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Abstract—Unhealthy diets are a leading cause of major chronic
diseases including obesity, diabetes, cancer, and heart disease.
Food environments—the physical spaces in which people access
and consume food-have the potential to profoundly impact diet
and related diseases. We take a step towards better understanding
the nutritional quality of food environments by developing MINT:
Menu Item to NutrienT model. This model utilizes under-studied
data sources on recipes and generic food items, along with state-
of-the-art word embedding and deep learning methods, to predict
the nutrient density of never-before-seen food items using only
their name as input. The model achieves an R? = (.77, a sub-
stantial improvement over comparable models. We illustrate the
utility of MINT by applying it to the Los Angeles restaurant food
environment, and discover close agreement between predicted
and ground truth nutrient density of restaurant menu items. This
model represents a significant step towards a policy toolkit needed
to precisely identify and target food environments characterized
by poor nutritional quality.

Index Terms—public health, food and nutrition, food environ-
ment, natural language processing, deep learning

I. INTRODUCTION

Poor diets are a leading cause of chronic diseases such as
obesity, cancer, and heart disease [1]. In 2017, an estimated
11 million deaths globally were attributed to poor dietary
factors [2]]. To address this issue, initiatives aimed at improv-
ing diets have been proposed by various organizations and
experts in the field [3]], [4]]. Emerging evidence indicates that
the physical environments in which individuals acquire and
consume food can significantly impact diet and related health
outcomes [5]], [[6]. Food environments impact what food is
accessible and are thus recognized as a key social determinant
of health [7]]. Unhealthy food environments have been shown
to cue unhealthy eating choices [8], [9]. Previous approaches
to classify food environments have often been based on the
presence or absence of broad food outlet categories [10],
such as “food deserts,” environments with low supermarket
access [8[, [11]; and “food swamps,” environments with an
over-abundance of fast food outlets [12]], [[13]]. These broad
categorizations mask the diversity of the nutritional qual-
ity of individual menu offerings (e.g., ‘fried chicken meal’
vs. ‘grilled chicken salad’); information that would support
researchers and policymakers in designing interventions to
increase access to healthier foods.

Our paper aims to advance the ability to assess the nu-
tritional quality of the restaurant food environment by pre-
dicting the nutritional quality of individual restaurant menus,
and aggregating across menu item predictions to come up
with indicators for restaurant-level and food environment-level
quality. Nutritional quality is a multi-faceted concept with
many operational definitions [[14], [15]]. In this paper, we focus
on a specific component of nutritional quality: nutrient density,
the weight-based composition density of different nutrients in
food items. These nutrients include both macronutrients (e.g.,
protein, fat, and cholesterol) and micronutrients (vitamins and
minerals).

We explore this aim by starting with the hypothesis that
the nutrient density of restaurant menu items can be estimated
using general menu item names. This would be convenient
because digital menus are relatively easy to gather. However,
estimating the nutrient density of menu items from their names
alone is a difficult task because menus in the real-world
normally do not provide information on menu items’ nutrient
composition, let alone composing ingredients or recipes. We
hypothesize that nutrient density can be approximated from
menu item names alone using machine learning methods. In
this paper, we utilize language models to develop and evaluate
methods for this task.

Towards this, we propose, introduce, and evaluate Menu
Item to NutrienT (MINT), a model that predicts the nutrient
density of food items from their names alone, by learning from
large-scale meal and recipe data. We train MINT to predict
a single composite index of a menu item’s overall nutrient
density using the RRR, the ratio of recommended to restricted
nutrients, an established, validated expression measuring the
relationships between macro- and micro-nutrients in a food
item [16]. We use multiple datasets to train and test the model.
To train the model, we employ diverse food item data. This
includes ‘generic’ food items, which are ‘canonical foods’ —
everything from individual raw foods to complex meals — not
linked to restaurant menus or recipes. We access a large dataset
of generic food items providing names, nutrient composition,
and ingredients from Edamam, a publicly accessible source
(https://www.edamam.com/). We also use data of over one
million recipes from Recipel M+, employed to train language
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models that underlies a component of the prediction model.
This dataset contains recipe food item names, ingredients, and
preparation instructions, but not nutrient composition (for most
items).

