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Objective Healthcare websites allow patients to share their expe-
riences with their treatments. Drug testimonials provide useful in-
formation for real-world evidence, particularly on the occurrence of
side effects that may be underreported. We investigated the poten-
tial of large language models (LLMs) for detecting signals of body
weight change as under-reported side effect of antidepressants in
user-generated online content.
Materials and Methods A database of 8,000 user-generated com-
ments about the 32 FDA-approved antidepressants was collected
from healthcare social websites. These comments were manually
annotated under the supervision of drug experts. Several pre-trained
LLMs derived from BERT were fine-tuned to automatically classify
comments describing weight gain, weight loss, or the absence of
reference to a weight change. Zero-shot classification was also per-
formed. Performance was evaluated on a test set by measuring the
weighted precision, recall, F1-score and the prediction accuracy.
Results After fine-tuning, most of the BERT-derived LLMs showed
weighted F1-scores above 97%. LLMs with higher number of pa-
rameters used in zero-shot classification almost reached the same
performance. The main source of errors in predictions came
from situations where the machine predicted falsely weight gain or
loss, because the text mentioned these elements but for a different
molecule than the one for which the comment was written.
Conclusion Even fine-tuned LLMs with limited numbers of param-
eters showed interesting results for the detection of adverse events
from online patient testimonials, suggesting they can be used at
scale for real-world evidence.
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Introduction

Body weight changes are described adverse effects (AEs) of
antidepressant use. Weight loss or gain is also a component
of the clinical presentation of depression. Consequently, a
change in body weight can be considered a potentially ex-
pected outcome in treated patients and weight changes may
not always be readily attributed to the use of these treatments
as adverse effects. However, if they do occur, they can sig-
nificantly impact patients and their therapeutic management,
as these changes directly affect self-image and adherence to
treatment. AEs like weight changes become more evident

with long term treatment. They are thus difficult to capture
in clinical trials due to their short follow-up period (1). Their
identification and correct quantification rely on further evalu-
ation in real-world conditions, mostly through clinical report-
ing to pharmacovigilance. But attributing to treatments long-
term and delayed changes is more difficult than evidencing
acute immediate effects.

The first-generation of antidepressants are known to cause
weight gain (2). These effects can also be observed with
more recent treatments (3). It has been reported that the gen-
eral trend over 10 years for people who have received an an-
tidepressant treatment is weight gain (4). The results of co-
hort studies and meta-analyses also agree to identify some
antidepressants being at higher risk (1). Molecules such as
mirtazapine, amitriptyline, and paroxetine are generally as-
sociated with weight gain, while bupropion and fluoxetine
seem to be more associated with weight loss (1). However,
for many molecules, both weight gain and weight loss are
reported, highlighting the variability in individual responses
to these medications as well as the importance of temporal
aspects, with effects that may differ at the start of treatment
or over the long term. Owing to all these elements, patient
testimonials can be a very interesting source of information
to better describe the adverse effects of this family of drugs.

The democratization of the internet has led to the emer-
gence of many platforms for free expression, including on-
line health communities. These health-specialized sites al-
low patients to share their experiences with their treatment.
These testimonials are a potential source of massive data
for collecting information about the effects of treatments in
real-world conditions (5). The diversity of information avail-
able in these testimonials is a direct result of a proactive and
patient-centered information sharing approach (6? ? ). It is
conceivable that the adverse events with the most significant
impact on patients are the most commented on, even if they
may not be the ones that are discussed the most between pa-
tients and caregivers during medical consultations and there-
fore not the ones that are reported the most. This source of
information is an interesting alternative in the context of ad-
verse events that would be under-reported in traditional phar-
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Fig. 1. Data collection, Transfer learning or Zero-shot classification approach to text classification.
BERT pre-trained transformers are key elements. Models have been fine-tuned using a training and a validation set of labeled text reviews - or used as is for zero-shot
classification. Classification performance was performed on a test set.

macovigilance channels (7, 8). The main disadvantages of
these data are that they are unstructured, with a wide linguis-
tic diversity, which complicates the automation of their anal-
ysis. Given the number of comments generated, processing
by human operators is proving to be a long and tedious task.

