1161/CIR.0b013e3182742cf6.

6. Hao Y, Liu J, Liu J, et al. Rationale and design of the Improving Care for Cardiovascular Disease in China (CCC) project: a national effort to prompt quality enhancement for acute coronary syndrome. Am Heart J. 2016;179:107-115.

7. Chinese Society of Cardiology of Chinese Medical Association; Editorial Board of Chinese Journal of Cardiology. [2019 Chinese Society of Cardiology (CSC) guidelines for the diagnosis and management of patients with ST-segment elevation myocardial infarction]. Zhonghua Xin Xue Guan Bing Za Zhi. 2019 Oct 24;47(10):766-783. Chinese. doi: 10.3760/cma.j.issn. 0253-3758.2019.10.003. PMID: 31648459.

8. Chinese Society of Cardiology of Chinese Medical Association; Editorial Board of Chinese Journal of Cardiology. [Guideline and consensus for the management of patients with non-ST-elevation acute coronary syndrome(2016)]. Zhonghua Xin Xue Guan Bing Za Zhi. 2017 May 24;45(5):359-376. Chinese. doi:10.3760/cma.j.issn.0253-3758.2017.05.003. PMID: 28511320.

9. Chesebro JH, Knatterud G, Roberts R, et al. Thrombolysis in Myocardial Infarction (TIMI) Trial, Phase I: a comparison between intravenous tissue plasminogen activator and intravenous streptokinase. Clinical fifindings through hospital discharge. Circulation. 1987;76:142–154.

10.Xu H, Yang Y, Wang C, Yang J, Li W, Zhang X, Ye Y, Dong Q, Fu R, Sun H, Yan X, Gao X, Wang Y, Jia X, Sun Y, Wu Y, Zhang J, Zhao W, Sabatine MS, Wiviott SD; China Acute Myocardial Infarction Registry Investigators. Association of Hospital-Level Differences in Care With Outcomes Among Patients With Acute ST-Segment Elevation Myocardial Infarction in China. JAMA 1;3(10):e2021677. Netw Open. 2020 Oct doi: 10.1001/jamanetworkopen.2020.21677. PMID: 33095249; PMCID: PMC7584928.

11.Wu C, Li L, Wang S, Zeng J, Yang J, Xu H, Zhao Y, Wang Y, Li W, Jin C, Gao X, Yang Y, Qiao S. Fibrinolytic therapy use for ST-segment elevation myocardial infarction and long-term outcomes in China: 2-year results from the China Acute Myocardial Infarction Registry. BMC Cardiovasc Disord. 2023 Feb 22;23(1):103. doi: 10.1186/s12872-023-03105-1. PMID: 36814182; PMCID: PMC9948459.

12. Ministry of Health of People's Republic of China. China public health statistical yearbook 2021. Beijing: Peking Union Medical College Publishing House; 2021.

13.Ibanez B, James S, Agewall S, Antunes MJ, Bucciarelli-Ducci C, Bueno H, Caforio ALP, Crea

F, Goudevenos JA, Halvorsen S, Hindricks G, Kastrati A, Lenzen MJ, Prescott E, Roffi M, Valgimigli M, Varenhorst C, Vranckx P, Widimský P; ESC Scientific Document Group. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2018 Jan 7;39(2):119-177. doi: 10.1093/eurheartj/ehx393. PMID: 28886621.

14.Levine GN, Bates ER, Bittl JA, Brindis RG, Fihn SD, Fleisher LA, Granger CB, Lange RA, Mack MJ, Mauri L, Mehran R, Mukherjee D, Newby LK, O'Gara PT, Sabatine MS, Smith PK, Smith SC Jr. 2016 ACC/AHA Guideline Focused Update on Duration of Dual Antiplatelet Therapy in Patients With Coronary Artery Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines: An Update of the 2011 ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention, 2011 ACCF/AHA Guideline for Coronary Artery **B**ypass Graft Surgery, 2012 ACC/AHA/ACP/AATS/PCNA/SCAI/STS Guideline for the Diagnosis and Management of Patients With Stable Ischemic Heart Disease, 2013 ACCF/AHA Guideline for the Management of ST-Elevation Myocardial Infarction, 2014 AHA/ACC Guideline for the Management of Patients With Non-ST-Elevation Acute Coronary Syndromes, and 2014 ACC/AHA Guideline on Perioperative Cardiovascular Evaluation and Management of Patients Undergoing Noncardiac Surgery. Circulation. 2016 Sep 6;134(10):e123-55. doi: 10.1161/CIR.00000000000404. Epub 2016 Mar 29. Erratum in: Circulation. 2016 Sep 6;134(10):e192-4. PMID: 27026020.

15.WU Chao, ZHANG Xiaoyu, YU Mei, et al. Analysis of In-hospital Outcome of Patients With ST-segment Elevation Myocardial Infarction Undergoing Various Thrombolytic Strategies in China, 2021, 36: 1070-1076. DOI: 10.3969/j.issn.1000-3614.2021.11.003.