To test the model’s ability to predict the nutrient density of
any kind of food item, we apply it to held-out data on generic
food items from Edamam. However, because the purpose of
the model is to predict the nutrition of restaurant menu items,
its ultimate test of merit is in its application to restaurant menu
data. It is hard to gather datasets on menus for restaurants
at-large providing both the names of menu items and their
nutrient composition, since as any patron will have observed,
most restaurants do not publish nutrient composition informa-
tion. However, the Affordable Care Act (ACA) requires that all
chain restaurants with 20 or more physical outlets measure and
publish nutrient information on each of their menu items [17].
A dataset on chain restaurant menus and nutrient information
is compiled by Spoonacular, and made publicly available via
their API (https://spoonacular.com/food-api). We source this
data to provide an evaluation of our model on real-world,
out-of-sample restaurant menu data. The Spoonacular dataset
provides food items gathered from real chain restaurant menus,
such as McDonald’s, Subway, Sweetgreen, and Starbucks.

We evaluate the model’s ability to predict nutrient density
at three levels of analysis — individual menu items, restaurant
menus, and across all restaurants in our dataset in a neigh-
borhood food environment. To address the latter, we link the
Spoonacular dataset to an additional database providing the
location of restaurants in LA County.

To summarize, our contributions are as follows:

1) We develop a state-of-the-art open-source method to

predict the nutrient density of restaurant menu items ﬂ

2) We perform a qualitative evaluation of the model using
several ground truth datasets, demonstrating strong pre-
dictive performance as well as substantive improvements
against baselines and state-of-the-art algorithms.

3) We use the model to evaluate the Los Angeles chain
restaurant food environment using large-scale, real-
world Chain restaurant menu data and find good agree-
ment with ground truth data.

These contributions are a substantial step towards a fine-grain
evaluation of food environments, a critical toolkit for policy-
makers aiming to improve the diets and health of the general
population by identifying and targeting areas characterized by
poor nutritional quality.

II. RELATED WORKS
A. Food item nutrient density indicators

The leading cause of dietary disease is the under-
consumption of recommended nutrients and food groups [18]],
rather than the overconsumption of calories, as nutrient dis-
tribution and caloric value have been shown to be largely
uncorrelated within food items [19], [20]. Towards this pur-
pose, several continuous indicators have been designed for

10ur code is available here: jhttps://anonymous.4open.science/r/mint-B5F3,

evaluating the composition of nutritional components in a diet
or food item [21]], [22]. These include the Healthy Eating Index
(HEI) [23]], which assesses amounts of key dietary components
(i.e., total fruit, whole fruit, legumes, etc.), and several indices
assessing nutrient density.

Nutrient density scoring of individual food items has been
demonstrated to be a reliable and valid tool for quantifying
nutritional quality in a single score [16], [24]], [25]]. Multiple
regulatory applications have employed these tools including
evaluating labeling and marketing of snack foods, food tax
programs, and defining school food standards [25]-[30]]. These
include the Ratio of Recommended to Restricted nutrients
(RRR) [|16]], used in this paper, and the Nutrient Rich Foods
Index (NRF) [24], [31].

The RRR [16] is the average of the % of the FDA rec-
ommended daily value (RDV) of each recommended nutrient,
namely protein and fiber (macronutrients), as well as vitamins
A and C and minerals Calcium and Iron (micronutrients), di-
vided by the average of % of the RDV for restricted nutrients,
namely sugar, saturated fat and calories (macronutrients) and
sodium and cholesterol (micronutrients):

E %Dv;"ecommended
E %Dv;‘estricted
Here, we show the daily value intake for each nutrient that

makes up RRR in Table they are defined and recently

updated by FDA [32]. We use this value when calculating
the nutrient density scores.

RRR =

)

TABLE I
DAILY VALUE INTAKE FOR EACH NUTRIENT CONSISTS OF RRR.

Nutrients Daily Value Intake
Protein 50(g)
Fiber 28(g)
Vitamin A 900(ug)
Vitamin C 90(mg)
Calcium 1300(mg)
Iron 18(mg)
Calorie 2000(kcal)
Total Sugar 50(g)
Cholesterol 300(mg)
Saturated Fat 20(g)
Sodium 2300(mg)

B. Food computing

A range of recent literature has evaluated how to extract
properties of food from images and text [33[]. This includes
predict recipe [34] or nutrition information from food images
[35]-[37]], but also a proliferation of methods to match food
names to recipes and macro-nutrients [33]].

