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Abstract 
 

Changes in human behaviors, such as reductions of physical contacts and the adoption of 

preventive measures, impact the transmission of infectious diseases considerably. Behavioral 

adaptations may be the result of individuals aiming to protect themselves or mere responses to 

public containment measures, or a combination of both. What drives autonomous and policy-

induced adaptation, how they are related and change over time is insufficiently understood. 

Here, we develop a framework for more precise analysis of behavioral adaptation, focusing on 

confluence, interactions and time variance of autonomous and policy-induced adaptation. We 

carry out an empirical analysis of Germany during the fall of 2020 and beyond. Subsequently, 

we discuss how behavioral adaptation processes can be better represented in behavioral-

epidemiological models. We find that our framework is useful to understand the interplay of 

autonomous and policy-induced adaptation as a “moving target”. Our empirical analysis 

suggests that mobility patterns in Germany changed significantly due to both autonomous and 

policy-induced adaption, with potentially weaker effects over time due to decreasing risk 

signals, diminishing risk perceptions and an erosion of trust in the government. We find that 

while a number of simulation and prediction models have made great efforts to represent 

behavioral adaptation, the interplay of autonomous and policy-induced adaption needs to be 

better understood to construct convincing counterfactual scenarios for policy analysis. The 

insights presented here are of interest to modelers and policy makers aiming to understand and 

account for behaviors during a pandemic response more accurately. 
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1. Introduction 
 

The COVID-19 pandemic has provided abundant evidence that human behaviors are essential 

drivers of transmission dynamics, including the course and the duration of outbreaks [1]. 

Almost all nations implemented public policies aiming to prevent or reduce the spread of the 

contagion [2]. Such non-pharmaceutical interventions (NPIs), ranging from public information 

campaigns to stay-at-home-orders, have resulted in significant behavioral changes (here 

referred to as policy-induced adaptation). Numerous research articles and meta studies [e.g., 2, 

3, 4, 5] have been dedicated to the question which NPIs are most effective in altering behaviors, 

with results varying dependent on a range of contextual factors. Particularly relevant have been 

compliance levels in the population [5]: Even the strictest public mandates (e.g., contact bans) 

only take effect if a sufficient share of the population chooses to adjust their behaviors 

accordingly. Beyond “following the rules”, there is convincing evidence [6-8] that individuals 

change behaviors voluntarily to protect themselves or others against a perceived health threat 

(here referred to as autonomous adaptation). Such behaviors have, for instance, been observed 

in the early pandemic based on mobility data, when individuals reduced physical contacts and 

time outside their home prior to this being required by public measures [6]. 

 

Behavioral adaptation in a pandemic, its determinants and changes over time need to be 

understood more precisely. A key question, for example, is in which ways and to which extent 

public mandates influence individual decisions. It can be quite challenging to establish whether 

an observed behavior change should be attributed to self-protection or the effect of NPIs, or a 

combination of both. The relative importance and relationship of autonomous and policy-

induced adaptation thus warrants more attention.  A number of studies [6-13] has empirically 

differentiated between voluntary and mandated behavioral response, providing highly valuable 

insights but also establishing strongly diverging effect sizes (more details in Section 2). 

However, existing studies focus almost exclusively on the early weeks of the pandemic. It is 

unclear whether their insights on behavioral adaptation hold over longer periods of time. Given 

that fear and uncertainty were high in the early pandemic, it is plausible that both autonomous 

and policy-induced adaptation changed significantly later on, due to emerging issues such as 

fatigue and non-compliance [14] or a habituation to infection risk in parts of the population [15, 

16]. Furthermore, previous work has not accounted for interrelations between autonomous and 

policy-induced adaptation: The communication and activities of the government, for example, 

may create awareness or increase public perception of infection risks [10, 17], prompting 

autonomous risk management. This paints a complex picture, where behaviors evolve 

dynamically over time, determined by an interplay of autonomous and policy-induced 

adaptation. 

 

Disentangling this complexity is challenging but there is a strong necessity for it. 

Acknowledging that human behavior drives disease transmission, we need to be able to better 

describe and explain behavioral patterns observed in specific situations or over the long term, 

such as loss of trust in government or diminishing risk perceptions. Furthermore, to identify 

effective intervention strategies and develop counterfactual scenarios, it is essential to 

understand which behavior changes result from policies, which changes occur autonomously 

and whether there are interactions. This could also be useful for behavioral-epidemiological 

models and thus result in improved decision support for policy-makers. With this article, we 

contribute to this end in three related steps:  

 

1. We develop a framework for a more precise analysis of autonomous and policy-induced 

adaptation by synthesizing various literature on human behavior during the COVID-19 
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pandemic. We briefly characterize both adaptation mechanisms, their determinants, 

their relationship and potential changes over the course of the pandemic. 

2. We carry out an empirical investigation of both role and relevance of autonomous and 

policy-induced adaptation in Germany using a variety of publicly available data. The 

analysis addresses the “second wave” of the pandemic (fall of 2020) and longer-term 

trends affecting behavioral adaptation (diminishing risk perceptions & eroding 

compliance). 

3. We give an overview of how autonomous and policy-induced adaptation have been 

represented in behavioral-epidemiological models and discuss how empirical and 

conceptual models may be further improved. 

 

The paper is organized as follows: In the next Section, we give an overview of related literature 

and relevant gaps. In Section 3, we develop and present our framework, followed by an 

empirical analysis of the German case in Section 4. Subsequently, we discuss the current state 

and promising directions for model-based analysis of behavioral adaptation (Section 5). We 

then discuss the insights and limitations of our analysis (Section 6). Section 7 concludes. 

  

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 11, 2023. ; https://doi.org/10.1101/2023.12.09.23299681doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.09.23299681
http://creativecommons.org/licenses/by/4.0/


 4 

2. Background: Autonomous and policy-induced 

adaptation during the COVID-19 pandemic 
 

The COVID-19 pandemic has changed human behaviors in various ways, (e. g. travel/mobility 

and social practices, consumption patterns). Here, we focus on behaviors relevant for the 

transmission of the virus, including physical contacts, mobility patterns, the use of preventative 

measures such as testing and facial covering, and more (cf. Note 1). Based on the premise that 

human behaviors are key drivers of transmission [1], we analyze two key forms in which 

individuals have changed their behaviors during the COVID-19 pandemic: Autonomous and 

policy-induced adaptation. Synthesizing insights from various bodies of behavioral literature, 

we first characterize these two adaptation mechanisms and their determinants (Sections 2.1 and 

2.2). We then give an overview of existing studies that have disentangled autonomous and 

policy-induced adaptation empirically (Section 2.3) and outline which aspects of their 

relationship remain insufficiently understood and will be addressed by our framework.  

 

2.1 Autonomous adaptation 

 
Autonomous adaptation refers to the idea that individuals assess the risk that COVID-19 poses 

to their health, their household or community and adjust their behaviors voluntarily to mitigate 

this risk, while considering the costs of adaptations. This idea is well-rooted in a number of 

theories and explanatory frameworks of the social sciences. Psycho-social theories of health 

behavior [e.g., 18, 19, 20] explain self-protective behavior through perceptions about infection 

risks, the efficacy of preventative behaviors, and potential barriers to engaging in such 

behaviors. In economic analyses [e.g., 21, 22, 23], this is often approached as a cost-benefit 

calculation, assuming that individuals trade-off the risk of an infection against the cost of 

changing behaviors, which may include foregone income due to social distancing, but also the 

loss of utility resulting from having fewer social contacts [24]. 

Evidence for such behavior has been found throughout different phases of the pandemic, for 

instance when individuals reduce their mobility before restrictions are in place [6, 7, 10, 13, 25] 

or maintain fewer contacts and stay out of public areas even after these are lifted [26, 27]. 

Empirically, self-protective behavior has been associated with a number of socio-demographic 

and attitudinal variables [28, 29]. Perceptions of risks, for example about the severity of an 

infection [30-33] or of the effectiveness of behavioral adaptations [32, 34] have been found to 

impact both the number of private contacts as well as compliance with public measures (more 

on the latter below). [35] have reviewed the literature on risk perceptions and identified 

recurring predictors for the extent to which COVID-19 is perceived as a health threat. Key 

demographic factors are age, gender and income and education levels. Relevant personal factors 

include the physical and mental health state of an individual, their media exposure, knowledge 

about COVID-19, trust in the government, media and science [35]. In the United States context, 

different works have also found political preferences relevant for the level of perceived risk 

[36, 37]. Besides perceived risk or inclination to self-protect, multiple studies provide evidence 

that circumstances frequently seem to dictate whether it is possible to act on this, for instance 

when the housing or work situations do not allow effective social distancing [29, 34, 38].  

 

2.2 Policy-induced adaptation 
 

Policy-induced adaptation occurs when individuals or groups alter their behavior in response to 

a specific policy or intervention. Policy-makers have responded to the COVID-19 pandemic 

with wide range of non-pharmaceutical interventions, spanning local to supra-national levels as 
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well as short-term to long-term periods, with measures as diverse as stay-at-home-orders and 

the free provision of sanitary equipment [39]. Interventions relevant for transmission prevention 

(cf Note 2) include measures aiming to reduce the number of physical contacts by limiting 

access to public areas (e.g., school closures) or issuing stay-at-home orders. They also include 

interventions aiming to reduce the probability of transmission from physical contacts, e.g., 

through mask-wearing, preventive testing and vaccination. The widespread and heterogeneous 

use of NPIs during the pandemic has led to a large and growing body of literature dedicated to 

identifying the most effective and efficient interventions [40-43]. However, there is an 

increasing awareness that there are no one-size-fits-all solutions with respect to NPIs, as a 

number of framework conditions determine their successful application [5, 44, 45].  

As most NPIs require a sufficiently large share of the population to adhere to them, their success 

is determined by the behavioral response or degree of compliance in the population [29]. Even 

strict behavioral mandates require individuals willing to comply and are premised on controls, 

sanctions and an understanding of their necessity, which is frequently not considered when the 

effectiveness of NPIs is evaluated. Nonetheless, the determinants of compliance have been 

examined by a number of studies across nations and within populations [e.g., 46, 47, 48]. It is 

difficult to generalize findings, as these strongly depend on the type of NPI, as well as 

situational, economic and cultural factors [47, 49]. Surveys of self-reported compliance 

consistently suggest that female respondents are more likely to report compliant behavior [e.g., 

48, 50] whereas the impact found for age, income and education levels varies. Perceived social 

norms have been found to strongly impact compliance levels [46, 51] as well as perceptions 

about the risk of an infection, or the efficacy of government response measures [48, 52, 53]. 

Non-compliance, on the other hand, was found among those exhibiting lower trust in 

government, lower empathy, science skepticism and conspiratorial beliefs [54-57]. From an 

economic perspective, the degree of compliance to behavioral mandates is generally perceived 

as subject to individual choice weighing the costs and benefits that arise [58]. 