16.Armstrong PW, Gershlick AH, Goldstein P, Wilcox R, Danays T, Lambert Y, Sulimov V, Rosell Ortiz F, Ostojic M, Welsh RC, Carvalho AC, Nanas J, Arntz HR, Halvorsen S, Huber K, Grajek S, Fresco C, Bluhmki E, Regelin A, Vandenberghe K, Bogaerts K, Van de Werf F; STREAM Investigative Team. Fibrinolysis or primary PCI in ST-segment elevation myocardial infarction. N Engl J Med. 2013 Apr 11;368(15):1379-87. doi: 10.1056/NEJMoa1301092. Epub 2013 Mar 10. PMID: 23473396.

17. Widimsky P, Bilkova D, Penicka M, Novak M, Lanikova M, Porizka V, Groch L, Zelizko M,

Budesinsky T, Aschermann M; PRAGUE Study Group Investigators. Long-term outcomes of patients with acute myocardial infarction presenting to hospitals without catheterization laboratory and randomized to immediate thrombolysis or interhospital transport for primary percutaneous coronary intervention. Five years' follow-up of the PRAGUE-2 Trial. Eur Heart J. 2007 Mar;28(6):679-84. doi: 10.1093/eurheartj/ehl535. Epub 2007 Feb 13. PMID: 17298968.

18.Masoudi FA, Ponirakis A, de Lemos JA, Jollis JG, Kremers M, Messenger JC, Moore JWM, Moussa I, Oetgen WJ, Varosy PD, Vincent RN, Wei J, Curtis JP, Roe MT, Spertus JA. Trends in U.S. Cardiovascular Care: 2016 Report From 4 ACC National Cardiovascular Data Registries. J Am Coll Cardiol. 2017 Mar 21;69(11):1427-1450. doi: 10.1016/j.jacc.2016.12.005. Epub 2016 Dec 23. PMID: 28025065.

19.Zhao L, Zhao Z, Chen X, Li J, Liu J, Li G; Group of Prourokinase Phase IV Clinical Trials Investigators. Safety and efficacy of prourokinase injection in patients with ST-elevation myocardial infarction: phase IV clinical trials of the prourokinase phase study. Heart Vessels. 2018 May;33(5):507-512. doi: 10.1007/s00380-017-1097-x. Epub 2017 Dec 5. PMID: 29209778.

20.Liu Y, Yang Y, Li Y, Peng X. Comparison of Efficacy and Safety of Recombinant Human Prourokinase and Alteplase in the Treatment of STEMI and Analysis of Influencing Factors of Efficacy. Evid Based Complement Alternat Med. 2021 Sep 6;2021:6702965. doi: 10.1155/2021/6702965. PMID: 34531919; PMCID: PMC8440075.

21.Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 2000;20:1262–75.

22. Jia H, Abtahian F, Aguirre AD, et al. In vivo diagnosis of plaque erosion and calcified nodule in patients with acute coronary syndrome by intravascular optical coherence tomography. J Am Coll Cardiol 2013;62: 1748–58.

23. Fernandez-Ortiz A, Badimon JJ, Falk E, et al. Characterization of the relative thrombogenicity of atherosclerotic plaque components: implications for consequences of plaque rupture. J Am Coll Cardiol 1994;23:1562–9.

24.Hu S, Yonetsu T, Jia H, Karanasos A, Aguirre AD, Tian J, Abtahian F, Vergallo R, Soeda T, Lee H, McNulty I, Kato K, Yu B, Mizuno K, Toutouzas K, Stefanadis C, Jang IK. Residual thrombus pattern in patients with ST-segment elevation myocardial infarction caused by plaque erosion

versus plaque rupture after successful fibrinolysis: an optical coherence tomography study. J Am Coll Cardiol. 2014 Apr 8;63(13):1336-1338. doi: 10.1016/j.jacc.2013.11.025. Epub 2013 Dec 18. PMID: 24361315.

25.Sinnaeve PR, Armstrong PW, Gershlick AH, Goldstein P, Wilcox R, Lambert Y, Danays T, Soulat L, Halvorsen S, Ortiz FR, Vandenberghe K, Regelin A, Bluhmki E, Bogaerts K, Van de Werf F; STREAM investigators. ST-segment-elevation myocardial infarction patients randomized to a pharmaco-invasive strategy or primary percutaneous coronary intervention: Strategic Reperfusion Early After Myocardial Infarction (STREAM) 1-year mortality follow-up. Circulation. 2014 Sep 30;130(14):1139-45. doi: 10.1161/CIRCULATIONAHA.114.009570. Epub 2014 Aug PMID: 25161043.