Many of these methods (e.g., [37]) are alike to Liu et
al., which developed an algorithm to estimate the nutritional
quality of food items by matching names to food items in
the USDA National Nutrient Database for Standard Reference
(NNDSR), the lab-verified gold-standard of the nutrition com-
position of foods in the U.S. that contains around 8,000 generic
and branded food items [38|], [39]]. To find matches to the
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NNDSR, the USDA matching method [38|] makes use of the
algorithm made available through the FoodData Central API,
which is based on ElasticSearch, a character-based matching
algorithm for computing a similarity measure between two
strings. While these and other methods also match food names
to macronutrients [33]], menus often contain food names that
do not appear in these datasets, motivating the need for the
new methodology we develop in this paper.

C. Text embedding

Word embeddings, such as those used to extract food prop-
erties from text [33]], have a long history, including Word2Vec
[40], an improvement over even earlier Bag-of-word vectors
[41]. FastText was an improvement on these previous methods
due to its ability to map words, even words not seen in
the training set, to embeddings. Alternatives and improve-
ments to this model include GLoVE [42], and transformer-
based contextual embeddings, most notably BERT [43] and
RoBERTa [44]. More nuanced embedding methods have been
proposed, including those that embed entire sentences, such as
Sentence-BERT (SBERT) [45]], or longer documents, such as
Longformer [46]. The predictive performance of models using
text embeddings is domain-dependent, motivating the need to
test different text embedding methods in new applications.

D. Clustering and Fine-tuning

Many clustering methods exist, most notably K-Means [50],
which partitions data to their nearest cluster centroid. The
number of clusters is determined from metrics, such as the
elbow method [51]], or Silhouette score [52]. An alternative
approach to this method is DBSCAN [53], in which the
authors defined clusters based on the density of points, and
developed a way to determine the number of clusters. Both
of these methods, however, create “hard” clusters while most
data are unlikely to partition so cleanly into a given cluster.
We therefore use HDBSCAN, a method similar to DBSCAN
that efficiently performs soft clustering, which allows for data
to belong to multiple overlapping clusters. Further variations
of these ideas exist (cf. [[54]).

Fine-tuning used in this paper is a common approach to
improving models with limited data and is often used in Al
tasks [55], [56], including NLP tasks [57]], and multi-label
classification tasks [58]]. These methods address a common
problem of distribution shift [59], where the distribution of
features varies across domains, and covariate shift [60], [61],
where the relationship between features and outcome variables
differs across domains.

E. Our contribution

This paper improves upon the previous methods by leverag-
ing state-of-the-art word embedding models and feed-forward
neural networks to interpolate the nutritional score of menu
items. We aim to train the model to infer the nutrient values
of food items without the need for precise ingredient iden-
tification using clustering to get food category pseudo-labels
and fine-tuning techniques. The approach is possible due to

the large scale of generic food items in our training data, as
described below.

III. METHODS

We aim to develop MINT to predict the nutrient density of
individual restaurant menu items and, ultimately, an overall
nutrient density score for each restaurant. We use the nutrient
density indicator RRR [16], as defined in Equation [I] We
choose RRR over the other approaches and indices for eval-
uating the nutritional components of food items because (i)
our validation data provides access to nutrient values rather
than food groups, making the use of recommended nutrients
more straightforward than approaches assessing key dietary
components (i.e. food groups); and (ii) we do not attempt to
predict the portion size of a menu item in this work; this allows
us to use the RRR, which is portion-size invariant due to its
ratio construction, but not the NRF'.

We also created a similar metric RRR,,4cr0, Which is
RRR without micronutrients in the numerator (RRR,qcro0)-
RRR,,qcro Was used where micronutrients were inaccurate or
missing in datasets (i.e. Spoonacular).

%D%rotein + %Dvﬁber

RRRmam’o =
Z %D‘/restricted

2

The pipeline for the MINT framework is shown in Fig. [I]
This algorithm extracts a nutrient density score from each
menu item in three steps. We first utilize a range of data
to create specialized language models for extracting features
[48]]. Next, we use a state-of-the-art sentence embedding
model, MPNet [49] to embed menu item names with their
ingredients to create ingredient-contextualized food clusters.
These clusters act as food category pseudo-labels to train a
model that maps menu item names (without their ingredients)
to the learned pseudo-labels. Finally, we train a model that
predicts menu item nutrient density and then fine-tune copies
of that model to each food category pseudo-label.