During the 2010’s, natural language processing (NLP) tools
(9) coupled to deep neural networks have shown promising
results for AEs detection in text data (10), and a variety of
architectures have been proposed to detect AE in text sources
(11–13). Automated AEs were screened scrutinizing elec-
tronic health records of patients (14–17), and Web data in-
cluding social networks like X (formerly Twitter) (6, 18–22).
Most of these works aimed at identifying the mention to an
AEs and did not focus specifically on the detection of a par-
ticular AE.

More recently, the development of transformer-based mod-
els has revolutionized NLP and have become the new stan-
dard for many NLP tasks (23). Few recently published works
make use of pretrained transformer-based models for ADE
extraction on informal texts (24), especially the models based
on pre-trained models like bidirectional encoder representa-
tions from transformers (BERT) (21, 25–29). Self-attention
(or QKV-attention) is central mechanism in Transfomer - al-
lowing the model to attend to different parts of the text input
sequence when making predictions and to learn long-range
dependencies in the input sequence. Transformer models can
be trained on large datasets to learn language representations.
Pre-trained models can then be used for zero-shot classifica-
tion or they can be fine-tuned for a specific classification task.
In zero-shot classification, pre-trained models are used with-
out any specific additional training examples for new classes
(30). Their performance rely on their ability to generalize
classification properties based on the language representation
they captured during pre-training. On the opposite, the fine-
tuning step consists of training further a pre-trained model on
a new dataset and for new classification classes to improve
the model’s performance on this specific task (31).

Here, we explored the potential of different models of clas-
sification to automatically recognize comment texts describ-
ing weight gain, weight loss, or the absence of reference to

a weight change. In particular, we focused on BERT and
BERT-related transformers, that have achieved state-of-the-
art results on a wide range of NLP tasks (32). The novelty
of BERT was to encode the context of a word from both the
left and the right (bidirectional). BERT was designed to pre-
train deep bidirectional representations from unlabeled text
by jointly conditioning on both left and right context in all
layers.

We also used RoBERTa - a robust re-implementation of
BERT with some modifications to the key hyperparameters
and minor embedding tweaks. It has been shown to outper-
form BERT on a variety of NLP tasks (33). Roberta uses
a byte-pair encoding tokenizer instead of a word-piece to-
kenizer to better handle rare words and out-of-vocabulary
words. It trains with a larger mini-batch size and for a longer
number of steps to better learn long-range dependencies in
text and it removes the next sentence prediction (NSP) ob-
jective, found to be less effective than the masked language
modeling (MLM) objective for pre-training BERT models. If
BERT and RoBERTa are highly efficient, it can be difficult
to run these large models on edge devices or to train or use
them with limited computational ressources.

DistilBERT is a distilled version of BERT that is smaller and
faster (34). It is trained using a knowledge distillation pro-
cedure, which involves training a smaller model to mimic the
predictions of a larger model and it has been shown to achieve
comparable performance to BERT and RoBERTa. Distil-
BERT is a good choice for applications where speed, effi-
ciency, and ressources are important. Similarly, we explored
SqueezeBERT, a lightweight and efficient transformer-based
language model that is specifically designed for mobile and
embedded devices (35). SqueezeBERT is based on the BERT
architecture, but it has a number of modifications that make it
smaller and faster including using grouped convolutions in-
stead of fully-connected layers to reduce the number of pa-
rameters in the model.

BERT and these BERT-derived models are pre-trained on
a massive dataset of text and code. They can be used
pre-trained and only fine-tuned on a specific downstream
task including classification without having to be trained

2 | medRχiv Yokoyama et al. | BERT for antidepressant AE detection

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 10, 2023. ; https://doi.org/10.1101/2023.12.09.23299754doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.09.23299754
http://creativecommons.org/licenses/by-nc-nd/4.0/


from scratch (36). We also explored the performance of
DistilBERT and DeBERTa in the context of zero-shot classi-
fication. DeBERTa uses disentangled attention for learning
richer contextual representations of words and an enhanced
mask decoder for more accurate predictions of masked
words, providing this model state-of-the-art performance on
a variety of natural language processing tasks (37).