26.Pu J, Ding S, Ge H, Han Y, Guo J, Lin R, Su X, Zhang H, Chen L, He B; EARLY-MYO Investigators. Efficacy and Safety of a Pharmaco-Invasive Strategy With Half-Dose Alteplase Versus Primary Angioplasty in ST-Segment-Elevation Myocardial Infarction: EARLY-MYO Trial (Early Routine Catheterization After Alteplase Fibrinolysis Versus Primary PCI in Acute ST-Segment-Elevation Myocardial Infarction). Circulation. 2017 Oct 17;136(16):1462-1473. doi: 10.1161/CIRCULATIONAHA.117.030582. Epub 2017 Aug 27. Erratum in: Circulation. 2018 Feb 13;137(7):e29. PMID: 28844990.

27.Armstrong P. Pharmaco-invasive reperfusion with half-dose tenecteplase or primary PCI in older patients with STEMI. Presented at: ACC/WCC 2023. March 5, 2023. New Orleans, LA.

28.Jortveit J, Pripp AH, Halvorsen S. Outcomes after delayed primary percutaneous coronary intervention vs. pharmaco-invasive strategy in ST-segment elevation myocardial infarction in Norway. Eur Heart J Cardiovasc Pharmacother. 2022 Aug 11;8(5):442-451. doi: 10.1093/ehjcvp/pvab041. PMID: 34038535; PMCID: PMC9366642.

29.Siddiqi TJ, Usman MS, Khan MS, Sreenivasan J, Kassas I, Riaz H, Raza S, Deo SV, Sharif H, Kalra A, Yadav N. Meta-Analysis Comparing Primary Percutaneous Coronary Intervention Versus Pharmacoinvasive Therapy in Transfer Patients with ST-Elevation Myocardial Infarction. Am J Cardiol. 2018 Aug 15;122(4):542-547. doi: 10.1016/j.amjcard.2018.04.057. Epub 2018 Jun 20. PMID: 30205885.

30.Jamal J, Idris H, Faour A, Yang W, McLean A, Burgess S, Shugman I, Wales K, O'Loughlin A, Leung D, Mussap CJ, Juergens CP, Lo S, French JK. Late outcomes of ST-elevation myocardial

infarction treated by pharmaco-invasive or primary percutaneous coronary intervention. Eur Heart J. 2023 Feb 7;44(6):516-528. doi: 10.1093/eurheartj/ehac661. PMID: 36459120.

31.Liu J, Fu XH, Xue L, Wu WL, Gu XS, Li SQ. Equilibrium radionuclide angiography for evaluating the effect of facilitated percutaneous coronary intervention on ventricular synchrony in patients with acute myocardial infarction. Circ J. 2012;76(4):928-35. doi: 10.1253/circj.cj-11-1329. Epub 2012 Feb 7. PMID: 22313803.

Supplemental Table 6. All participating hospitals

ID	Hospitals	Territories	Provinces	City	Investigator
1	Yangzhou First People's Hospital	Eastern China	Jiangsu	Yangzhou	Aihua Li
2	Shanxi Cardiovascular Hospital	Northern China	Shanxi	Taiyuan	Bao Li
3	Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing	Fastern China	liangsu	Naniing	Biao Xu, Guangshu Han
5	University Medical School	Lastern China		i tunjing	
4	Hainan General Hospital	Southern China	Hainan	Haikou	Bin Li
5	The Second Hospital of Jilin University	Northeast China	Jilin	Changchun	Bin Liu
6	Shanghai Jingan District Shibei Hospital	Eastern China	Shanghai	Shanghai	Bin Wang
7	Guangyuan Central Hospital	Northwest China	Sichuan	Guangyuan	Bing Fu
8	The Second Affiliated Hospital of Harbin Medical University	Northeast China	Heilongjiang	Harbin	Bo Yu
9	The 463 Hospital of Chinese People's Liberation Army	Northeast China	Liaoning	Shenyang	Bosong Yang
10	The Mianyang Central Hospital	Northwest China	Sichuan	Mianyang	Caidong Luo
11	The Ninth Hospital Affiliated to Shanghai Jiaotong University School of	Eastern China	Shanghai	Shanghai	Changeign Wang
11	Medicine	Eastern China	Shanghai	Shanghai	Changqian wang
12	Zhangzhou Municipal Hospital of Fujian Province	Eastern China	Fujian	Zhangzhou	Changyong Liu
13	Shimen People's Hospital	Central China	Hunan	Changde	Chuanliang Liang