A. Data

1) Edamam: We extract food items, ingredients, and nu-
trients from the publicly available Edamam Food Database
API E] after being granted permission from the company
to store these data. The dataset consists of 81,390 generic
food items, which is based on recipe and food composition
data from multiple sources, including the U.S. Department of
Agriculture’s (USDA) Food Data Central [62], and curated
to ensure the accuracy of these data. A total of 33 different
macro- and micronutrients were available. We use a subset of
these that are most complete: Protein, Calories, Fiber, Total
Sugar, Vitamins A & C, Cholesterol, Saturated Fat, Calcium,
Sodium, and Iron.

Zhttps://www.edamam.com/
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Fig. 1. Nutrition prediction pipeline. (a) Word embedding model. We begin

by extracting food names, ingredients, and recipes from the RecipelM+ [34],

[47]], and use the concatenation of this text to train a FastText word embedding model [48]]. (b) Food category prediction model. We embed Edamam training
data containing menu items concatenated with their ingredients using a pre-trained MPNet model [49]. We then cluster the training data using HDBSCAN,
which we treat as a ground truth food category. We use the Edamam FastText embeddings from food names alone to train a model to predict the most
likely food category associated with each food name. (c) Nutrition Score Model. The FastText embeddings are used to train a model to predict the nutrient
density score. The model first trained on the entire dataset is then fine-tuned on the ground-truth categories. Finally, MINT predicts food item nutrient density

conditional on the predicted food category.

2) Spoonacular: We also extracted a separate food item
nutrient density dataset, Spoonacular, via its API El This
dataset provides the names and nutrient composition of menu
items from chain restaurants, defined as restaurant brands
with 20 or more physical outlets [17]. We also extracted
menu items from 9 additional chain restaurant brands, which
were not in Spoonacular’s database but are prevalent within
the Los Angeles County area - their menus and nutrition
information were manually gathered from each of their official
websites. The specific restaurants we manually curated were:
The Cheesecake Factory, Chipotle, El Torito, Flame Broiler,
Hot Dog On A Stick, Mendocino Farms, Pick Up Stix, Raising
Canes, and Tender Greens.

In total, these data include 24K menu items across 145
large restaurant chain brands with 4663 physical outlets in
LA County, but contained incomplete and sparse micronutrient
values. We use these data as an out-of-sample test of MINT’s
performance in predicting nutrient density at three levels of
analysis: individual menu items, restaurant menus, and across
all restaurants in our dataset in a neighborhood.

3) RecipelM+: We also utilized RecipelM+ [34]], [47],
a large-scale structured dataset containing over 1 million
cooking recipe triplets, which includes food item names,
ingredients, and nutrient values, as well as instructions for
preparation (recipes). The nutrient values are too incomplete
to use in our analysis and are therefore removed. The other
features are used to train a FastText model and fine-tune BERT
model.

B. Transferring Ingredients Information with Food Category
Pseudo-Label

Most restaurant menus only provide a name for items
without a description of ingredients or preparation. Predicting
nutrients based just on a name is a challenging task. However,

3https://spoonacular.com/food-api

predicting the nutrients may be easier if we know what kind of
food the item is, e.g., a dessert versus a salad. We take a page
from AI Fairness to address this issue [63]], and build MINT to
first predict a broad food item category by using pseudo-labels
created from the clustering task, and then predict the nutrients
from a model fine-tuned to that category. This categorization
step improves our predictions compared to a single one-size-
fits-all model trained on the entire dataset across all categories.

To group the food items, we take both food item names and
ingredients in the Edamam dataset by converting these data
into a sentence “Food Name made with query of ingredients”,
for example, “Egg scrambled made with butter, egg, salt, pep-
per.” We then embed these texts using a pre-trained MPNET
model [49]], map it to a lower dimension space, and finally
cluster these embeddings to create food category pseudo-labels
for each food item.

We use UMAP [64] to reduce the dimension of embeddings
to two, minimizing the curse of dimensionality (where embed-
dings perform poorly in high dimensions [65]]). We then cluster
using HDBSCAN [66], which allows for items to belong to
multiple clusters (e.g., a chicken burger could be a chicken
dish or burger). Hyperparameters, such as dimension (2,10,50)
or “n neighbors” (10,20,50) for UMAP, and “min samples”
(10, 20, 50), “min cluster size” (1000), as well as cluster
selection epsilon (0.0, 0.05, 0.10) from HDBSCAN do not
significantly affect results.

An example of the clusters is shown in Fig. , and the
distribution of the nutrient density scores is shown in Fig. Zb
and 2. We notice clear differences in both nutrient density
scores, RRR and RRR,,..ro, between clusters.