Taken together, we aimed to explore the potential of large
language models (LLMs) in detecting signals of changes in
body weight as potential side effects of antidepressants in
user-generated online content. Our investigation included
fine-tuning and zero-shot classification using various BERT-
based models. Our main motivation was to explore the ability
of these models in identifying signals within large datasets
of user reviews. Additionally, we aimed to investigate their
capacity to distinguish weight gain from weight loss - two
closely related elements sharing similar syntax that require
a more nuanced analysis and interpretation of the language
used in the comments for accurate classification. This rep-
resents an additional step beyond signal detection, moving
towards assessing the causality of a drug in the occurrence
of adverse effects. Most of these different models performed
particularly well in this task.

Material and Methods

Data collection
Data collection took place between August 2022 and Novem-
ber 2022. The data corresponded to publicly available user-
generated online content from four specialized websites at
the time of data collection (38): Drugs.com, WebMD, Ev-
eryday Health, and Ask a Patient. Drugs.com, WebMD and
Everyday Health are websites that provide information about
medications and health to the general public. Ask a Patient
is a platform where patients can share their first-hand expe-
riences with their prescribed drugs. Data from Drugs.com,
WebMD and Everyday Health were scraped using R version
4.2.2 and the R packages rvest (39), httr (40), and xml2 (41)
while data from Ask a Patient (and the psyTAR) database
were kindly provided by Askapatient.com. A random sam-
ple of 8,000 texts, stratified by site and drugs, was extracted
for manual annotation.
Data labeling
The annotation was performed by ten operators, including
two pharmacists, a general practitioner, two pharmacy stu-
dents and five non-drug experts. The data set was randomly
split in 10 sets with overlap to allow for the measurement
of inter-rater agreement. The drug on which the users were
commenting on in the input text was identifiable to the rater.
Each input text was categorized into three categories: weight
gain, weight loss, or the absence of reference to a weight
change. However, the label had to be applied on the drug
a user was commenting on (i.e. if weight change elements
were described only for another drug mentioned in the user-
content, like previous experience in treatment history, then
the label was set to absence of reference to a weight change
for this given drug). In cases where the rater felt uncertain

about the appropriate class assignment, he/she could add a
specific code to allow this input text be reviewied by a drug-
expert.
Data split
The data set was split into training (n = 6,000), validation
(n = 1,000), and test (n = 1,000) datasets. The training and
validation data sets were used to adjust the LLMs during the
fine-tuning step. The test set was used to evaluate the perfor-
mance of the model. It is important to note that the training,
the validation and the test sets were defined identically for all
models in order to facilitate comparisons.
Large Language Models
The pre-trained models were loaded by instanciating a given
LLM configuration model using the generic sequence clas-
sification model class available in the Hugging Face library
https://huggingface.co/ (42) for Python 3.8.
The different models for zero shot classification were :

• distilbert-base-uncased (6-layer, 768-hidden, 12-
heads, 66 M parameters)

• deberta-v3-base (12 layer, 768-hidden,12-heads, 86 M
parameters)

• deberta-v3-large (24 layer, 1024-hidden,16-heads,
304 M parameters)

and for fine-tuning :

• bert-base-uncase (12-layer, 768-hidden, 12-heads,
110 M parameters)

• roberta-base (12-layer, 768-hidden, 12-heads, 125 M
parameters)

• distilbert-base-uncased (6-layer, 768-hidden, 12-
heads, 66 M parameters)

• squeezebert-uncased (12-layer, 768-hidden, 12-heads,
51 M parameters)

The input texts corresponding to user reviews were lower-
cased and tokenized using the appropriate pre-trained tok-
enizer using the AutoTokenizer class from the Transformers
model library, without any additional preprocessing steps. In
all cases, the tokenized texts were paded and truncated to a
fixed length of 512.
The models were trained over 5 epochs, using the AdamW
optimizer (43) and a learning rate of 2 × 10−5 with batch
sizes of 4 to 16, depending on models. Accuracy and F1-
score were monitored during training, as well as the train-
ing and validation loss. Models were trained for about 30-45
minutes with NVidia 1080 GPU acceleration.
Prediction performance
The models were evaluated using accuracy, weighted pre-
cision, recall and F1-score and ’macro’ F1-score measures.
Performance was measured on the predictions of the test
dataset, which was unseen during the training step.
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Model Accuracy Precision Recall F1-score F1-score
weighted weighted weighted macro

Baseline Dummy classifier 0.897 0.805 0.897 0.848 0.315

Zero-shot DistilBERT 0.265 0.817 0.265 0.350 0.384
DeBERTa base 0.962 0.963 0.962 0.962 0.833
DeBERTa large 0.964 0.971 0.964 0.966 0.869