Compliance is furthermore dependent on the implementation strategy, which may make use of 

diverse instruments, ranging from coercion to persuasion to incentivization [59]. Interventions 

based on coercion tend to be harder to circumvent, if they are enforceable [60]. However, they 

are associated with significant economic and political cost due to infringements on individual 

liberty [61, 62]. Persuasion or incentivization, on the other hand, leave more room for non-

compliant behavior to occur and are thus predicated on trust [14, 63-65]. They are less likely to 

be perceived as intrusive and thus may spark less aversion [66], for instance when income 

support allows individuals to follow stay-at-home orders by mitigating their financial losses 

[67]. 

 

2.3 Disentangling autonomous and policy-induced adaptation 
 

Disentangling autonomous and policy-induced adaptation is challenging because the 

motivations for an individual’s behavior, their perceptions and attitudes are difficult to infer 

from available data. In the early weeks of the pandemic, a number of studies have differentiated 

between “voluntary” and policy-induced behavioral adaptation [6-13]. Analyzing changes in 

mobility patterns before and after the implementation of lockdowns, these studies find 

significant effects of both autonomous response and policy mandates, albeit with diverging 

effect sizes. Examining data on visits to commercial establishments, [12], for instance,  found 

that “much of the decline in foot traffic early in the pandemic was due to private precautionary 

behavior”(p. 1). [8] find both effects to be in the “same order of magnitude” (p. 874), with 

autonomous and policy-induced adaptation reducing deaths by 9% and 14%, respectively. 

Other studies acknowledge that substantial reductions in contacts occurred due to autonomous 

adaptation but see these changes as “significantly smaller without a lockdown in place” [11] 

(p.2) or “not sufficient to bring the R number below one” [9] (p.30).  
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These studies made valuable contributions to the understanding of autonomous and policy-

induced adaptation. To empirically disentangle both, however, they assumed that these are 

separate effects. Most studies compared pre- and post-lockdown behaviors, while other NPIs 

such as public information campaigns and behavioral recommendations were already 

implemented. Thus “voluntary” behavior change rather refers to the absence of mandates to 

shelter in place than to an absence of policies in general [8]. As we will address in more detail 

below, it is likely that both adaptation mechanisms are in a more complex relationship, for 

example when activities of the government and public debate about NPIs enhance the 

perception of risk among individuals. Moreover, almost all existing studies of autonomous and 

policy-induced adaptation stem from the very beginning of the pandemic. Given that their 

determinants (see Sections 2.1 & 2.2) changed over time, their relationship likely varies over 

the course of a dynamically unfolding pandemic. Hence, a more precise framework is needed 

to understand the interplay between autonomous and policy-induced adaptation. 
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3. A framework for analyzing behavioral adaptation: 

Confluence, interactions and time variance 
 

In this section, we present an analytical framework focused on the interplay of autonomous and 

policy-induced adaptation. Fig 1 illustrates key components of this framework: Autonomous 

and policy-induced adaptation are at the center of this perspective, which assumes that 

individuals change their behavior based on an analysis of cost and benefit that considers self-

protection and non-pharmaceutical interventions. Drawing from the literature presented in the 

previous section, we assume that this process is influenced by a range of demographic and 

personal factors, social norms, cultural beliefs, and the information available to the individual. 

While determinants such as socio-demographic background or social norms have received 

considerable attention elsewhere [e.g., 35, 46, 50, 51], we focus here on the relationship 

between these two adaptation mechanisms.  Considering behavioral adaptation as a “moving 

target”, we explore three key phenomena of the interplay between autonomous and policy-

induced adaptation, indicated in color in Fig 1: 

 

1. Confluence: Autonomous and policy-induced adaptation can overlap, for example when 

a high propensity for self-protection results in behavior that is compliant with existing 

mandates. However, they may also diverge, which can result in a number of distinct 

effects for overall adaptation (see Section 3.1). In Fig 1, this is illustrated as two blue 

circles, which overlap to a varying extent.  

 

2. Interactions: Autonomous and policy-induced adaptation are subject to a variety of 

interactions, for example when non-pharmaceutical interventions increase risk 

awareness and thus prompt higher self-protection. In Section 3.2, we address such 

interactions with a focus on risk signals as well as the role of trust in their processing 

and compliance with NPIs. In Fig 1, the interactions considered here are marked in red. 

 

3. Time variance: Due to variations in their determinants, the interplay between 

autonomous and policy-induced adaptation changes over time. In Section 3.3, we 

substantiate this by addressing changes in two crucial variables over time (risk 

perception and trust). Fig 1 illustrates time variance through the green arrows at the 

bottom.  
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Fig 1. Conceptual framework of behavioral adaptation. The framework focuses on three 

key phenomena of the interplay of autonomous and policy-induced adaptation: Confluence 

(blue), interactions (red) and time variance (green). 

 

 

 

3.1 Confluence 
 

Confluence, here, refers to the process in which autonomous and policy-induced adaptation 

mechanisms combine and form the actual and observable behavior of an individual. Our 

framework assumes that this process includes overlaps as well as divergences. Intuitively, it 

would seem straightforward that both adaptation mechanisms are complementary, i.e., that a 

high propensity to self-protect predicts a high degree of compliance with NPIs [53, 68]. This is 

substantiated by the significant overlap in their determinants (cf. Sections 2.1 & 2.2), including 

demographic factors and the perceived risks of infection. However, the will to self-protect is 

not always aligned with the objectives of containment policies, particularly in a heterogenous 

population with diverging (perceived and actual) risks of infection and costs of behavioral 

change. When both come together, a range of results can emerge. 

To illustrate this, we present four simplified cases in Fig 2, juxtaposing an individual propensity 

for behavioral adaptation (to mitigate risk for one’s health) with a “mandated adaptation”, i.e., 

behavior change required by NPIs. First, consider the two cases on the left side, where the 

behavioral adaptation conforms to the policy objectives. In the top left case, this is the result of 

a low(er) propensity to self-protect combined with “compliant” behavior, which may be due to 

altruistic or prosocial motivations [69, 70], the fear of penalty [71] or social deviance. In the 

bottom left case, a strong individual propensity for adaptation exceeds what is required by NPIs, 

resulting in a form of “overcompliance” or use of preventive behaviors beyond the mandated 

[e.g., 25, 26]. Second, we consider cases where behavioral adaptation falls short of policy 

objectives. Here, as well, different plausible explanations exist. In the top right example, non-

compliance results from a low(er) individual propensity for adaptation combined with an 

objection to the current set of rules. And even in cases where individual propensity to adapt is 

high (bottom right), circumstances may prevent individuals from complying with NPIs, for 

example due to their occupation, housing or sanitary conditions [17, 65, 72, 73]. 
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Fig 2: Alternative explanations for observed behavioral adaptations. In each of the four 

examples, the red line represents an empirically observable behavior (e.g., number of physical 

contacts), while the boxes indicate individual propensity for behavioral adaptation (blue) and 

an assumed mandated level of adaptation (orange). Note that behaviors may fall within a 

spectrum between the depicted cases, for instance if observed behavioral adaptation exceeds 

individual propensity to adapt but falls short of mandates. Also note that there may be cases of 

inadvertent non-compliance or overcompliance, for instance when individuals are unsure 

about the current set of “rules”. 

 

Hence, autonomous and policy-induced adaptation may overlap or diverge, but which concrete, 

observable behavior results from their confluence is not obvious. This presents a challenge, as 

commonly used data (e.g., on mobility) are inadequate to understand such subtleties and 

detailed time series on attitudes and motivations are frequently unavailable. The question 

whether observed behavioral changes are the result of autonomous or policy-induced 

adaptation, or a combination of both, has therefore not been studied sufficiently. Nonetheless, 

it is highly relevant to understand these patterns more precisely: As [13] point out, if policy 

action crowds out voluntary efforts, then “mandates achieve the outcome at a greater cost” (p. 

2). And, as we address in more detail below, strict mandates can have negative impacts on social 

cohesion and trust over time [66]. Thus, better understanding the confluence of autonomous 

and policy-induced adaptation is relevant for analyzing and modelling behavioral patterns in a 

pandemic, which will be discussed further in Section 5. 

 

3.2 Interactions: Risk signals, trust and compliance 
 

While autonomous adaptation in our framework refers to an individual trading off infection risk 

and the cost of changing behaviors, we do not assume that individuals form their perceptions in 

isolation. Instead, individuals are assumed to evaluate information available to them, which 

includes the processing of risk signals they perceive from various sides. Here, we focus on three 

prominent sources of such risk signals: 

 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 11, 2023. ; https://doi.org/10.1101/2023.12.09.23299681doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.09.23299681
http://creativecommons.org/licenses/by/4.0/


 10 

• Government activities: The government is an important conveyor of information to 

many, and thus its communication and activities may receive substantial weight in that 

process. In the early pandemic in particular, there is substantial information asymmetry, 

as governments tend to have access to data and experts unavailable to the public. Thus, 

government communication may be an influential signal to individuals’ assessing 

infection risk: In the United Kingdom, for instance, 71% of respondents in a study 

reported to have changed their behavior based on government guidance in mid-March 

2020 [17]. Studies examining the impact of specific events such as the declaration of 

emergency at the state level [6, 13] have demonstrated that such signals in particular 

conveyed “information about the seriousness of the epidemic“ [10] and led to a 

significant public response. Similarly, the actions taken by the government can be 

interpreted as a signal, where the stringency of deployed NPIs indicates the severity of 

the situation. And even before NPIs enter into legal effect, debates and decisions about 

them can have (unintended) consequences, such as people frequenting public spaces 

more often before an announced lockdown enters into effect [13]. Besides the timing, 

the messaging and style of signals has been found to be highly impactful [74].  

 

• Epidemiological situation: The current infection levels and the extent to which 

individuals are aware of them signal a certain level of health risk. It has been shown that 

this effect is stronger with confirmed cases within one’s own social network [75]. In 

addition, key events with high visibility can have significant impacts on perceived risk 

and lead to spikes in media interest [15]. Of key relevance is also knowledge, which we 

may define loosely as the information, insights, and understanding that an individual 

possesses about COVID-19 and the extent to which this informs and guides their 

decisions and behaviors (cf. Note 3). Such knowledge may include information about 

common symptoms, transmission routes, susceptibility, mortality risk and more [76].  

 

• Media: Public visibility of the pandemic and its media coverage [77] may also emit 

highly relevant risk signals. Extensive evidence suggests risk perception and 

compliance with NPIs can be influenced by exposure to media, particularly social 

media, and how the COVID-19 pandemic is portrayed in the news [78-80]. Strongly 

linked to the above-mentioned signals, media coverage impacts the overall frequency 

and prominence of COVID-19, likely resulting in effects to which individuals consider 

it relevant (availability bias). The perceived severity of the situation may also be 

impacted by framing of signals, for instance when a greater focus is placed on fear- and 

anxiety-inducing messages, such as the death toll, rather than highlighting recoveries or 

positive developments, as subjective emotions often play a stronger role than factual 

information [65].   