14	Henan Provincial People's Hospital	Central China	Henan	Zhengzhou	Chuanyu Gao
15	Shanxi Provincial People's Hospital	Northern China	Shanxi	Taiyuan	Chunlin Lai
16	Xihua County People's Hospital	Central China	Henan	Zhoukou	Chuntong Wang
17	Liaocheng People's Hospital	Eastern China	Shandong	Liaocheng	Chunyan Zhang
18	The Third People's Hospital of Yancheng City	Eastern China	Jiangsu	Yancheng	Chunyang Wu
19	Quyang Renji Hospital	Northern China	Hebei	Baoding	Congliang Zhang
20	Xinqiao Hospital, Third Military Medical University	Southwest China	Chongqing	Chongqing	Cui Bin, Lan Huang
21	The Second Xiangya Hospital of Central South University	Central China	Hunan	Changsha	Daoquan Peng
22	The Central Hospital of Panzhihua	Northwest China	Sichuan	Panzhihua	Dawen Xu
23	China Meitan General Hospital	Northern China	Beijing	Beijing	Di Wu
24	Xiantao First People's Hospital	Central China	Hubei	Xiantao	Dongmei Zhu
25	Chest Hospital of Xinjiang Uygur Autonomous Region	Northwest China	Xinjiang	Urumchi	Dongsheng Chai
26	Beian First People's Hospital	Northeast China	Heilongjiang	Heihe	Dongyan Li
27	The 309th Hospital of Chinese People's Liberation Army	Northern China	Beijing	Beijing	Fakuan Tang, Jun Xiao
28	Baiyin City Center Hospital	Northwest China	Gansu	Baiyin	Fang Zhao
29	Deqing People's Hospital	Eastern China	Zhejiang	Huzhou	Fangfang Huang
30	Dunhua City Hospital	Northeast China	Jilin	Yanbian	Fanju Meng

31	Suizhou Central Hospital	Central China	Hubei	Suizhou	Fengwei Li
32	Binyang People's Hospital	Southern China	Guangxi	Nanning	Fudong Gan
33	The First Hospital of Qiqihaer City	Northeast China	Heilongjiang	Qiqihaer	Gang Xu
34	The Third People's Hospital of Bengbu City	Eastern China	Anhui	Bengbu	Gengsheng Sang
35	Zhongda Hospital, Southeast University	Eastern China	Jiangsu	Nanjing	Genshan Ma
36	The First Hospital of Jiamusi City	Northeast China	Heilongjiang	Jiamusi	Guixia Zhang
37	The First Affiliated Hospital of Liaoning Medical University	Northeast China	Liaoning	Jinzhou	Guizhou Tao
38	Luan County People's Hospital	Northern China	Hebei	Tangshan	Guo Li
39	Guiding People's Hospital	Southwest China	Guizhou	Qinan	Guoduo Chen
40	Haidong Ping'an District Hospital of Traditional Chinese Medicine	Northwest China	Qinghai	Haidong	Guoqin Xin
41	Xinjiang Uygur Autonomous Region People's Hospital	Northwest China	Xinjiang	Urumchi	Guoqing Li
42	Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University	Eastern China	Zhejiang	Hangzhou	Guosheng Fu
43	Zhoushan People's Hospital	Eastern China	Zhejiang	Zhoushan	Guoxiong Chen
44	Dalian Municipal Central Hospital	Northeast China	Liaoning	Dalian	Hailong Lin
45	Hebei Daming County People's Hospital	Northern China	Hebei	Handan	Haiping Guo
46	Dongguan Changping hospital	Southern China	Guangdong	Dongguan	Haiyun Lin
47	Renmin Hospital of Wuhan University	Central China	Hubei	Wuhan	Hong Jiang

48	Honghu People's Hospital	Central China	Hubei	Jingzhou	Hong Liu
49	Ningxia People's Hospital	Northwest China	Ningxia	Yinchuan	Hong Luan
50	The First People's Hospital of Yunnan Province (Kunhua Hospital)	Northwest China	Yunnan	Kunming	Hong Zhang
51	The People's Hospital Feixian	Eastern China	Shandong	Linyi	Honghua Deng
52	Beijing Friendship Hospital, Capital Medical University	Northern China	Beijing	Beijing	Hongwei Li
53	The First Affiliated Hospital of Bengbu Medical College	Eastern China	Anhui	Bengbu	Honhju Wang
54	The Central Hospital of Zhoukou	Central China	Henan	Zhoukou	Hualing Liu
55	Nanpi People's Hospital	Northern China	Hebei	Cangzhou	Hui Dong
56	Anyang District Hospital	Central China	Henan	Anyang	Hui Liu
57	Dalian Fourth People's Hospital	Northeast China	Liaoning	Dalian	Huifang Zhang
58	General Hospital of TISCO	Northern China	Shanxi	Taiyuan	Huifeng Wang
59	Ningbo First Hospital	Eastern China	Zhejiang	Ningbo	Huimin Chu
60	Huining People's Hospital	Northwest China	Gansu	Baiyin	Jiabin Xi
61	Jining City Yanzhou District People's Hospital	Eastern China	Shandong	Jining	Jian Yang
62	Dongguan People's Hospital	Southern China	Guangdong	Dongguan	Jianfeng Ye
63	Panyu Hospital of Chinese Medicine	Southern China	Guangdong	Guangzhou	Jianhao Li
64	Sichuan Provincial People's Hospital	Northwest China	Sichuan	Chengdu	Jianhong Tao