Fine-tuned BERT 0.975 0.977 0.975 0.976 0.895
RoBERTa 0.975 0.976 0.975 0.976 0.891
DistilBERT 0.973 0.975 0.973 0.974 0.891
SqueezeBERT 0.970 0.972 0.970 0.971 0.868

Table 1. Performance of the different BERT-based LLMs evaluated on a validation dataset of 1,000 text inputs

Results

Characteristics of the training data
The database included 80,594 comments about 32 differ-
ent antidepressants, from four websites: Drugs.com (35.8 %
[28,876]), WebMD (43.1 % [34,748]), Everyday Health (18.2
% [14,672]), and Ask a Patient (2.9 % [2,298]). Of these
comments, 8,000 were randomly selected for manual annota-
tion, stratified by website and antidepressant molecules. The
annotation process was designed to allow for some overlap
between text inputs so that inter-rater reliability could be es-
timated. Out of the 8,000 text inputs, 3,500 were evaluated
twice, resulting in 96 label discrepancies (2.74 %) reconciled
by an expert reviewer. This gave a Krippendorff’s alpha of
0.841. The distribution of labels in the dataset are presented
as a function of drugs in Table S1. Following the data split,
the training and validation sets comprised 6,000 and 1,000
labeled inputs, respectively, while 1,000 inputs were kept for
testing. As expected, labels associated with gaining or losing
weight were in the minority in the training and testing sets-
with almost 90% of the labels corresponding to an absence
of mention of change in body weight in the input text. This
led to an accuracy value of 0.897 in the validation dataset for
a dummy classifier predicting the most represented class (see
Table 1).
Models performance
BERT, RoBERTa, DistilBERT, and SqueezeBERT all per-
formed well after fine tuning, with BERT and RoBERTa per-
forming the best with an F1-score of 0.976. Their macro F1-
score were 0.865 and 0.891, respectively. Precision and recall
of each class are presented for all models in Table S2. Dis-
tilBERT performed poorly in zero-shot classification, while
DeBERTa’s performance seemed to scale with the number of
parameters, reaching performance close to that of the smaller
fine-tuned models for the large DeBERTa model with 304M
parameters. Confusion matrices - calculated for the same test
set for all the models - are available as Supplementary Mate-
rials in Figures S1 and S2. After analyzing the content of the
incorrectly predicted classes, the main source of errors was
situations where a weight loss or weight gain was mentioned
in the text but did not refer to the drug covered by the com-
ment. All comments affected by prediction errors contained
syntax elements mentioning weight gain or loss, changes in
appetite, as well as nausea and vomiting. Prediction errors

were mainly due to a lack of attention to temporality in the
narrative, to the mention of weight without any indication of
change, or to the expression of a desire to gain or lose weight,
whether or not related to the medication. In addition, it’s im-
portant to note that some prediction errors can be considered
a posteriori as labeling errors. All of these misclassifications
can be considered as false positives, indicating that the sensi-
tivity of detecting changes in body weight would have been
higher if we didn’t take into account the fact that the AE must
be related to the drug at the source of the comment.