 

Trust plays an important role in the framework presented here. For one, it influences the extent 

to which risk signals are heeded. If information about the progression and severity of the 

pandemic is not considered credible, it may not have the desired impact on behaviors. Trust in 

(social) media reporting, for example, has been linked to the adoption of preventive measures 

as well as impacts on the overall evaluation of the pandemic [81, 82]. Beyond its role as a 

mediator for the processing of risk signals, trust in the government and its scientific institutions 

has been associated with a range of factors including the willingness to change behaviors and 

adhere to mandates [55, 83, 84] (cf. Note 4). The perceived competence and consistency of the 

government response, as well as the extent to which costs of adaptation are mitigated, affects 

compliance levels in the population, for example the willingness to self-isolate in case of an 

infection [65, 67, 85]. Governments enjoying high levels of trust may thus be able to use moral 

arguments and suasion (“Do the right thing”) with a higher chance of success [65]. 
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3.3 Time variance 
 

There is considerable evidence that certain determinants of behavioral adaptation, such as 

perceived risk of infection, are time-variant. This suggests, in turn, that the dependent variables 

autonomous and policy-induced adaptation may change significantly over time. Due to their 

critical role in our framework, we focus here on two key variables: The level of perceived risk 

as a determinant of both autonomous and policy-induced adaptation and trust as a key mediator 

of their interactions: 

 

• Diminishing risk perception: Empirical evidence suggests that the average perceived 

risk of infection has declined over time, at least in parts of the population [86]. 

Particularly in the early weeks of the COVID-19 pandemic, fear and uncertainty tended 

to be particularly high. As time progresses, the risk perceived from the same 

epidemiological situation, such as reported new cases, may decline. This is due to a 

variety of reasons, such as increasing knowledge about the virus and its transmission 

channels or the increasing ability to manage or reduce the risks of infection or a severe 

course, e.g., through facial masks or vaccinations. In addition, the constant exposition 

to the threat of an infection may lose salience for perceived risk over time caused by 

saturation with the topic, or declined information-seeking as habituation effects set in  

[15, 50]. [79] have investigated the impact of media coverage on public attention over 

time and found that despite constantly high news coverage, attention levels for the 

pandemic were decreasing. A lower risk perception is, in turn, associated with decreased 

autonomous adaptation and compliance with policies. This is related to the widely 

discussed notion of “pandemic fatigue”, which is contested as a scientific concept [87]. 

Nonetheless, large-scale studies have found for behaviors such as physical distancing a 

decline in adherence levels, suggesting an eroding compliance with at least some aspects 

of policy over time [14]. Individual longitudinal studies find self-reported compliance 

to remain high for most participating individuals, where “approximately 15% of 

participants had decreasing levels of compliance across the pandemic, reporting 

noticeably lower levels of compliance in the second wave” [50] (p.781). Interestingly, 

particular behaviors such as staying at home with symptoms have been less adhered to, 

which has potentially strong impacts on transmission. Some have related decreases in 

compliance over time also to the idea of “alert fatigue”, i.e., a lack of capacity to 

understand rules that are frequently changing depending on place and time  [88], which 

may result in cognitive overload and inadvertent non-compliance [89].  

 

• Erosion of trust: When considering changes in policy-induced adaptation over time, 

trust as a moderator of effect strength has high relevance. Evidence suggests that the 

decline in compliance was lower in countries with initially high levels of trust in 

government [84]. A variety of studies studying trust over longer periods of the pandemic 

indicate that trust in government and science agencies have substantially declined [83, 

90-92]. There are manifold explanations for this, including political partisanship [92], 

misinformation [93] and perceived competence and fairness of the government handling 

of the pandemic [84]. The loss of trust has also been related to the use of certain NPIs 

which may create “control aversion” [66].   
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4. Empirical application: Behavioral adaptation in 

Germany during later stages of the pandemic 
 

In this Section, we use our framework to carry out an empirical analysis of autonomous and 

policy-induced adaptation in Germany. We first empirically investigate behavioral adaptation 

during the “second wave” of the pandemic (autumn/winter 2020/21), using a similar approach 

as existing research from the early weeks of the pandemic, thus complementing their works. 

We then conduct a comparative analysis of interactions between autonomous and policy-

induced adaptation, focusing on risk signals and public attention during spring and fall of 2020. 

Finally, we address time variance of behavioral adaptation by investigating whether (i) risk 

perceptions diminished and (ii) we find evidence for an erosion of trust and compliance in 

Germany. For these analyses, we combine a variety of publicly available data, analyze these 

statistically and contextualize them with qualitative information. Detailed descriptions of 

methods and data are presented in Supplementary Information S1 and S2. 

 

4.1 Interplay of autonomous and policy-induced adaptation in 

Germany: Spring and fall 2020 
 

Germany’s management of the early pandemic (March-May 2020) is widely regarded as 

successful, characterized by comparatively low case numbers and death toll. Besides a swift 

policy response at an early stage, this may be attributed to autonomous adaptation: [8] have 

analyzed mobility changes for the “first wave” in Germany and twelve other countries, finding 

both mechanisms of behavioral adaptation to have similar effect sizes. After the first wave 

subsided, restrictions were lifted gradually and the summer in 2020 was characterized by 

comparatively few COVID-19 cases.  

As our literature overview in Section 2.3 indicates, this assessment of behavioral adaptation 

aligns with similar studies conducted in various contexts during spring of 2020 [e.g., 7, 13]. 

However, a less thoroughly studied question is how the interplay of autonomous and policy-

induced adaptation evolved during later stages of the pandemic. To address this gap, we 

examine the situation in the fall of 2020, which paints a different picture. By early October, the 

number of infections in Germany began to increase rapidly. At this point, NPIs were mostly 

implemented at the county level with varying degrees of stringency.  In early November 2020, 

a ‘lockdown light’ was enacted on the national level which restricted public events and private 

meetings but allowed retail shops to remain open. After this had failed to reduce infection levels 

sufficiently, a full lockdown followed on December 16. We focus our first statistical analysis 

and the analysis of interactions on this ‘second wave’ which began in October 2020, according 

to the German center for disease control [94]. We consider a time period until the end of 

January, 2021, by which the wave had largely subsided and the vaccine roll-out had begun, 

which likely introduced further changes in behaviors and thus marks a good finishing point 

[95]. The heterogeneity of response measures and infection levels throughout Germany, the 

national lockdowns as well as the public perception of COVID-19 make this an interesting 

comparison to the widely studied first wave.  

4.1.1 Data 

To empirically investigate the relationship of autonomous and policy-induced adaptation, we 

follow an approach similar to existing literature [e.g., 8, 13], combining publicly available data 

from various sources, for which the smallest shared geographical unit available are the 16 

German federal states. Key data enabling our analysis are: 
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• Changes in mobility: As the key indicator for human behavior driving transmissions, we 

consider the average changes in mobility compared to the respective month in 2019 on 

a given day in each state, which were estimated based on aggregated GPS data stemming 

from mobile phone devices by the Federal Statistical Office of Germany [96]. 

• NPI stringency: To assess the impact of NPIs, we use a composite policy stringency 

index, which is conceptually and methodologically similar to the well-known Oxford 

COVID-19 Response tracker [39]. The data for this index was compiled at high 

resolution by an interdisciplinary team for the Corona Data Hub Germany [97] and 

captures the varying intensity of NPIs deployed in individual states as well as on the 

national level. Thus, we assume it provides a useful variable to account for policy-

induced adaptation. 

• 7-day-incidence: We use the data on the number of infections per 100,000 inhabitants 

in the past seven days (subsequently referred to as “incidence”) provided by [98], for 

the state and national level in Germany. We use incidence as a proxy for the risk signals 

emanating from current infection levels. As incidence numbers were reported daily by 

national and local media, they are also related to public visibility. In absence of high 

frequency data directly capturing autonomous adaptation, we consider incidence the 

best available proxy. 

 

Combining data in daily frequency over four months and 16 federal states results in all overall 

sample size of n =1968 observations. In Fig 3, the three key variables used in our analysis are 

plotted for the individual federal states. 
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Fig 3. Incidence, mobility changes and policy stringency in Germany. The plot 

depicts data stemming from [96-98] for the 16 federal states of Germany between Oct 

1, 2020 and Jan 31, 2021. 
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4.1.2 Statistical Analysis 

We estimate a range of linear models using fixed effects to account for heterogeneity among 

the German states. Across all models, the daily average change in mobility is the response 

variable. Incidence levels as a measure for infection risk are used as predictor, employing the 

natural logarithm due to at times exponential growth in case numbers. The stringency of policy 

response is also a predictor across all models, either measured by the state-level stringency 

index or as an ordinal variable, differentiating three distinct phases of national policy response 

(local measures, lockdown light, hard lockdown – in dependence of the date). We control for 

different weekdays as well as daily temperature and precipitation due to the change of season 

occurring in the studied time span. In Supplementary Information S1, we present detailed model 

specifications and diagnostics.  

Across all models, we find a consistent and significant negative effect of incidence and 

stringency on mobility (for detailed regression coefficients see S1 Table 1). With a relatively 

parsimonious approach, the models can capture up to 70% of the variance in the data, with 

remaining variations likely due to geographical aggregation and, perhaps, seasonal holidays. 

The results indicate that both autonomous risk management and containment policies resulted 

in relevant decreases in mobility: Between October 1 and December 24, the average increase 

in incidence (from 13 to 193 new cases per 100,000 inhabitants) leads to a little more than 20% 

reduction in mobility, assuming a weekday and holding stringency at its mean value and 

weather data at the average for the month. The model predicts a reduction of about 9% due to 

(additional) stringency of policies during the same time span, under the same assumptions and 

the mean incidence level of the considered period. Interestingly, if policy stringency is included 

as an ordinal variable describing three phases of national response, slightly more variation in 

the data can be captured than by using the state-level stringency index, with the impacts of 

incidence remaining robust. This may be an indication for the significance of national events 

like the initiation of lockdowns. In Fig 4, we visualize the marginal effects of incidence on 

mobility under county-level (“local”) measures, as well as the national “lockdown light” and a 

hard lockdown.  
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Fig 4. Marginal effect of incidence on mobility during three phases of NPI deployment. 

The plot visualizes the marginal effect of 7-day incidence on predicted relative changes in 

mobility (compared to 2019 baseline) during three successive phases of national NPI 

response: NPIs implemented at county-level (until Nov 1), a national-level “lockdown light” 

(until December 15) and a full-scale national lockdown (from December 16). The plot is 

based on Model D presented in S1 and was generated using the R package ggeffects [99]. 