65	Mudanjiang Cardiovascular Disease Hospital	Northeast China	Heilongjiang	Mudanjiang	Jianwen Liu
66	People's Hospital of Wugang	Central China	Hunan	Shaoyang	JiaoMei Yang
67	Yichang Central Hospital	Central China	Hubei	Yichang	Jiawang Ding
68	Zhongda Hospital, Southeast University (Jiangbei)	Eastern China	Jiangsu	Nanjing	Jiayi Tong
69	People's Hospital of Rongchang District	Southwest China	Chongqing	Chongqing	Jie Chen
70	The First Hospital of Peking University	Northern China	Beijing	Beijing	Jie Jiang
71	Ye County people's hospital	Central China	Henan	Pingdingshan	Jie Yang
72	Qilu Hospital of Shandong University	Eastern China	Shandong	Jinan	Jifu Li
73	The Affiliated Hospital of Jiangsu University	Eastern China	Jiangsu	Zhenjiang	Jinchuan Yan
74	Wuhan University of Science and Technology Hospital	Central China	Hubei	Wuhan	Jing Hu
75	Shenyang City Electricity Central Hospital	Northeast China	Liaoning	Shenyang	Jing Xu
76	Sun Yat-sen Memorial Hospital, Sun Yat-sen University	Southern China	Guangdong	Guangzhou	Jingfeng Wang
77	Yuncheng Hospital	Eastern China	Shandong	Heze	Jinglan Diao
78	Fengrun District Second People's Hospital	Northern China	Hebei	Tangshan	Jingshan Zhao
79	The First People's Hospital of Nanning City	Southern China	Guangxi	Nanning	Jinru Wei
80	Zhangping City Hospital	Eastern China	Fujian	Longyan	Jinxing Yi
81	The First Affiliated Hospital of Fujian Medical University	Eastern China	Fujian	Fuzhou	Jinzi Su

82	Chengdu Third People's Hospital	Northwest China	Sichuan	Chengdu	Jiong Tang
83	Guangdong General Hospital	Southern China	Guangdong	Guangzhou	Jiyan Chen
84	Fujin City Central Hospital of Heilongjiang Province	Northeast China	Heilongjiang	Jiamusi	Jiyan Yin
85	Yantaishan hospital	Eastern China	Shandong	Yantai	Juexin Fan
86	Qingdao Municipal Hospital	Eastern China	Shandong	Qingdao	Jun Guan
87	Zhongshan Hospital Affiliated to Fudan University	Eastern China	Shanghai	Shanghai	Junbo Ge
88	Hospital of Xinjiang Production & Construction Corps	Northwest China	Xinjiang	Urumchi	Junming Liu
89	Linfen People's Hospital	Northern China	Shanxi	Linfen	Junping Deng
90	The First People's Hospital of Horqin District, Tongliao City	Northern China	Inner Mongolia	Tongliao	Junping Fang
91	The Military General Hospital of Beijing PLA	Northern China	Beijing	Beijing	Junxia Li
92	Longyan First Hospital	Eastern China	Fujian	Longyan	Kaihong Chen
93	Guiyang Sixth People's Hospital	Southwest China	Guizhou	Guiyang	Kalan Luo
94	Affiliated Hospital of Guangdong Medical College	Southern China	Guangdong	Guangzhou	Keng Wu
95	Jiangxi Provincial People's Hospital	Eastern China	Jiangxi	Nanchang	Lang Ji
96	The First Affiliated Hospital of Guangxi Medical University	Southern China	Guangxi	Nanning	Lang Li
97	Tongren Hospital Affiliated to Shanghai Jiaotong University School of Medicine	Eastern China	Shanghai	Shanghai	Li Jiang

98	Huaiyang People's Hospital	Central China	Henan	Zhoukou	Li Wei
99	Binzou City Center Hospital	Eastern China	Shandong	Binzhou	Lijun Meng
100	Anhui Provincial Hospital	Eastern China	Anhui	Hefei	Likun Ma
101	Xiangtan City Central Hospital	Central China	Hunan	Xiangtan	Lilong Tang
102	Tangshan City Fengrun District People's Hospital	Northern China	Hebei	Tangshan	Lin Wang
103	The First Hospital of Haerbin City	Northeast China	Heilongjiang	Harbin	Lin Wei
104	The First Affiliated Hospital of Zhengzhou University	Central China	Henan	Zhengzhou	Ling Li
105	Xijing Hospital	Northwest China	Shaanxi	Xi'an	Ling Tao
106	Yiniang Hospital	Southwest China	Yunnan	Kunming	Liqiong Yang
107	The Affiliated Hospital of Guizhou Medical University	Southwest China	Guizhou	Guiyang	Lirong Wu
109		Northeast China		Shanyang	ManZhang,
108	Central Hospital Affinated to Shenyang Medical Conege		Liaoning	Shenyang	Kaiming Chen
109	Hepu People's Hospital	Southern China	Guangxi	Beihai	Meisheng Lai
110	First Affiliated Hospital of the People's Liberation Army General	Northern Chine	Poiiing	Paiiing	Mino Tian
110	Hospital		Беіјше	Deijing	ivitati 11an
111	Yanting People's Hospital	Southwest China	Sichuan	Mianyang	Mingcheng Bai
112	The Second People's Hospital of Yunnan Province	Southwest China	Yunnan	Kunming	Minghua Han