C. Creating Food Language Vector Space

Next, we embed food items both to predict clusters and to
predict nutrient density scores. We train a FastText model [48]]
using the RecipelM+ dataset (RecipeFT) [34], [47], which
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Fig. 2. Food item and ingredient embeddings. (a) Each color represents high-confidence exemplars of each food item cluster label. (b) The nutrient density
(RRRmacro) for food items on the embedding map. (c) The nutrient density (RRR) for food items on the embedding map.

contains 1.02M entries of food names, ingredients, and recipes
(~ 171M tokens in total), to construct a vector space tailored
to language in the food domain. We create embeddings by
averaging vectors of all the words in each food name. All
of the embeddings have a 300-dimensional latent space. We
also fine-tune the masked language model of BERT [43]
using the RecipelM+ (RecipeBERT) to compare these two
different approaches to language modeling. We extract fea-
tures by adding a mean pooling layer to take the attention
mask into account and get embeddings with 768-dimensional
space.In our ablation study, we compare MINT’s Recipe | M+
dataset-based embeddings to respective pre-trained FastText
[48] and BERT [43] models. Model weights for RecipeFT
and the repository for RecipeBERT are included in the shared

repositorym.

D. Predicting Nutrient Density of the Food Item

Category pseudo-label prediction. Recall MINT requires
predicting food item categories and linking food items to
their category-specific models. To create a ground truth food
category for each food item, we take their most likely cluster
to be their category pseudo-label. To predict the category of
food item names, we train a five-layer Multi-Layer Perceptron
(MLP) where inputs are word representations of each food
item name, and their outputs are predicted categories. We
train this model using binary cross entropy loss and softmax
activation in the final layer with early stopping using a 20%
of training dataset as validation set [67]], [68]. Numbers of
hyperparameters [[69]—[74]] were tested for both the category
and nutrition prediction models that use MLP, shown in
Table [

Food Category Weighted Mean Baseline. We use the
category prediction model to create a food category weighted
mean (FCWM) baseline nutrition density model. Because
Fig. b and 2k show substantial differences in nutrient density
scores between categories, we expect this to be a strong
baseline. We first find the confidence, p;, a food item has in
each food category, i. Then, multiply them with the true mean
(TM) of the nutrient density score of their labels. FCWM is

TABLE I

HYPERPARAMETERS TESTED FOR MLP

Hyperparameter

Value

Number of Nodes in Each Layer

[128, 256, 512]

Activation Function

[ReLU, LeakyReLU (o = 0.01),

LeakyReLU (a = 0.1)]

Dropout Rate

[0.1,0.2, 0.5]

L2 Regularization A

[le — 2, 1e — 3, 1le — 4]

Learning Rate

[le — 2, 1e — 3, 1le — 4]

Input Normalization

[True, False]

Layer Normalization

[True, False]

Batch Normalization

[True, False]

then:

FCWM = pi-TM; (3)
i=1

ML Baseline. We contrast this FCWM baseline method
with a nutrient density predicting Machine Learning (ML)
model. We set the end-to-end pipeline from language model
to prediction model without additional structure. We explored
few state-of-the-art ML prediction models including Ridge
Regression (75|, Random Forest [76], xgboost [[77]], and MLP,
while MLP retained the best results among different models.
Therefore, we use MLP for our ML baseline prediction
method. Similar to the category prediction model, we train
on a five-layer MLP where the input is a food item name
embedding, and the output is a RRR or RRR,,,4cr0- We train
this model by minimizing the mean squared error between pre-
dicted and actual nutrient density and using a linear activation
function in the final layer with early stopping using a 20% of
training dataset as validation set [68]], [78].

MINT. Finally, we combine category prediction and the
MLP method to create MINT. After training the MLP model,
we split the training dataset by the ground truth food categories
and fine-tune copies of this model for each food category. This
approach of utilizing the pseudo-labels for unlabeled data has
shown great improvement in various supervised learning tasks
by posing them in a semi-supervised learning fashion [79].
While training the category-specific models We keep the Adam
learning rate the same but add weight decay set at 0.001, to
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avoid local minima [80]]. Although each model is fine-tuned
using ground truth food category pseudo-labels, we use the
predicted food categories on the held-out data as they do not
have true food category labels.