4.1.3 Risk signals & public attention: A comparative analysis 

While these results suggest a significant and pronounced behavioral adaptation during the 

“second wave”, the overall behavioral response was less pronounced than during March of 

2020. In the top panel of Fig 5, mobility and incidence data are juxtaposed for the early 

pandemic (March 2020) and the second wave (Oct 20-Jan 2021). The data indicate that in spite 

of higher disease prevalence, the overall reduction in mobility was lower. In the following 

analysis, we contextualize this with a brief comparative analysis of data available at the national 

level for Germany, focusing on risk signals emanating from political decisions and public 

attention. For this, we consider data from traditional and social media as well as from the 

Google search engine as an indicator for information-seeking behavior (Fig 5).  

The early pandemic in Germany was, arguably, a period characterized by clear risk signals and 

high public attention. Building on a broad consensus between political decision-makers and 

scientists, NPIs were gradually ramped up, e.g., by restricting large events, culminating in a 

national lockdown by March 22. As the left side of Fig 5 indicates, private mobility had already 

fallen drastically within the two weeks prior to this first lockdown, indicating a significant 

autonomous response. This, however, occurred in lockstep with the stepwise announcement 

and enactment of increasingly stringent containment measures. Thus, it seems likely that 

individuals estimated the benefits of adaptation (i.e., avoided risks) to be very high against the 

background of limited information on the virus, high levels of fear and high public awareness. 

This interpretation is reflected in the data in the bottom three panels of Fig 5, which indicate a 

substantial increase in interest of both traditional and social media for COVID-19, along with 

an increase in private information-seeking. As has been argued by others [100], the degree of 

political determination to curb the spread of the virus resulted in heightened awareness and 

support for response policies, which enabled the success of Germany’s initial response. Or, in 

other words, a clear risk signal emerged from the policy response in March 2020, which may 

have contributed to an anticipatory autonomous response. 

In the fall of 2020, the situation was less clear-cut. A more controversial debate as to which 

course should be taken had emerged: The different actors involved in decision-making in the 

federal system in Germany required longer to agree on a coordinated response, which was less 

decisive than during the first wave [101]. As we described above, this resulted in heterogeneous 

local response measures followed by the “lockdown light”.  This ambiguity seems to be 

reflected in the data on public attention: The bottom three panels of Fig 5 indicate that despite 

continuously high infection levels in November, the attention placed on the pandemic in (social) 

media and in Google searches remained comparatively low, while only events such as the 

initiation of national lockdowns are accompanied by attention spikes. As we address in more 

detail below, this period also roughly coincides with a marked decline in trust in the government 

and the first large-scale anti-containment demonstrations [102]. The lack of cohesion with 

respect to the severity of the situation and the adequate response is reflected in the rather 

constant level of mobility in top right panel of Fig 5. After hospitalization levels reached critical 

levels [101] and the national lockdown was initiated mid-December, a reduction in both 

mobility and case numbers was achieved in a comparatively short amount of time. 
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Fig 5. Pandemic dynamics and public visibility in Germany. The plot depicts 

various data [39, 98, 103-105] related to pandemic dynamics and public interest for 

Mar 2020 (left side) and Oct 2020 – Jan 2021. Note: Media interest refers to the share 

of articles in 68 national German online news media that mention “Coronavirus” or 

“COVID-19”. Google search interest is an index for the search interest in a topic over 

a specified period of time ranging from 0-100.  
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4.2 Time variance of behavioral adaptation  
 

The comparison between spring and fall of 2020 underscores that the relationship between 

autonomous and policy-induced adaptation is unlikely to be constant over time. As we explored 

in Section 3.3, this may be the case because key determinants such as risk perceptions or trust 

in government change over time. Here, we investigate whether this has been the case in 

Germany, using the most detailed publicly available data set dealing with attitudes toward 

COVID-19 the authors are aware of [106]. The data stems from a representative longitudinal 

survey of the general public in Germany, conducted in 48 waves with an average sample size 

of around 1,500 interviews. Detailed information about the data as well as methods used in this 

section are presented in Supplementary Information  S2. 

4.2.1 Diminishing risk perception 

It is likely that preventative behaviors decrease if the perception of risks associated with an 

infection declines over time. To investigate whether this has been the case in Germany, we 

statistically analyze the relationship between incidence, as a measure of the current 

epidemiological risk, and risk perception. As we explain in more detail in S2, the data by [106] 

includes three questions relevant for risk perceptions which were asked at irregular intervals in 

29 survey waves. However, due to some constraints in matching the perceived risk to state-

level incidence data [98] we can only make use of data from 21 waves. We construct a simple 

composite risk perception variable from the three relevant variables and calculate state-level 

averages. This results in a sample size of 21 pairs of incidence and risk perception data for the 

16 German states between August 2020 and April 2022 (n = 336). As a base model, we establish 

the association between perceived risk (response) and incidence as well as a numeric variable 

measuring the days since the first observation (predictors) in a simple linear model. Due to their 

ability to deal with small sample sizes and unevenly spaced time series data, we then fit the data 

to linear mixed-effect models [107, 108], including state-level and date-level random effects. 

In S2 Table 1 we provide detailed regression results and discuss model diagnostics. Across all 

models, the results indicate a consistent and significant relationship between incidence 

(logarithmic form) and average perceived risk. The linear variable measuring the progression 

of time shows a negative sign and high significance. The addition of state-level and date-level 

random effects significantly improves model fit, indicating that some unobserved heterogeneity 

and seasonal effects can be captured through this. In sum, the results suggest that at a given 

level of incidence, the average degree of perceived risk declines over time. In Fig 6, we use our 

model with the best fit to visualize this effect: Holding incidence constant at the median value 

of our data set, the predicted perceived risk decreases over time. While these outcomes can 

merely be seen as tentative due to small sample size and geographic aggregation, they seem to 

substantiate the idea that infection levels become less intimidating as time passes. Our analysis 

cannot, however, provide an explanation of why this occurs, as several complex issues may 

interact, such as a better ability to manage risks through testing and vaccinations or an overall 

habituation to infection risk. Nonetheless, we can infer that a relevant predictor of behavior has 

changed significantly over time, which may impact both autonomous adaptation and 

compliance rates. 
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Fig 6. Diminishing risk perception over time. The plot depicts the marginal effect of time 

(measured as a linear variable) on perceived risk, beginning in August 2020 and assuming a 

constant level for 7-day incidence.  The figure was generated using the coefficients of Model 

C (cf. Supplementary Information S2) and the median incidence value in the sample (105.84). 

The light blue ribbon indicates a 95% prediction interval, generated with the R package 

merTools [109]. 

 

4.2.2 Erosion of trust and compliance  

Longitudinal studies indicate a marked decline in trust in the government and its ability to 

manage the pandemic in Germany, starting in the fall of 2020: While in a bi-weekly survey, 

65% of respondents thought the government handled the pandemic “somewhat” or “very” well 

on October 7, 2020, this number decreased to a mere 21% by March 24, 2021 [110]. As trust is 

often considered a key factor for behavioral adaptation, its development over time may provide 

significant insights for compliance with NPIs (see Section 3.2). To investigate a potentially 

decreasing degree of compliance and its association with trust, we analyze once more data 

collected by [106], focusing on two recurrently asked questions: (i) the degree to which 

respondents perceive information provided by the government about the COVID-19 pandemic 

to be credible and (ii) whether they perceive the measures taken by the government as adequate, 

insufficient or excessive. For these questions, data in ordinal response categories is available 

from 36 survey waves (n= 43,106, for details see S2). Fig 7 plots the data over the observed 

time span from April 2020 to April 2022 and indicates a fluctuating, yet overall declining share 

of respondents considering government information to be credible and those believing that 

containment measures are adequate.  
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Fig 7. Credibility of government information and assessment of containment measures. 

Assessment of the credibility of information issued by the German government about 

COVID-19 (left) and assessment of the adequacy of containment measures (right). Data: 

[106] 

 

 

Assuming that the perception of containment measures is directly or indirectly related to the 

degree of compliance [55], the relationship between trust and agreement with measures may be 

interpreted as an, albeit imperfect, proxy for the relationship between trust and compliance. In 

Fig 8, the association of both variables is illustrated by two plots: The ‘mosaic plot’ on the left-

hand side provides a visual description of how both variables are related. On the right-hand 

side, a conditional effects plot [111] depicts the results of an ordinal regression model using 

perceived credibility of information provided by the government to predict agreement with 

measures. As the plot indicates and we discuss in more detail in S2, the model robustly relates 

the assessment of measures with the respondent’s perception of credibility of government 

information. With decreasing perceived trust, the probability for respondents to consider 

measures excessive increases considerably. Conversely, high perceived credibility is associated 

with a higher probability of finding that measures do “not go far enough”. This, along with the 

data presented in Fig 7 may be interpreted as an increasing fragmentation of public opinion, 

indicating that an increasing share of the population distrusted governmental information and 

believed measures to be excessive, which may likely explain observed increases in non-

compliance. On the other hand, as the light blue lines in Fig 7 indicate, an increasing share of 

respondents also considered measures insufficient, which may suggest higher autonomous 

efforts for infection prevention. While others have treated compliance in more detail [112], 

these findings further substantiate that significant changes occurred over time in one of the key 

determinants of behavioral adaptation. 
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Fig 8. Association of perceived credibility of government information with assessment of 

containment measures. Left side: Each segment indicates a specific combination of response 

categories in the data set. Right side: Conditional effect of perceived credibility of 

information from the government on assessment of containment measures. The posterior 

mean estimate of the probability of responses in each opinion category is shown for each of 

the four categories of perceived credibility, with error bars indicating 95% credible intervals. 
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5. Modeling autonomous and policy-induced adaptation 
 

While the primary focus of this analysis is to better understand the interplay of autonomous and 

policy-induced adaptation conceptually and empirically, both are directly related to behavioral-

epidemiological modelling. Thus, in this Section, we briefly discuss the relevance of this 

analysis for modeling efforts, focusing on two key areas: 

 

1) Assessing the representation of behavioral adaptation in existing modeling frameworks: 

Building on a non-exhaustive inventory of modeling literature, we use our framework 

to give an overview on how the previously discussed determinants and interactions are 

represented in existing models.  Based on this, we discuss promising avenues for future 

model developments (Section 5.1). 

2) Developing conceptual models to understand system dynamics: We discuss why an 

improved understanding of behavioral adaptation is a prerequisite for developing 

counterfactual behavioral responses in simulation models. We showcase how 

conceptual models may provide useful insights on the interplay of autonomous and 

policy-induced adaptation in different situations (Section 5.2). 