113	Haikou People's Hospital	Southern China	Hainan	Haikou	Moshui Chen
114	Geological Mining Hospital of Hunan Province	Central China	Hunan	Changsha	Naiyi Liang
115	The Eight Affiliated Hospital, Sun Yat-sen University	Southern China	Guangdong	Guangzhou	Nan Jia
116	The Central Hospital of Xuzhou	Eastern China	Jiangsu	Xuzhou	Peiying Zhang
117	The Second hospital of Dalian Medical University	Northeast China	Liaoning	Dalian	Peng Qu
118	The second people's hospital of Mengcheng	Eastern China	Anhui	Bozhou	Pengfei Zhang
119	Fuqing Cite Hospital	Eastern China	Fujian	Fuqing	Ping Chen
120	The First Affiliated Hospital of Liaoning University of Traditional	North and Ching	Tionaine.	Champion	D: II
120	Chinese Medicine	Northeast China	Liaoning	Snenyang	Ping Hou
121	Gansu Provincial Hospital	Northwest China	Gansu	Lanzhou	Ping Xie
122	Beijing Tsinghua Changgung Hospital	Northern China	Beijing	Beijing	Ping Zhang
122	The First Affiliated Hospital of Henan University of Science and	Control China	Hanan	I	Dinashuan Dana
123	Technology	Central China	Henan	Luoyang	Pingsnuan Dong
124	Guizhou Provincial People's Hospital	Northwest China	Guizhou	Guiyang	Qiang Wu
125	The First Affiliated Hospital of Xiamen University	Eastern China	Fujian	Xiamen	Qiang Xie
126	Chenzhou First People's Hospital	Central China	Hunan	Chenzhou	Qiaoqing Zhong
127	Lujiang People's Hospital	Eastern China	Anhui	Hefei	Qichun Wang

128	Yuzhou City Central Hospital	Central China	Henan	Xuchang	Qinfeng Su
129	People's Hospital of Qinghai Province	Northwest China	Qinghai	Xining	Rong Chang
130	Quanzhou First Hospital	Eastern China	Fujian	Quanzhou	Rong Lin
131	Baotou City Center Hospital	Northern China	Inner Mongolia	Baotou	Ruiping Zhao
132	Affiliated Hospital of Ningxia Medical University	Northwest China	Ningxia	Yinchuan	Shaobin Jia
133	Beijing Anzhen Hospital, Capital Medical University	Northern China	Beijing	Beijing	Shaoping Nie
134	Wuzhou People's Hospital	Southern China	Guangxi	Wuzhou	Shaowu Ye
135	North Jiangsu People's Hospital	Eastern China	Jiangsu	Yangzhou	Shenghu He
136	People's Hospital of Bozhou District	Southwest China	Guizhou	Zunyi	Shengyong Chen
137	Shanghai Sixth People's Hospital	Eastern China	Shanghai	Shanghai	Shixin Ma
138	The Central Hospital of Jilin	Northeast China	Jilin	Changchun	Shuangbin Li
139	The First Hospital of Handan	Northern China	Hebei	Handan	Shuanli Xin
140	The Fourth Affiliated Hospital Zhejiang University School of Medicine	Eastern China	Zhejiang	Yiwu	Shudong Xia
141	Nenjiang People's Hospital	Northeast China	Heilongjiang	Heihe	Shuhua Zhang
142	Duzishan Petrochemical Hospital	Northwest China	Xinjiang	Karamay	Shuqiu Qu
143	Huai'an First People's Hospital	Eastern China	Jiangsu	Huai'an	Shuren Ma
144	Hunan Changsha County First People's Hospital	Central China	Hunan	Changsha	Siding Wang

145	Li County Hospital of Traditional Chinese Medicine	Central China	Hunan	Changde	Songbai Li
146	The First Affiliated Hospital of Chongqing Medical University	Southwest China	Chongqing	Chongqing	Suxin Luo
147	Nanchong Central Hospital	Northwest China	Sichuan	Nanchong	Tao Liu
148	Ningjin People's Hospital	Eastern China	Shandong	Dezhou	Tao Zhang
149	Guang'an People's Hospital	Southwest China	Sichuan	Guang'an	Tian Tuo
150	Navy General Hospital	Northern China	Beijing	Beijing	Tianchang Li
151	Xiangya Hospital Central South University	Central China	Hunan	Changsha	Tianlun Yang
152	Gongyi people's hospital	Central China	Henan	Zhengzhou	Tianmin Du
153	Guangzhou Red Cross Hospital	Southern China	Guangdong	Guangzhou	Tongguo Wu
154	Dongfeng Hospital	Northeast China	Jilin	Liaoyuan	Wei Liu
155	Zhejiang Provincial Hospital of TCM	Eastern China	Zhejiang	Hangzhou	Wei Mao
156	The First People's Hospital of Longquanyi District	Southwest China	Sichuan	Chengdu	Wei Tuo
157	The First Affiliated Hospital of Guangzhou Medical College	Southern China	Guangdong	Guangzhou	Wei Wang
158	The Third Xiangya Hospital of Central South University	Central China	Hunan	Changsha	Weihong Jiang
159	The First Affiliated Hospital of Wenzhou Medical University	Eastern China	Zhejiang	Wenzhou	Weijian Huang
160	Affiliated Hospital of Qinghai University	Northwest China	Qinghai	Xining	Weijun Liu
161	Jianshui County People's Hospital	Southwest China	Yunnan	Honghe	Weiqing Fan