TABLE III
PREDICTION EXAMPLES USING MINT

Food Item True RRR Predicted RRR (95% CI)
Poutine 0.845 [0.838,0.849]
Ratatouille Provencale 1.557 [1.544, 1.562]
Cinnamon Swirl Rolls 0.271 [0.269, 0.273]

For both the MLP and MINT methods, we also utilize MC
Dropout [[71]] to create error estimates of predictions with 100
MC iterations and produce 95% confidence intervals. We show
examples of predictions with confidence intervals in Table [[TI]

E. Restaurant Nutrient Density Score

As our goal is to measure the nutrient density of restaurant
menus overall rather than individual food items, we also
introduce Restaurant Nutrient Density (RN D), defined as the
median of restaurant menu items’ RRR,,qcro. We specifically
use RRR,qcro for this case, as the Spoonacular dataset with
Restaurant menu items does not contain some of the micronu-
trients included in RRR. We measure and qualitatively com-
pare RN D in the Los Angeles chain restaurant environment.
To extract the locations of each restaurant, we use the Los
Angeles County Restaurant and Market Inventory [81]], which
contains the locations for all registered restaurants in Los
Angeles County. We use these locations to evaluate the spatial
distribution of chain restaurants RN D across Los Angeles
County. Individual menu items with outlier RRR,,4cro Values
were removed from the ground truth data using an outlier
detection method, histogram-based outlier score [82], thus
reducing RRR,,qcro s range from well over 100 to 2.82 while
removing just 762 menu items out of 24748 (3% in total).
Results are qualitatively the same if we include these data.

IV. RESULTS

In this section, we show the performance of MINT, in-
cluding its performance over the previous state-of-the-art and
against ablated models.

A. Ablation Study

We created an ablation study of our model, MINT on Table
for both RRR,qcro and RRR. The best-performing model
and text embedding data, which we use throughout the study,
are in bold. To ablate this model, we removed food category
prediction and fine-tuning from MINT, leaving us with an end-
to-end pipeline with ML prediction head (MLP). Next, we
removed a nutrient prediction head while using food category
prediction to approximate nutrient density score from the
weighted mean (FCWM), and compared these with MINT. We
test these models using embeddings derived from pre-trained
BERT (base-uncased), BERT fine-tuned with the Recipe| M+
dataset, and FastText embeddings trained on Common Crawl,
and text from the Recipel M+ dataset.

We use one-way ANOVA [83] and Tukey’s range test [84]
to determine if there is a significant difference in R? across
the various ablation methods. We find that MINT outperforms
all competing methods with statistically significant ANOVA p-
values < 10719, The different FastText word embeddings are
borderline significant with ANOVA p-value = 0.047. BERT
and RecipeBERT perform worse indicating a FastText, despite
its relative age, can be more useful for MINT.

B. Validation Study

USDA matching RRR-macro prediction

MINT RRR-macro prediction

Predicted RRR-macro
Predicted RRR-macro

True RRR-macro True RRR-macro

Fig. 3. Predicting nutrient density (RRRmacro) against state-of-the-art
algorithm. Results are for 20% held out data from Edamam. (a) The USDA-
matched algorithm [38] (R? = —2.49, 53% of data matched). (b) MINT
(R? = 0.77; 100% of data matched).

We compare our method against the current state-of-the-
art, the USDA matching method [38]. The results on the
Edamam held-out dataset, shown in Table [[V] and Fig. [3
show that MINT performs substantially better for both nutrient
density metrics. Using RRR,,4¢r0, MINT performs prediction
with R? = 0.77, compared to R?> = —2.5 for the USDA
matching method. An R? < 0 implies that the results are
worse than guessing the average RRR,,qcro- The RMSE and
MAE performance metrics show similar behavior. In addition,
the USDA matching method can only match 53% of held-
out data compared to MINT, which calculates 100% of menu
items. The results are even worse for the RRR metric that
includes micronutrients, where only 27% are matched using
the USDA matching method.

USDA matching RRR-macro prediction on Spoonacular MINT RRR-macro prediction on Spoonacular

3 R*=-2.558 3| R*=0.314

Predicted RRR-macro
Predicted RRR-macro

o 05 1 15 2 25 3

True RRR-macro

True RRR-macro

Fig. 4. Predicting nutrient density (RRRmacro) against state-of-the-art
algorithm. The results are for the Spoonacular dataset. (a) The USDA-matched
algorithm [38] (R? = —2.56, 67% of data matched). (b) MINT (R2 = 0.31;
100% of data matched).