 

5.1 Representation of autonomous and policy induced adaptation 

in behavioral-epidemiological models 
 

The following is intended as a brief overview of how autonomous and policy-induced 

adaptation processes have been modeled, to then discuss to which extent their effects can be 

disentangled and changes over time can be represented. It is not an exhaustive treatment on how 

human behavior can be represented in epidemiological models [22, 113, 114] nor a review of 

specific models of the COVID-19 pandemic [115, 116], as both are beyond the scope of this 

paper. To structure the overview, we focus on two common types of mathematical models  

namely (i) agent-based models and (ii) models based on differential equations (cf. Note 5). In 

agent-based models (ABMs), populations are represented by agents endowed with specific 

rules on how to interact in a given environment. In the context of the COVID-19 pandemic 

there are vast applications and different meta studies with varying time spans and focus points 

[e.g., 115, 117]. One of the strengths of the ABM approach is that it allows the representation 

of agents at the micro level and the incorporation of heterogeneity with respect to socio-

demographic characteristics, location, specific behavioral patterns and more. Differential 

equation models (DEMs) reflect infection dynamics at the macro-level using different 

population compartments and are computationally less expensive, faster to develop and more 

readily interpretable. Here, likewise, numerous applications and reviews have been contributed 

[e.g., 118, 119]. In both ABMs and DEMs, relevant human behaviors for transmission are 

typically physical contacts and mobility. DEMs are usually based on the assumption of random 

mixing in the population or subsets thereof [120], with transmission between the different 

compartments occurring at a specific probability. While the majority of ABMs also relies on 

such assumptions, according to a review [115], some ABMs assume more realistic, agent-

specific contact behavior. These can be based on real-world contact networks or activity 

patterns [121, 122] and take into account relevant factors such as the degree of infectiousness 

of specific agents, wearing of masks, duration of contact, air exchange and more [123, 124]. 

In assessing behavioral adaptation, the vast majority of modeling studies seems to focus on 

policy-induced adaptation, i.e., the effect of individual or multiple NPIs on contacts or mobility. 

In models based on random mixing, policy-induced adaptation is represented as a reduction of 

the number of possible contacts or a reduction of the transmissibility of given contacts, for 

instance assuming effects of masks or vaccination [123]. In agent-based models, agents may 
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change their specific contact patterns as a result of testing or contact tracing [123, 125, 126], 

after they themselves or others have become infected [127, 128] allowing them to subsequently 

only encounter a subset of their contacts. Compliance with NPIs has been introduced in some 

models, for instance by splitting the population in different compartments and estimating 

parameters for compliers and non-compliers separately [129]. 

Autonomous adaptation, on the other hand, is included less frequently in models. In DEMs, 

autonomous adaptation processes have been introduced by endogenizing a response in the 

contact rate to certain state variables, usually the number of infected or dead [130], assuming 

that these signal risk to the individual. This is for instance accomplished by the introduction of 

a new compartment representing risk perception [131] or by setting contact rates through a 

utility maximization process, in which social contacts increase utility and the risk of an infection 

decreases it [24]. Such models frequently result in other long-run dynamics than those without 

autonomous adaptation, by finding an equilibrium at a reproduction number of 1. In ABMs, 

adaptive behaviors have been represented in higher detail, for example when agents decrease 

contacts in proportion to the number of cases in their area [126] or their network of personal 

contacts [125]. However, despite their ability to incorporate heterogenous behaviors, merely 

about 5% of ABMs included adaptive behaviors in the review by [115]. 

Fig 9 summarizes this brief overview. In light of our analysis, approaches that address how the 

behavioral response changes over time are of particular interest. Time-varying parameters are 

widely used in behavioral-epidemiological models, for instance a time-dependent contact rate, 

which may be obtained by using proxy data from mobility data sets [132, 133] or by directly 

fitting models to the data [16, 134]. Such approaches have been successful in reproducing 

observed case numbers and death rates. However, neither approach allows a direct 

interpretation as to why contact patterns have changed because that process is not endogenous 

to the model. As we expound further below, however, it is of key interest whether a change in 

behavior is the result of policy, of autonomous adaptation or both. 

 

 

 
 

Fig 9. Confluence of autonomous and policy-induced adaptation in behavioral-

epidemiological models. In behavioral-epidemiological models, changes in contact 

patterns and mobility result are modeled through varying mechanisms related to 

autonomous and policy-induced adaptation. However, how the two adaptation 

mechanisms come together (“confluence”) has not been addressed sufficiently. 
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Thus, it is promising that an increasing number of models includes the effects of both 

autonomous and policy-induced behavioral adaptation [11, 16, 135-137]. Here, the key question 

is how the two effects are set in relation to one another. Do they overlap, add to one another, or 

is there a crowding effect? In [135], for example, NPIs set the boundary conditions for the 

number of possible contacts, which then vary in dependence of ICU occupancy. [137] 

characterize their relationship as additive and estimate the parameters for both effects 

concurrently from data. In their approach, identifiability is related to the dynamics of incidence 

number and change points of policy response. When the incidence number is rising (or falling) 

rapidly, the complementary or interactive effects of both autonomous and policy-induced 

adaptation should be detectable [138, 139]. If, however, the incidence is in a plateau, and the 

deployment of NPIs changes, identifiability issues may arise and a separate estimation of the 

two parameters may be impossible. [11] circumvent such issues by combining an econometric 

analysis of mobility with a ‘controlled SIR’ [140] which allows them to decompose the changes 

in the contact data inferred by the model into separate effects for autonomous and policy-

induced adaptation.  

 

5.2 Exploring system dynamics and policy strategies through 

conceptual models 
 

Disentangling the effects of autonomous and policy-induced adaptation and understanding how 

they interact is highly relevant for assessments of the effectiveness and cost of intervention 

strategies. The support of policy decisions can be considered the primary use for behavioral-

epidemiological models [141], which require adequate assumptions for counterfactual 

scenarios. As [136] point out, any narrative such as “strategy X would have saved more lives” 

is built on (implicit) behavioral assumptions. If that assumption is that no autonomous 

adaptation occurs, the counterfactual to compare interventions against may assume substantial 

exponential growth of infections [e.g., 142, 143] and thus overestimate the role of interventions 

based on observed data [8, 9]. Similarly, both behavioral adaptation processes have to be 

considered when evaluating the cost associated with a political response. Lockdowns, for 

instance, have been considered costly due to a slowdown of economic activities. If a substantial 

part of mobility reduction, however, is driven by autonomous decisions [6] then the ensuing 

macroeconomic cost cannot be attributed to the lockdown alone [11]. 

Conceptual models, simulating behavioral adaptation under different assumptions, may help to 

better understand system dynamics, particularly the interplay of autonomous and policy-

induced adaptation, and thus provide a basis for sound counterfactuals. During the pandemic, 

data-driven forecasting models were of key importance to provide immediate decision support. 

The use of behavioral theories and parameters in infectious disease models, however, has been 

characterized as inconsistent by review analyses [1, 21], not least because of lacking data (e.g., 

on risk perceptions) and the complexity of the interplay of behavioral or social factors. Thus, 

an analysis of adaptation mechanisms and their interplay in a conceptual way may improve our 

grasp of system dynamics and policy impacts under a range of different assumptions and 

scenarios. A number of conceptual and policy-simulation models has been developed, 

analyzing different timings and duration for interventions [143], impacts of a combined 

autonomous and governmental response [144],  or detailed systems models including contact 

behaviors and economic processes [145]. 

However, we are not aware of systematic analyses characterizing the interplay of autonomous 

and behavioral adaptation under different assumptions. While an extensive treatment of this is 

beyond the scope of this article, we underscore how this could be useful by adapting a simple 

SIR model [146]. As we present in detail in Supplementary information S3, we assume a small 

population with a time-varying contact rate. This contact rate is adapted in response to 
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containment policies, i.e., NPIs result in a direct reduction of contacts by a specific percentage, 

implemented as a smoothed jump. We use an existing specification from the early pandemic 

[24] to represent an autonomous response based on an expected utility framework, where the 

contact rate is reduced in response to the number of infected. For simplicity, we assume no 

interaction between both adaptation mechanisms but let their effects overlap. Note, however, 

that this is a simplifying assumption for the sake of illustration and should be relaxed by later, 

more in-depth analyses. Consider the example presented in Fig 10: We compare an early 

intervention after 7 days (left-hand panels) to a later response (right-hand panels, after 21 days). 

The bottom panels indicate how the assumed impacts of autonomous and policy-induced 

adaptation affect the contact rate: In the case of the early interventions, behavioral adaptation 

is driven mainly by policy. In the case of the later intervention, the initial increase in infections 

results in significant autonomous adaptation driving the early behavioral response, whereas the 

effect of policy only sets in later. 

 

 

 
Fig 10. Autonomous and policy-induced adaptation, contact rates and infections. The top 

panels show the number of daily new infections for an “early” and “late” intervention (dotted 

line, after 7 and 21 days, respectively). The bottom panels show relative changes in contact 

rates resulting from policy (blue dotted line), autonomous response (orange dotted line) and 

the combined effect (solid green line). Details on model specification can be found in 

Supplementary information S3. 

 

 

Similar to understanding the interplay, such models could be used to gain perspective on the 

sensitivity of models to certain parameters. In Fig 11, we exemplify this by running our 
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conceptual model under three different assumptions for the risk aversion parameter, which 

regulates the strength of the autonomous response to the number of cases (see S3). Assuming 

an intervention after 21 days, the model shows distinct differences between very risk averse 

and risk tolerant populations. Such analyses may allow differentiating the impact of certain 

intervention strategies under heterogenous risk preferences. Thus, well established differences 

in risk perceptions within or between populations [35, 147] may be considered and represented. 

 

 
Fig 11. Exemplifying the impact of different degrees of risk aversion. The top panel shows 

the number of daily new infections under three different assumptions for risk aversion in the 

population and the date of intervention (vertical dotted line). Bottom panel: Corresponding 

relative changes in the contact rate under the three assumptions. For details see S3. 

 

 

Even though these are deterministic examples with deliberately set effect sizes, they can 

showcase which type of counterfactual analyses of autonomous and policy-induced adaptation 

may be carried out with conceptual models. Later, more in-depth analyses could characterize 

interactions between both adaptation mechanisms (e.g., impact of risk signal from NPI 

introduction to autonomous response) or the impact of time variance on key parameters (e.g., 

declining contact rate or risk perception) in higher detail. When the mechanisms driving 

behavioral adaptation or the change in contact rate are understood better, different response 

strategies may be evaluated more accurately with respect to their effectiveness at disease 

prevention and their costs [136]. 
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6. Discussion 
 

Understanding how human behaviors influence infectious disease transmission is essential. 