162	The Second Affiliated Hospital of Soochow University	Eastern China	Jiangsu	Suzhou	Weiting Xu
163	Teda International Cardiovascular Hospital	Northern China	Tianjin	Tianjin	Wenhua Lin
164	Wuhan Asia Heart Hospital	Central China	Hubei	Wuhan	Xi Su
165	Shanghai Jiading District Center Hospital	Eastern China	Shanghai	Shanghai	Xia Chen
166	Guangxi Hengxian County People's Hospital	Southern China	Guangxi	Nanning	Xianan Zhang
167	The Second Hospital of Hebei Medical University	Northern China	Hebei	Shijiazhuang	Xianghua Fu
168	The First Affiliated Hospital of Soochow University	Eastern China	Jiangsu	Suzhou	Xiangjun Yang
169	Changhai Hospital of Shanghai	Eastern China	Shanghai	Shanghai	Xianxian Zhao
170	Affiliated Hospital of Yan'an University	Northwest China	Shaanxi	Yan'an	Xiaochuan Ma
171	The First People's Hospital of Jining	Eastern China	Shandong	Jining	Xiaofei Sun
172	Longhui County People's Hospital	Central China	Hunan	Shaoyang	Xiaojun Wang
173	Tonglu First People's Hospital	Eastern China	Zhejiang	Hangzhou	Xiaolan Li
174	Xinmi people's hospital	Central China	Henan	Zhengzhou	Xiaolei Li
175	Zunhua People's Hospital	Northern China	Hebei	Tangshan	Xiaoli Yang
176	West China Hospital of Sichuan University	Northwest China	Sichuan	Chengdu	Xiaoping Chen
177	The Central Hospital of Taiyuan	Northern China	Shanxi	Taiyuan	Xiaoping Chen
178	Datong City Second People's Hospital	Northern China	Shanxi	Datong	Xiaoqin Zhang

179	The Second Affiliated Hospital to Nanchang University	Eastern China	Jiangxi	Nanchang	Xiaoshu Cheng
180	Yuzhong County People's Hospital	Northwest China	Gansu	Lanzhou	Xiaowei Peng
181	Qinyang People's Hospital	Central China	Henan	Jiaozuo	Xiaowen Ma
182	Hebei General Hospital	Northern China	Hebei	Shijiazhuang	Xiaoyong Qi
183	Yutian Hospital	Northern China	Hebei	Tangshan	Xiaoyun Feng
184	The Third Affiliated Hospital of Guangzhou Medical College	Southern China	Guangdong	Guangzhou	Ximing Chen
185	Chongqing Hechuan District People's Hospital	Southwest China	Chongqing	Chongqing	Xin Tang
186	The First Affiliated Hospital of Wannan Medical College	Eastern China	Anhui	Wuhu	Xingsheng Tang
187	Inner Mongolia People's Hospital	Northern China	Inner Mongolia	Hohhot	Xingsheng Zhao
188	Ledong Second People's Hospital	Southern China	Hainan	Ledong	Xiufeng Chen
189	Wuxi Xishan People's Hospital	Eastern China	Jiangsu	Wuxi	Xudong Li
190	Tangdu Hospital of The Fourth Military Medical University	Northwest China	Shaanxi	Xi'an	Xue Li
191	Shanghai East Hospital Affiliated to Tongji University	Eastern China	Shanghai	Shanghai	Xuebo Liu
192	Beijing Fangshan District First Hospital	Northern China	Beijing	Beijing	Xuemei Peng
193	The General Hospital of Shenyang Military Region	Northeast China	Liaoning	Shenyang	Yaling Han
194	Xiamen Cardiovascular Disease Hospital	Eastern China	Fujian	Xiamen	Yan Wang
195	Tieli People's Hospital	Northeast China	Heilongjiang	Yichun	Yanbo Niu