We tested the generality of MINT by predicting the nu-
trient density of individual food items in the Spoonacular
dataset when MINT was trained on Edamam. As we show
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TABLE IV
COMPETING NUTRIENT DENSITY SCORES PREDICTION MODELS
RZ 1 RMSE | MAE |
NLP Model Prediction Model RRR RRRmacro RRR RRRacro RRR RRRmacro
Pre-trained (base-uncased) BERT FCWM 0.26710.002 0.3631+0.013 0.28140.001 0.24140.002 0.33240.005 0.33840.005
MLP 0.591+0.019 0.658+0.01 0.15940.006 0.129+0.005 0.227+0.004 0.23340.004
MINT 0.624+0.009 0.689+0.01 0.14540.006 0.120+0.004 0.216+0.003 0.21940.002
RecipeBERT FCWM 0.296+0.006 0.399+0.017 0.27340.005 0.22740.008 0.32440.006 0.32640.007
MLP 0.633+0.009 0.705+0.007 0.14240.005 0.11240.004 0.21140.006 0.21440.002
MINT 0.667+£0.008 0.729+0.008 0.12940.003 0.103+0.004 0.197+0.003 0.200+0.003
Pre-trained (Common Crawl) FastText FCWM 0.301+0.008 0.4054+0.02 0.270+0.002 0.226+0.001 0.323+0.004 0.3261+0.004
MLP 0.671+0.013 0.73240.01 0.12840.006 0.102+0.004 0.203+0.005 0.19840.002
MINT 0.688+0.014 0.757+0.007 0.1214-0.005 0.09340.004 0.190+0.002 0.1894-0.002
RecipeFT FCWM 0.300+0.007 0.406+0.019 0.27040.002 0.22640.001 0.32240.005 0.32540.004
MLP 0.69110.01 0.750+0.008 0.120+0.004 0.099+0.004 0.194+0.002 0.19540.001
MINT 0.710 £+ 0.01  0.768 + 0.006  0.111 + 0.003  0.088 + 0.003  0.182 + 0.002  0.183 + 0.001
USDA-matching algorithm [38] -9.8242.72 -2.4940.745 4.376+£0.957 1.4054+0.314 0.637+0.018 0.569+0.01
TABLE V

MODEL PERFORMANCES ON INDIVIDUAL MENU ITEM RRR.nqcro AND MEDIAN RR Ry gcro BY EACH RESTAURANT’S MENU: RESTAURANT NUTRIENT
DENSITY (RN D) USING SPOONACULAR DATASET

Prediction Model Metrics RZ 1 RMSE | MAE |

USDA-matching algorithm [38] RRRmacro -2.56+1.48 1.019+0.426 0.459+0.014
MINT RRRmacro 0314 £+ 0.011  0.200 £+ 0.006 0.322 + 0.004
USDA-matching algorithm [38] RND 0.271£0.224 0.06340.009 0.175 + 0.02
MINT RND 0.457 + 0.099  0.059 + 0.011 0.180+0.018

in Fig. @ MINT has a performance of R? = 0.31, while the
USDA matching method has R? = —2.6, which indicates the
model again performs worse than naively guessing the mean
RRR,,,qcro- Similar to the Edamam dataset, the RMSE and
MAE metrics show similar behavior as shown in Table [V]
Finally, the USDA matching method only finds the nutrient
density for 67% of food items.

C. Restaurant Nutrient Density

We demonstrate the performance of MINT to predict restau-
rant nutrient density on a large-scale real-world restaurant
database in Fig. 0] This figure shows the RND averaged
across all chain restaurants in Los Angeles County neighbor-
hoods [85]] using Fig. [5Sh MINT and Fig. [Sp ground truth data.
We find (i) that RN D of chain restaurants varies substantially
across neighborhoods within Los Angeles County, and (ii) that
MINT predictions closely match ground truth RN D. Overall,
MINT has an R? = 0.46 between the predicted and ground
truth RN D across 145 restaurant chains, while the USDA
matching method has an R? = 0.27, as shown in Table This
result points to two critical advantages of MINT: first, menu
items and RN D scores can be inferred despite the lack of
standard approaches to naming menu items across restaurants.
Second, while simple matching is not powerful enough for our
needs [38]], the MINT predictive model can generalize well to
out-of-sample data.

V. DISCUSSION

Our results demonstrate that MINT is a novel method
to extract nutritional information from menu items without
text matching. We find that it greatly outperforms competing
methods, with R2 = 0.77 for the nutrient density score,
RRR . qcr0, 10 held-out data. Because our method predicts

rather than matches the text, we can capture the nutrient
density scores for 100% of food items rather than 53% for
the previous state-of-the-art [38]]. Additionally, MINT provides
the pseudo-labels of the type of food each menu item was
classified to (e.g., Chicken dish, Salad, Cake, etc.).