Discussion

In this work, we explored the potential of large language
models (LLMs) for detecting signals of body weight change
as a side effects of antidepressants.
An important key point of this work is that we have built
a valuable human annotated database, controlled by experts,
with a substantial size of 8,000 input texts to evaluate model
performance. We have made our dataset publicly available to
promote open science and enable other researchers to build
upon our labeling efforts (doi to be released). Collecting data
on health-focused sites was relevant because it is estimated
that only 10% of medical content on general social networks
includes information on AEs, compared to 20-25% on health-
focused platforms all AEs combined (19). Focusing on a sin-
gle AE, we observed a proportion of 10% of the reviews made
on antidepressant drugs were mentioning weight-related AEs
- confirming that this AE might be a concern for patients tak-
ing these treatments. This high rate of AEs also confirmed
that the choice of data source is important to reduce noise
and identify AEs more easily.
In terms of model performance, the fine-tuned models were
able to automatically distinguish situations of weight gain
or loss associated with antidepressant treatment in user-
generated online content. The performance of all the fine-
tuned models were good - even for LLMs with a more lim-
ited number of parameters. We showed that LLMs can enable
the detection of subtle signals within tens of thousands of
comments pertaining to antidepressants, which could stream-
line the signal screening process. Zero-shot classification re-
sults are also very encouraging - especially with the large
DeBERTa model. It has been demonstrated that pre-trained
models with larger number of parameters shows better gen-
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eralization results (44–46). It will be interesting to explore
models with even more scaled properties in future works.
Zero-shot approaches eliminate the need for annotation, mak-
ing it possible to study a wide range of adverse events directly
from extracted user reviews.
These models also tended to produce false positives. This
is partly due to the annotation strategy, which focused only
on mentions of body weight changes for the molecule be-
ing discussed in the review. Weight loss seems more difficult
to classify and can be confused with weight gain - perhaps
because these two classes share very similar syntactic ele-
ments. If an expert review of identified signals will likely
remain essential for assessing a drug’s causality in the occur-
rence of adverse effects, it will be interesting to investigate
how these models can aid in contextualizing the findings to
support causality determination (47). Because online com-
ments are often written with little contextual information, it
is difficult to establish a causal relationship between drug use
and the occurrence of an event. This might be the strongest
limitation for the use of these data for pharmacovigilance.
Finally, extracting relevant medical information from online
data depends on the quality of the data source. The ability of
malicious social media bots to generate realistic comments
raises doubts about the authenticity of all these comments
and reviews, making it challenging to distinguish genuine
patient feedback. (48–50). For this reason, the analysis of
data from web platforms must be a matter of careful inter-
pretation. Some specialized tools to detect fake reviews are
probably expected as a safeguard. And if we can hope that
website policies can partially prevent fake declarative com-
ments and validate the credibility of their data, LLMs could
be used at scale to provide insights for a better evaluation of
medications in real-world conditions of use.
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Supplementary Note 1: Table S1

DRUG No mention to weight change Gain Loss
Amitriptyline 320 51 3
Bupropion 606 15 58
Citalopram 564 39 11
Clomipramine 49 5 1
Desipramine 8 1 0
Desvenlafaxine 228 8 11
Doxepin 84 19 0
Duloxetine 696 44 15
Escitalopram 863 96 22
Esketamine 10 0 0
Fluoxetine 455 23 15
Fluvoxamine 101 11 1
Imipramine 42 3 4
Isocarboxazid 1 3 0
Levomilnacipran 33 1 1
Maprotiline 3 0 0
Milnacipran 92 3 4
Mirtazapine 244 74 4
Nefazodone 43 0 0
Nortriptyline 136 21 2
Paroxetine 284 50 7
Phenelzine 28 6 1
Protriptyline 1 0 0
Selegiline 14 0 0
Sertraline 722 72 20
Tranylcypromine 21 2 1
Trazodone 409 6 1
Trimipramine 3 0 0
Venlafaxine 814 51 15
Vilazodone 177 9 4
Vortioxetine 123 8 4

Table S1: Distribution of the labels of the input texts for the different drugs in the whole dataset (n = 8,000)
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Supplementary Note 2: Table S2

Model Precision Recall
No Mention Gain Loss No Mention Gain Loss

Baseline Dummy Classifier 0.897 0.000 0.000 1.000 0.000 0.000

Zero-shot DistilBert 0.902 0.092 0.041 0.236 0.500 0.560
DeBERTa base 0.978 0.899 0.621 0.983 0.795 0.720
DeBERTa large 0.992 0.863 0.571 0.971 0.885 0.960

Fine-tuned BERT 0.993 0.860 0.750 0.981 0.949 0.840
RoBERTa 0.991 0.889 0.724 0.983 0.923 0.840
DistilBert 0.992 0.867 0.710 0.980 0.923 0.880
SqueezeBERT 0.990 0.857 0.667 0.979 0.923 0.800

Table S2 :Per class precision and recall of the different BERT-based LLMs evaluated on a validation dataset of 1,000 text inputs
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Supplementary Note 3: Figure S1

Fig S1: Confusion matrices of the baseline and zero-shot models on the target domain, showing the predicted vs. true labels
Performance metrics of the models are described in Table 1 and Table S2
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Supplementary Note 4: Figure S2

Fig S2: Confusion matrices of the fine-tuned models on the target domain, showing the predicted vs. true labels
Performance metrics of the models are described in Table 1 and Table S2
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