196	Dianjiang People's Hospital	Southwest China	Chongqing	Chongqing	Yang Yu
197	The First Hospital of Jilin University	Northeast China	Jilin	Changchun	Yang Zheng
198	The Second Affiliated Hospital of Qiqihar Medical Hospital	Northeast China	Heilongjiang	Qiqihar	Yanli Wang
199	General Hospital of Guangzhou Military Command	Southern China	Guangdong	Guangzhou	Yanlie Zheng
200	Fujian Provincial Hospital	Eastern China	Fujian	Fuzhou	Yansong Guo
201	The First Affiliated hospital of Dalian Medical University	Northeast China	Liaoning	Dalian	Yanzong Yang
202	The First People's Hospital of Changde	Central China	Hunan	Changde	Yi Huang
203	Tianjin Chest Hospital	Northern China	Tianjin	Tianjin	Yin Liu
204	Hunan Provincial People's Hospital	Central China	Hunan	Changsha	Ying Guo
205	Longmen People's Hospital	Southern China	Guangdong	Huizhou	Yingchao Luo
206	People's Hospital of Yuxi City	Southwest China	Yunnan	Yuxi	Yinglu Hao
207	The First Affiliated Hospital of China Medical University	Northeast China	Liaoning	Shenyang	Yingxian Sun
208	The People's Hospital of Guangxi Zhuang Autonomous Region	Southern China	Guangxi	Nanning	Yingzhong Lin
209	The First Teaching Hospital of Xinjiang Medical University	Northwest China	Xinjiang	Urumchi	Yitong Ma
210	Dazhou Central Hospital	Northwest China	Sichuan	Dazhou	Yong Guo
211	Mingguang People's Hospital	Eastern China	Anhui	Chuzhou	Yong Li
212	Baogang Hospital	Northern China	Inner Mongolia	Baotou	Yongdong Li

213	Jiangsu Binhai County People's Hospital	Eastern China	jiangsu	Yancheng	Yonglin Zhang
214	The Fourth Affiliated Hospital of China Medical University	Northeast China	Liaoning	Shenyang	Yuanzhe Jin
215	First Affiliated Hospital of Harbin Medical University.	Northeast China	Heilongjiang	Harbin	Yue Li
216	Sihui People's Hospital	Southern China	Guangdong	Zhaoqing	Yuehua Huang
217	Tianjin Medical University General Hospital	Northern China	Tianjin	Tianjin	Yuemin Sun
218	Qian'an People's Hospital	Northern China	Hebei	Tangshan	Yuheng Yang
219	Zhalantun People's Hospital	Northern China	Inner Mongolia	Hulunbeier	Yuhua Zhu
220	Longjiang First People's Hospital	Northeast China	Heilongjiang	Qiqihar	Yuhuan Shi
221	The Second Affiliated Hospital of Zhengzhou University	Central China	Henan	Zhengzhou	Yulan Zhao
222	Nanfang Hospital of Southern Medical University	Southern China	Guangdong	Guangzhou	Yuqing Hou
223	The First Affiliated Hospital to Nanchang University	Eastern China	Jiangxi	Nanchang	Zeqi Zheng
224	Cangzhou Central Hospital	Northern China	Hebei	Cangzhou	Zesheng Xu
225	The Central Hospital of Shaoyang	Central China	Hunan	Shaoyang	Zewei Ouyang
226	Yulong Hospital	Southwest China	Yunnan	Lijiang	Zeyuan He
227	Affilioted Hospital of North Sichuan Medical College	Northwest China	Sichuan	Nanchong	Zhan Lv
228	The People's Hospital of Liaoning Province	Northeast China	Liaoning	Shenyang	Zhanquan Li
229	The First Affiliated Hospital of Jiamusi University	Northeast China	Heilongjiang	Jiamusi	Zhaofa He

230	Tangshan Gongren Hospital	Northern China	Hebei	Tangshan	Zheng Ji
231	The First Affiliated Hospital of Lanzhou University	Northwest China	Gansu	Lanzhou	Zheng Zhang
232	The Third Hospital of Shijiazhuang	Northern China	Hebei	Shijiazhuang	Zhenguo Ji
233	Huaibei Miners General Hospital	Eastern China	Anhui	Huaibei	Zhenqi Su
234	Wuxi People's Hospital	Eastern China	Jiangsu	Wuxi	Zhenyu Yang
235	Linyi People's Hospital	Eastern China	Shandong	Linyi	Zhihong Ou
236	Jiangsu Province Hospital	Eastern China	Jiangsu	Nanjing	Zhijian Yang
237	The Second Hospital of Shanxi Medical University	Northern China	Shanxi	Taiyuan	Zhiming Yang
238	The Affiliated Hospital of Xuzhou Medical College	Eastern China	Jiangsu	Xuzhou	Zhirong Wang
239	Southwest Hospital, Third Military Medical University	Southwest China	Chongqing	Chongqing	Zhiyuan Song
240	Zhijin People's Hospital	Southwest China	Guizhou	Bijie	Zhongshan Wang
241	The First Affiliated Hospital of Xi'an Jiaotong University	Northwest China	Shaanxi	Xi'an	Zuyi Yuan