Having demonstrated the utility of MINT, we revisit and
evaluate the aims we posed for this paper.

e Menus Can Measure Restaurant Nutrient Density

(RND).

We show that menus are easy to gather, and that nutrient
density scores can be predicted from their composing items,
RRR and RRR,,acro- This, in turn, allows us to accurately
estimate RN D, the average nutrient density scores across
menu items. RN D acts as a good proxy of nutritional quality
as we qualitatively find healthier restaurants (e.g., restaurants
serving salad-based meal items such as Sweetgreen) have high
RN D, while unhealthy restaurants (such as restaurants serving
mostly low-nutrient energy dense foods such as McDonald’s),
have low RN D. Despite not knowing restaurants’ portion
sizes, the median nutrient density across all items in a menu
allows for a strong estimate of the nutrient density across a
restaurant, RND.

o Food Item Names Can Be Sufficient to Determine

Nutrient Density.

We hypothesized that we could approximate the nutrient
density of the food item using only their names as input. The
performance of MINT provides compelling evidence that the
nutrient density of menu items can be estimated using publicly
available menu data using ML prediction techniques. A key
strength of the model is the introduction of the fine-tuning of
models to groups with similar ingredients. This allows food
items like “Buddha’s Delight” which have non-conventional
food names that provide no direct information on composing
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Fig. 5. Restaurant nutritional quality in Los Angeles County. These plots show the median RR Ry qcro for each restaurant menu, or RN D, averaged across
all chain restaurants in neighborhoods. (a) MINT restaurant quality predictions and (b) Ground truth restaurant quality.

ingredients, to be grouped with items with similar ingredient
profiles, preventing MINT from miscalculating the nutrient
density scores through covariate shifts and out-of-distribution
instances [86]], [[87]]. Overall, we find that food item names ac-
curately represent the nutrient density of food items. Moreover,
NLP techniques, such as creating food language vector space
using language models like Fastext or building domain-specific
Large Language Model (LLM), allow for nutrient density to
be more accurately calculated than competing methods.

o Predicting Nutrient Density With Public Datasets.

We demonstrate that three different publicly available
datasets used for different purposes (Edamam-—training predic-
tion models; Spoonacular—validation on out-of-sample, real-
world restaurant data; Recipe 1M+ [34]]-to construct food lan-
guage vector space for text embeddings) allow development of
a model applicable to both food item and restaurant nutritional
quality scores.

VI. CONCLUSIONS

Public health nutrition research seeks to evaluate the impact
of access to (un)healthy food environments on diet quality and
health outcomes. Commonly used food environment indicators
are based on the presence of food outlet categories. This study,
in contrast, introduces a state-of-the-art deep learning-based
approach to predict nutrient density, a component of nutritional
quality, of restaurant menu offerings. Strong prediction results
on out-of-sample data demonstrate that MINT can robustly
impute nutrient density values for the many restaurant menus
that do not measure or publish their nutritional composition
information. This algorithm is a significant step to help poli-
cymakers assess nutritional disparities.

There are several key limitations to our method warranting
future work. With regard to the datasets used for valida-
tion, we evaluated MINT using out-of-sample restaurant data
from large chain restaurants only, meaning our results may
not generalize to non-chain restaurants. However, the chain
restaurants in the Spoonacular dataset represent a distribution
of cuisines and food types served (e.g., cafes like Starbucks
to traditional fast food outlets like McDonald’s to modern
chains focusing on salad, Sweetgreen), and demonstrate a

wide distribution of nutrient density based on ground truth
RRRqcr0- Additionally, the Edamam dataset we trained and
evaluated our model on contained diverse ‘generic food items’
that are not specific to chain restaurants. We therefore believe
that this limitation will not significantly affect our results.

Additional limitations are particular to the measures of
restaurant and food environment nutrient density we define.
First, the data we train on does not include portion sizes;
therefore, MINT cannot determine whether the unhealthy or
healthy menu items are a large or small contribution to
someone’s overall food intake. Moreover, while our method
focuses on the nutrient density of restaurant menus, there are
other dimensions of restaurant nutritional quality as well. This
might include the foods most commonly ordered, food safety,
freshness, taste, price, and appearance. Future work should
infer nutritional quality from these and other dimensions,
especially with the help of multi-modal (e.g., text and image)
analysis.
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