This article contributed towards analyzing and modelling explicitly two interrelated forms of 

behavioral change in a pandemic: Autonomous and policy-induced adaptation. Synthesizing 

insights from various strands of behavioral literature on COVID-19, we characterized both 

adaptation mechanisms and their determinants. Autonomous adaptation refers to voluntary 

behavior changes due to a number of socio-demographic and personal factors, particularly 

perceptions about infection risk and efficacy of preventative actions [29, 31, 34]. Policy-

induced adaptation occurs when individuals alter their behavior in response to non-

pharmaceutical interventions and is influenced by factors such as compliance levels, social 

norms, and implementation strategies [46, 57, 59]. Though both forms of adaptation are distinct, 

their predictors overlap and they can be difficult to disentangle empirically. To address this 

challenge, we developed an analytical framework focusing on confluence of autonomous and 

policy-induced adaptation, their interactions and changes over time. This framework 

understands behavioral adaptation as a “moving target”, where autonomous and policy-induced 

adaptation overlap and diverge in a dynamically evolving interplay. The two adaptation 

mechanisms interact, which was analyzed with a focus on risk signals and trust: Among others, 

government activities can indicate risk and thus influence voluntary behavioral changes [10, 

17]. Trust in government, science and media, on the other hand, will affect whether such signals 

are heeded and to which extent individuals comply with behavioral mandates [84]. This 

interplay evolves over time, e.g., when effects such as a diminishing risk perception or an 

erosion of trust set in, potentially altering the relationship and relative importance of both 

adaptation mechanisms. Due to its flexibility, this framework may provide a useful system of 

reference for future research. Here, it formed the basis for our analysis of the German case and 

for the subsequent discussion of how autonomous and policy-induced adaptation can be 

represented in behavioral-epidemiological models. 

Our empirical investigation of Germany focused on the fall of 2020 and analyzed changes in 

mobility in response to predictors such as the stringency of policy response and 7-day-incidence 

as proxy for infection risk. The statistical analyses indicate that both autonomous and policy-

induced adaptation resulted in relevant reductions of mobility during the second wave of the 

pandemic. This is in line with findings from the early pandemic [8], albeit with an overall 

weaker effect than in March of 2020. Our analysis of risk signals during the first and second 

wave demonstrated significant differences in the decisiveness of policy response [101] and 

public attention for the pandemic. This substantiates that the perceived severity of the situation 

may have been different, at least for parts of the population. Relying on data from a large survey 

panel [106], we also examined changes over time in key determinants of behavioral adaptation, 

focusing on diminishing risk perceptions and the erosion of trust. Our analysis of risk 

perceptions provided tentative evidence for a declining association between infection levels and 

the subjective impression of risk over time, which others have reported as well [50]. It is 

important to note, however, that the analysis was carried out using a comparatively small 

sample due aggregation of data. Potential explanations for a changing assessment of infection 

risk include increasing knowledge about the virus and the associated risk, habituation effects 

and increasing access to vaccines as well as other methods to mitigate infection risk (e.g., rapid 

antigen tests). In a second analysis based on the time series, we found that the German 

government lost credibility in the eyes of a substantial part of the population. According to our 

ordinal regression analysis, those distrustful of government information were substantially 

more likely to view containment measures as excessive. Given the linkage established by others 

between feeling ‘disinformed’ and non-compliance with NPIs [148], this provides an indication 

for eroding compliance in parts of the German population. In sum, these analyses provide 
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several sound indications that autonomous and policy-induced adaptation are subject to 

significant changes over time. 

To accurately represent complex behavioral adaptation processes – be they driven by policy or 

self-protection – in parsimonious models is highly challenging. This is particularly so as reliable 

data on perceptions and attitudes may not be available in high resolution or real time. This 

explains why many modelers adopt pragmatic, data-driven approaches and the use of theories 

of behavior change in infectious disease modeling has been characterized as “patchy” [20]. 

Notwithstanding, particularly autonomous adaptation processes should receive more attention 

in infectious disease models, as others have argued [149]. Based on our literature and empirical 

analysis, we discussed relevant avenues in behavioral-epidemiological modeling: Emerging 

approaches combine endogenous autonomous adaptation with representations of policy 

impacts, thus including both autonomous and policy-induced adaptation [135, 137]. Future 

work should increasingly focus on their interplay and why parameters vary over time. Beyond 

reproducing disease outbreaks accurately, it is relevant to know the reasons driving contact rate 

changes, which may be accomplished by either endogenizing the mechanisms or providing 

contextual analyses. Such advancements would be of high value for the scenario-based analysis 

of intervention strategies. Behavioral adaptation needs to be understood to construct convincing 

counterfactuals and analyze the effects of policy interventions on behavior. As we argued in the 

previous section, conceptual and policy-simulation models may help to gauge system responses 

under various assumptions. Merely considering the deployment of NPIs ignores relevant 

aspects of how behavior shapes infectious disease transmission. Only if both autonomous and 

policy-induced adaptation are accounted for, can the impact of interventions on public health 

be adequately determined [8, 9] and the associated cost better understood [11]. However, it is 

also important to note that beyond medical cost and the decrease of economic activity, 

behavioral mandates impose cost on society for instance through increased incidence of mental 

health issues and domestic abuse, increases in preventable deaths, education deficits, and 

restriction of civil liberties [150, 151]. Thus, it is also of high relevance to know to which extent 

self-protection efforts can replace mandates [152] as voluntary action tends to be less costly 

[153]. It is also relevant to note that approaches perceived to be controlling can result in a loss 

of trust, for which our analysis in Section 4.2 provides some indication.  

 

This article is limited by a number of constraints. We approached a complex topic with many 

nuances, which implies that omissions and emphases cannot be avoided. For one, in our 

perspective on autonomous and policy-induced adaptation, social norms and processes have 

only been touched upon lightly, whereas they likely carry significant weight [50, 51]. Moreover, 

a variety of contextual conditions are highly relevant for behavioral adaptation, including 

factors such as political culture and other national framework conditions, which we did not 

address in higher detail. Our empirical analyses were limited to publicly available data sets, 

resulting in issues matching data from different sources and the need for geographic 

aggregation. In our analysis of autonomous and policy-induced adaptation, for instance, we 

found the German federal states to be the smallest shared geographical unit. However, some of 

the German states are rather large and have distinct regional heterogeneities (e.g., rural vs. 

urban), for which a more fine-grained analysis would have been beneficial. Nonetheless, our 

results are in line with other analyses based on data in higher spatial resolution, indicating that 

key effects can be found with a comparatively parsimonious approach. Further disaggregation 

would have particularly benefitted our analysis of diminishing risk perceptions, which was 

based on a small sample. It is thus important that future work revisits and corroborates these 

findings.  
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7. Conclusion 
 

This article contributed to the emerging understanding, analysis and modeling of autonomous 

and policy-induced behavioral adaptation during a pandemic, with a specific focus on their 

relationship and development over time. We developed a more precise behavioral framework 

by synthesizing insights from various bodies of literature on behavior change during the 

COVID-19 pandemic, focusing on key determinants (e.g., risk perceptions) and interactions 

(e.g., risk signals & trust) between autonomous and policy-induced adaptation. Both 

mechanisms and their relationship likely evolve over time, for instance when individuals 

become desensitized to infection risk or develop aversion against NPIs perceived to be 

controlling. We applied the framework in an empirical analysis of the German case which 

demonstrated that during the “second wave” of COVID-19 in the fall of 2020, mobility patterns 

changed significantly due to both autonomous risk management and containment measures. 

However, mobility reductions were smaller than in the early pandemic, which may be explained 

by ambiguous risk signals and lower public attention. Through analysis of survey data we found 

indications that there is a diminishing relationship between infection levels and risk perceptions, 

and that a substantial share of the population lost trust in information provided by the German 

government. Both trends likely further reduced the use of preventive behaviors over time. 

Against this background, a brief discussion of the representation of behavioral adaptation in 

epidemiological models was carried out. While promising modeling approaches are developed, 

it is key to further disentangle the effects of autonomous and policy-induced adaptation and 

accurately represent their interplay. Conceptual models may improve our understanding of how 

both effects interact and evolve and therefore support the development of counterfactual 

scenarios. By doing so, the impacts of alternative intervention strategies can be evaluated in a 

more convincing way, with high relevance for future pandemic management. 
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Notes 
 

Note 1: The effect of human behaviors on the spread of a contagion can be further differentiated 

than we do here. There are, for instance, relevant differences between reducing contacts or 

adopting measures that reduce the probability of transmission of physical contacts (e.g., use of 

facial masks). Here, due to our focus on behavioral change and its drivers, we do not 

differentiate types of behavior for simplicity. 

 

Note 2: Non-pharmaceutical interventions may have a variety of indirect effects on behaviors. 

The retention of reserve beds in hospitals, for example, may incite some individuals to take 

higher risk assuming that they can be treated. Here, however, we focus on more direct policy 

impacts for simplicity. 

 

Note 3: Note that misinformation has often played a critical role here, with interactions to the 

social media sphere [93]. 

 

Note 4: Trust in government can become a double-edged sword, however, as a case study of 

Singapore showed: If the competence of the government is believed to be high, individuals may 

reduce their own efforts of risk management [154]. 

 

Note 5: While our overview treats these as distinct from another for simplicity, note that hybrid 

[155] and multi-model approaches [156] have been developed. Due to our focus on mechanisms 

driving behavior change we do not address data-driven forecasting models in detail [see for 

example 157]. 
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Supplementary Information 1: Statistical Analysis of 

Mobility Data 
 

In the following, we present the models that support the results presented in Section 4.1. We 

specify our basis model as 

 

Model A ln(𝑚𝑗,𝑡) =  𝛽0 +  𝛽1 ln(𝑖𝑗,𝑡 + 1) + 𝛽2𝑠𝑗,𝑡 +  𝛼𝑗 +  𝜀𝑗,𝑡 

 

where 𝑚𝑗,𝑡 represents the dependent variable, the percentage change in mobility in federal state 

j on day t, relative to the average of the same month in the year 2019 [96]. Furthermore, 𝑖𝑗,𝑡 

represents the 7-day-incidence and 𝑠𝑗,𝑡 the stringency of containment measures in state j at day 

t [97, 98]. We calculate the natural log of incidence due to the at times exponential growth of 

case numbers and add one to address zeros in the data. 𝛼𝑗 represents the individual fixed effect 

at the state level, 𝜀𝑗,𝑡 the error term. Note that we also dropped either predictor and tested 

whether including national incidence levels had a significant effect, as was the case in [13]. 

Neither resulted in an improved model fit. 

 

As the raw data indicated significant changes in mobility patterns between weekdays, Saturdays 

and Sundays, we added individual indicator variables (𝑠𝑎𝑡𝑡 & 𝑠𝑢𝑛𝑡) to account for this 

heterogeneity: 

 

Model B ln(𝑚𝑗,𝑡) =  𝛽0 +  𝛽1 ln(𝑖𝑗,𝑡 + 1) + 𝛽2𝑠𝑗,𝑡 + 𝛽3𝑠𝑎𝑡𝑡 + 𝛽4𝑠𝑢𝑛𝑡 +  𝛼𝑗 +  𝜀𝑗,𝑡 

 

 

The weather changes in the fall likely impact mobility patterns. We include the daily average 

temperature temp and the daily average precipitation precip in state j at day t. This data was 

obtained from Deutscher Wetterdienst [158], Germany’s national meteorological service. The 

data for all 83 weather stations were downloaded and spatially interpolated for each federal 

state using the inverse distance weighting method. 

 

Model C ln(𝑚𝑗,𝑡) =  𝛽0 +  𝛽1 ln(𝑖𝑗,𝑡 + 1) + 𝛽2𝑠𝑗,𝑡 + 𝛽3𝑠𝑎𝑡𝑡 + 𝛽4𝑠𝑢𝑛𝑡

+ 𝛽5𝑡𝑒𝑚𝑝𝑗,𝑡 +  +𝛽5𝑝𝑟𝑒𝑐𝑖𝑝𝑗,𝑡 + 𝛼𝑗 +  𝜀𝑗,𝑡 

 

Finally, we estimate a model in which we drop the stringency index (𝑠𝑗,𝑡) as a predictor variable 

and instead introduced a categorical variable phase which refers to the extent to which national-

level NPIs were implemented and depends on the date of each observation. Any date before 

November 2 receives the value “local measures”, from November 2 to December 15 the value 

“lockdown light” and thereafter “lockdown hard”. This may also mitigate potential 

multicollinearity issues between 𝑖𝑗,𝑡 and 𝑠𝑗,𝑡, which can occur if increased stringency follows 

increased incidence levels, as it was the case in some federal states. The model is thus specified 

as: 

 

Model D ln(𝑚𝑗,𝑡) =  𝛽0 +  𝛽1 ln(𝑖𝑗,𝑡 + 1) + 𝛽3𝑠𝑎𝑡𝑡 + 𝛽4𝑠𝑢𝑛𝑡 + 𝑝ℎ𝑎𝑠𝑒𝑡  +  𝛼𝑗

+  𝜀𝑗,𝑡 

 

Note that daily the inclusion of weather data did not lead to improvements in model fit in the 

specification of Model D, perhaps because the different NPI phases roughly coincide with 
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decreasing temperature levels and increased precipitation in fall. The variables temp and precip 

were thus not included in Model D.  

Detailed regression results can be found in S1 Table 1. The results indicate that the sign of 

stringency and incidence are as expected and robust across all models, with slight reductions in 

effect sizes due to the incorporation of additional predictors. With declining temperature and 

higher precipitation mobility is reduced as should be expected. In Models A and B, this seasonal 

trend seemed to be attributed to increases in stringency and incidence over the same period. 

Interestingly, the introduction of the variable phase as an ordinal measure of stringency 

improved model fit while reducing the effect of incidence slightly, indicating that more variance 

in the data can be explained when measuring ordinal stringency at the national level. In Fig 4 

in Section 4.1, a marginal effects plot for Model D is presented. Below, in S1 Fig 1, marginal 

effects for both state-level stringency and incidence in Model C are presented, depicting two 

values of the other predictor, and assuming a weekday mean values for temperature and 

precipitation. 

 

 

 
 

S1 Fig 1. Marginal effects of policy stringency and 7-day incidence in Model C. The plot 

was generated using the R package ggeffects [99]. 

 

 

The models were subjected to diagnostic tests common for this model class: The Pesaran CD 

(Cross-Sectional Dependence) test indicated presence of heteroscedasticity and a Durbin-

Watson test suggested presence of some serial correlation (see also the diagnostics plots in 

panels C and D of S1 Fig 2). We therefore report our regression results with standard errors 

robust to heteroscedasticity and autocorrelation, using the method of [159]. Models were 

estimated and standard errors calculated using the R package fixest [160]. As the models are 

implemented using a within transformation, multicollinearity that might have existed between 

time-related predictors and individual fixed effects is largely mitigated. 
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S1 Fig 2. Model fit diagnostics for Model D.
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S1 Table 1. Results of fixed effects regression analyses. 

 
 Model A Model B Model C Model D 

Predictors Estimates CI p Estimates CI p Estimates CI p Estimates CI p 

𝑖𝑗,𝑡  + 1 [log] -7.56 -8.67 –  

-6.45 

<0.001 -7.53 -8.65 –  

-6.40 

<0.001 -7.12 -8.13 –  

-6.11 

<0.001 -5.19 -6.28 –  

-4.09 

<0.001 

𝑠𝑗,𝑡 -0.28 -0.35 –  

-0.20 

<0.001 -0.28 -0.35 –  

-0.21 

<0.001 -0.16 -0.24 –  

-0.09 

<0.001 
   

𝑠𝑎𝑡𝑡 
   

-1.92 -2.80 –  

-1.04 

<0.001 -2.08 -2.93 –  

-1.24 

<0.001 -1.92 -2.74 –  

-1.10 

<0.001 

𝑠𝑢𝑛𝑡 
   

-5.43 -6.75 –  

-4.11 

<0.001 -5.35 -6.66 –  

-4.04 

<0.001 -5.49 -6.82 –  

-4.17 

<0.001 

𝑡𝑒𝑚𝑝𝑗,𝑡 
      

0.48 0.33 –  

0.64 

<0.001 
   

𝑝𝑟𝑒𝑐𝑖𝑝𝑗,𝑡       -0.45 -0.57 –  

-0.32 

<0.001    

𝑝ℎ𝑎𝑠𝑒𝑡: lockdown_light 
         

-6.48 -8.19 –  

-4.76 

<0.001 

𝑝ℎ𝑎𝑠𝑒𝑡: lockdown_hard 
         

-13.97 -15.87 –  

-12.07 

<0.001 

Observations 1968 1968 1968 1968 

R2 / R2 adjusted 0.622 / 0.619 0.642 / 0.639 0.663 / 0.660 0.697 / 0.694 

*Notes: Robust standard errors (RSE) and confidence intervals (CI) were calculated using the Newey West method as described by [160]. 

The table with model outputs was generated using the R package sjPlot [161] 
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Supplementary Information 2: Statistical analysis of time 

variance  
 

Here, we present the data and methodological approach supporting the results presented in 

Section 4.2. 

 

Data source 
 

The data enabling the analysis in Section 4.2 stem from a representative survey of the German 

population dealing with perceptions and attitudes related to the COVID-19 pandemic [106]. 

The survey was implemented by the opinion research center forsa in 48 waves between March 

18, 2020, and April, 27, 2022, by computer-assisted telephone interviews (size of the overall 

sample: n = 72,214). Respondents were randomly sampled from the German-speaking 

population aged 14 and above. Demographic information collected from survey participants 

includes sex, age, employment status, school-leaving qualification, household net income 

(grouped), preferences for the next federal election and past voting behavior. In the main 

survey, participants were asked to evaluate COVID-19 measures taken by the German 

government as well as other topics, varying with each wave.  Frequently, this included questions 

on credibility of information provided on the pandemic by the German government and 

questions related to risk perception. 

 

Statistical analysis of diminishing risk perception 
 

In three recurring questions of the survey, respondents were asked to rank the risk of infection 

for themselves, for their family members as well as the risk of spreading the disease to others. 

Surveyed individuals could respond to this question on a four-point rating scale. For our 

analysis of a potentially diminishing risk perception, these were matched with available data on 

7-day incidence. The smallest possible geographic unit for matching both data was found to be 

the German state level. As no information on state of origin is available in [106] before August 

2020, we only include data from thereafter. This results in 21 dates for which risk perception 

and incidence levels can be matched for each German state (n = 336). While the individual risk 

assessments in individual responses are on an ordinal scale, we assume that these can be treated 

as metric after calculating averages across the sample of each wave. To simplify the analysis 

and interpretation of results, we combine the data from three risk perception related questions 

into a composite variable. We calculate the arithmetic mean of the three variables for each state 

and date, which may also somewhat correct for the optimism bias common when merely the 

perceived infection risk for oneself is considered. Note, however, that we also repeated the 

analysis documented below for the three individual variables and the results proved robust, 

albeit with slight differences in effect sizes.  

Statistical models 

Let 𝑦𝑗,𝑡 represent the dependent variable, perceived risk, in state j at time t. Further, 𝑥𝑗,𝑡 

represents incidence level in state j at time t and, and 𝑑𝑡 denotes a numeric representation of 

the date [162, 163]. For ease of interpretation, we convert this so that the first date in our data 

is represented by the number 1 and increases by 1 each day.  

 

As a first step, we estimate a simple linear model (Model A): 
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Model A 𝑦𝑗,𝑡 =  𝛽0 + 𝛽1 ∙ ln(𝑥𝑗,𝑡) +  𝛽2 ∙ 𝑑𝑡 + 𝜖 

 

 

Note, however, that linear regression models have a number of relevant limitations with respect 

to time series due to, among other things, the assumption that observations are independent 

from one another [163]. We thus proceed to estimate two linear mixed effect models, which 

can handle clustered and hierarchical data in small sample sizes and provide more flexibility in 

modeling the data's underlying structure [107]. In Model B and C, we assume incidence and the 

numeric time variable as fixed effects. Model B includes a state-level random effect 𝑏𝑠𝑡𝑎𝑡𝑒 to 

account for unobserved heterogeneity among the 16 German federal states. 

 

Model B 𝑦𝑗,𝑡 =  𝛽0 +  𝛽1 ∙ ln(𝑥𝑗,𝑡) +  𝛽2 ∙ 𝑑𝑡 + 𝑏𝑠𝑡𝑎𝑡𝑒 + 𝜖 

 

To investigate whether there are temporal patterns in the data beyond the linear progression of 

time (such as seasonal variations due to weather changes) we estimate a random effect 𝑏𝑑𝑎𝑡𝑒, 

allowing the model intercept to vary for each observed date. 

 

Model C 𝑦𝑗,𝑡 =  𝛽0 +  𝛽1 ∙ ln(𝑥𝑗,𝑡) +  𝛽2 ∙ 𝑑𝑡  + 𝑏𝑑𝑎𝑡𝑒 + 𝜖 

 

The results of the regression analyses are presented in S2 Table 1. Across all models, both 

predictor variables are significant and show the hypothesized sign: Perceived risk increases 

with incidence and decreases with the passage of time. While the effect size of 𝑑𝑡 may seem 

small at first glance, note that the distribution of the response variable is relatively small, with 

a mean of 2.14 (min: 1.50; max: 2.69), whereas 𝑑𝑡 covers 610 days. In Fig 6 in Section 4.2.1, 

we present a partial effects plot depicting the impact of 𝛽2 over time at a given level of 

incidence. We used AIC to support model selection and find that the Model C indicates the 

overall best model fit, explaining about 60% of the variance in the data, with fixed effects 

accounting for 36%. 

 

 
S2 Table 1. Regression results supporting Section 4.2.1 

 

  Model A Model B Model C 

   Predictors Estimates CI p Estimates CI p Estimates CI p 

Intercept 1.96 1.90 –  

2.01 

<0.001 1.95 1.89 –  

2.00 

<0.001 2.06 1.96 –  

2.16 

<0.001 

ln(𝑥𝑗,𝑡) 0.11 0.09 –  
0.12 

<0.001 0.11 0.09 –  
0.12 

<0.001 0.07 0.05 –  
0.10 

<0.001 

𝑑𝑡 -0.001 -0.001 –  

-0.001 

<0.001 -0.001 -0.001 –  

-0.001 

<0.001 -0.001 -0.001 –  

-0.001 

<0.001 

Random effects 

𝑏𝑠𝑡𝑎𝑡𝑒 / 𝑏𝑑𝑎𝑡𝑒   0.02 0.01 

τ00   0.00 state 0.01 date 

N   16 state 21 date 

Observations 336 336 336 
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R2 / R2 adjusted 0.479 / 0.476 0.485 / 0.517 0.358 / 0.591 

AIC -347.69 -351.93 -417.18 

Notes: The table with model outputs was generated using the R package sjPlot [161]. The package calculates marginal and 

conditional R-squared values based on [164]. 
 

 

Model diagnostic plots 

 

Models B and C were subjected to standard goodness-of-fit tests for mixed effect models. We 

tested for multicollinearity through the calculation of variance inflation factors, which were 

found to be between 1.4 and 2.2 and thus in an acceptable range. In S2 Fig 1, we present a 

number of diagnostic plots for Model C that were used to assess the validity of all models.  

 

 

 
 

S2 Fig 1. Diagnostic plots for Model C 

 

Panel A of S2 Fig 1 visualizes the overall model fit by plotting predicted against actual values. 

Panel B depicts model residuals, which do not show discernible patterns or signs of 

heteroscedasticity. In Panel C, the model residuals are plotted over the observed time period, 

exhibiting no visible pattern of temporal autocorrelation. Notably, the random effects plot in 

Panel D indicates a weak seasonal pattern introduced through the inclusion of date as a random 

effect, where the intercepts tend to increase slightly during most winter months.  
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Statistical analysis of eroding trust and compliance 
 

The data used in the analysis on trust in government information and assessment of containment 

measures also stem from [106]. All variables pertinent to the following analysis are listed in S2 

Table 2, whereas the core interest is placed on (i) perceived credibility of government 

information and (ii) assessment of containment measures. Considering only survey waves for 

which data on both questions are available, 36 waves between April 2, 2020, and April 27, 

2022, remain for analysis. For simplicity, we exclude responses from further analysis with the 

answer “I don’t know”, which correspond together with NA values to 2.0% and 0.9% for 

assessment and credibility, respectively.  

As S2 Table 2 indicates, the data is collected through rating items with differing levels. For 

ordinal response variables, ordinal logistic regression methods are considered the standard and 

more robust than metric approaches [111, 165]. Traditional regression methods, however, 

incorporate ordinal predictors by treating these as nominal or numerical variables, with the risk 

of under- or overestimating their effects [166]. We thus employ a Bayesian approach using the 

R package brms [167], which allows for the inclusion of monotonic ordered predictors [166, 

168]. We estimate two ordinal regression models with weakly informative priors, running four 

chains for 2,000 iterations. Algorithm convergence was confirmed through visual checks 

(“traceplots”) and the Rhat statistic. In the basic, univariate model, assessment is the dependent 

variable, with credibility as predictor. We extend this to a multivariate model by controlling for 

a number of socio-demographic variables. While we treat most other predictors as nominal, we 

also include income as a monotonic ordered predictor. 

S2 Table 3 contains the summary of model results. It indicates that the thresholds for response 

variable categories as well as the effect of credibility are significant and robust across both 

model specification. The direction of effects is as expected: An increase in the credibility 

variable leads to an increase in assessment (note the levels of each variable in S2 Table 2). 

Another significant effect in the multivariate model is age above 60 years, which is consistent 

with this age group having a higher risk of mortality and thus less inclination to consider 

containment measures “go too far”. A comparison of both models was carried out using the 

leave-one-out information criterion (LOOIC), a Bayesian information criterion based on out-

of-sample predictive performance. The comparison of LOOIC values (see S2 Table 3) indicated 

that the multivariate model has an overall better model fit, with a difference of more than two 

standard errors, indicating substantial improvement in large data sets [111]. We thus use this 

model to develop the conditional effect plot (Fig 8) presented in Section 4.2.2. 

 

 

S2 Table 2. Model variables: Government credibility and assessment of response. 

 
Variable name Description Levels 

assessment 

How do you assess the current 

political measures to contain the 

coronavirus? 

1: Not far enough 

2: Adequate 

3: Go too far 

credibility 

How credible do you consider 

information from the German 

government on the corona crisis to 

be? 

1:Very credible 

2: Rather credible 

3: Less credible 

4: Not credible 

sex Sex 
1: male 

2: female 

age Age 

1: 14-29 

2: 30-44 

3: 45-59 
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4: 60+ 

education School leaving certificate 

1: secondary school 

2: middle degree 

3: university / Abitur 

income Household net income 

1: below 1,500 Euro 

2: 1,500 – 3,000 Euro 

3: 3,000 Euro or more 

Note that the original coding of the data from [106] were changed here so that the order of categories used for 

analysis is reflected in this Table. 

 

 

S2 Table 3. Results of ordinal regression. 

 

Variable 

 Univariate model Multivariate model 

 Posterior mean 95% CI Posterior mean 95% CI 

Thresholds 

Insufficient| 

adequate 

 
-0.32 [-0.34; -0.30] -0.29 [-0.89; -0.84] 

adequate| 

excessive 

 
1.24 [1.22; 1.27] 1.29 [1.23; 1.35] 

Predictors 

credibility  0.45 [0.43; 0.46] 0.45 [0.44; 0.47] 

sex 
male - - Reference value 

female - - -0.02 [-0.04; 0.00] 

age 

14-29 - - Reference value 

30-44 - - 0.04 [-0.00; 0.08] 

45-59 - - -0.04 [-0.08; -0.00] 

60+ - - -0.24 [-0.27; -0.19] 

education 

secondary school - - Reference value 

middle degree - - 0.13 [0.10; 0.17] 

university / Abitur - - 0.12 [0.09; 0.16] 

Income  - - 0.02 [-0.00; 0.04] 

Simplex Parameters 

credibility 

Very credible Reference 

Rather credible 0.12 [0.10; 0.14] 0.14 [0.12; 0.16] 

Less credible 0.29 [0.27; 0.31] 0.29 [0.27; 0.32] 

Not credible 0.59 [0.57; 0.61] 0.57 [0.55; 0.59] 

LOOIC    82598.6  82044.3 

SE   203.5  203.4 

Notes: The values in parentheses refer to 95% credible intervals, with bold letters indicating CI do not include 0. 

For a detailed description of monotonic ordered predictors and simplex parameters in brms see [166]. The simplex 

parameters for the income predictor were not included as there was no significant effect. 
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Supplementary Information 3: Conceptual SIR model of 

autonomous and policy-induced adaptation 
 

 

The conceptual model used to support the discussion in Section 5 and generate Figs 10 and 11 

builds on the classic Susceptible-Infected-Recovered (SIR) model [146]. The model is 

formulated as: 
 

𝑑𝑆

𝑑𝑡
=  −𝛽𝑐 ∙ 𝐼 ∙

𝑆

𝑁
      (1) 

 
𝑑𝐼

𝑑𝑡
=  𝛽𝑐 ∙ 𝐼 ∙

𝑆

𝑁
−  𝛾 ∙ 𝐼     (2) 

 
𝑑𝑅

𝑑𝑡
=  𝛾 ∙ 𝐼       (3) 

 
where S denotes the susceptible population, I the infected population, R the stock of removed 

population (either by death or recovery), and N the total population. Deviating from the classic 

SIR model, we assume a time-varying transmission rate 𝛽𝑐, defined as: 

 

𝛽𝑐 =  min (𝛽𝑎, 𝛽𝑝)     (4) 
 

As explained in Section 5, we assume an overlapping effect of autonomous and policy-induced 

adaptation in 𝛽𝑐, which is implemented as the minimum of the hypothetical transmission rates 

𝛽𝑎, denoting endogenous behavioral response without considering impacts of NPIs, and 𝛽𝑝, 

denoting policy-induced changes in contacts without considering endogenous behavioral 

response. 

Autonomous adaptation 

To define the impact of autonomous adaptation 𝛽𝑎, we follow an existing application [24] and 

assume that individuals derive utility 𝑢(𝛽𝑎) from social contacts, specified as:  

 

𝑢(𝛽𝑎) =  
1

1−𝜀
(𝛽𝑎

𝜀 − 𝜀𝛽𝑎)    (5) 

 

In (5), the parameter ε ∈ (0,1) captures how important it is for individuals to engage in physical 

contacts. Assuming an early pandemic situation, where still almost all of the population is 

susceptible, the individual risk of an infection is β I S/N ≈ β I. As described in detail in [24], a 

rational, risk-averse individual chooses the contacts such as to trade-off current utility from 

contacts, (5), and the expected utility loss from an infection, ∆v. Following from this, the 

number of contacts is determined by 

 

max
𝛽

{𝑢(𝛽𝑎) − 𝛽𝑎𝐼∆𝑣}     (6) 

 

With the specified utility function (5), the optimal number of contacts becomes a decreasing 

function of the number of infected, I.  
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The first-order condition for (6) reads  

 
1

1−𝜀
(𝜀𝛽𝑎

∗𝜀−1
− 𝜀) − 𝐼∆𝑣 = 0    (7) 

 

which can be rearranged to  

𝛽𝑎
∗ = (1 +  𝐼∆𝑣 (

1

𝜀
− 1))

1

𝜀−1
   (8) 

 

Policy-induced adaptation 

The effect of NPIs on contacts and transmissions is introduced in the model as a direct 

reduction of contacts. The transmission rate 𝛽𝑝 is set by a piecewise constant function:  

𝛽𝑝 =  f(t, 𝑡NPI, τ)      (9) 
 

where t denotes the current time step, 𝑡NPI denotes the time step when NPIs are introduced and 

the parameter τ denotes the value to which 𝛽𝑝 is set in a smoothed jump over seven days for 

starting from t = 𝑡NPI. 

Parameters 

Due to the illustrative function of the model, parameter values were set deliberately, as specified 

in S3 Table 1.  

 

S3 Table 1. Model parameters. 

 
Parameter Value Interpretation 

N 10,000 Population size 

𝐼0 10 Initial number of infected 

𝛾 .166 /d Recovery rate  

𝜀 0.7 
Parameter defines marginal utility of physical contacts, 

see [24] for detailed specification. 

∆𝑣 [1, 5, 8] x 10-4 

Parameter encompasses individual risk assessment and 

preferences, contained in a value function for 

discounted expected utility, see [24] for more details. 

𝑡NPI [7, 21] Time step of NPI introduction 

𝛽0 .40 /d Utility-maximizing contact rate without pandemic 

𝜏 .25 /d Reduced contact rate due to NPIs 
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