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Abstract 26 

Long-term care facilities (LTCF) are hotspots for pathogen transmission. Infection control 27 

interventions are essential, but the high density and heterogeneity of inter-individual contacts 28 

within LTCF may hinder their efficacy. Here, we explore how the patient-staff contact 29 

structure may inform effective intervention implementation. Using an individual-based 30 

model, we reproduced methicillin-resistant Staphylococcus aureus colonisation dynamics over 31 

a detailed contact network recorded within an LTCF, and examined the potential impact of 32 

three types of interventions against transmission (reallocation reducing the number of unique 33 

contacts per staff, reinforced contact precautions, and vaccination protecting against 34 

acquisition), targeted towards specific populations. All three interventions were effective 35 

when applied to all nurses or healthcare assistants (median reduction in MRSA colonisation 36 

incidence up to 21%), but the benefit did not exceed 8% when targeting any other single staff 37 

category. We identified “supercontactor” individuals with most contacts (“frequency-based”, 38 

overrepresented amongst nurses, porters and rehabilitation staff) or with the longest 39 

cumulative time spent in contact (“duration-based”, overrepresented amongst healthcare 40 

assistants and geriatric and persistent-vegetative-state patients). Targeting supercontactors 41 

enhanced interventions against pathogen spread in the LTCF. With contact precautions, 42 

targeting frequency-based staff supercontactors led to the highest incidence reduction (13%). 43 

Vaccinating duration-based patient supercontactors led to a higher reduction (22%) than all 44 

other approaches. Targeting supercontactors remained the most effective strategy when 45 

varying epidemiological parameters, indicating this approach can be broadly applied to 46 

prevent transmission of other nosocomial pathogens. Importantly, both staff and patients 47 

may be supercontactors, highlighting the importance of including patients in measures to 48 

prevent pathogen transmission in LTCF.  49 

 50 

Significance statement 51 

Pathogen transmission is a challenge in long-term care facilities (LTCF) due to frequent and 52 

heterogeneous contacts of staff and patients. By characterising this contact structure and 53 

understanding the categories of staff and patients more likely to be “supercontactors”, with 54 
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either more or longer contacts than others, we can implement more efficient interventions 55 

against pathogen spread. We illustrate this using a mathematical model to reproduce 56 

transmission of methicillin-resistant Staphylococcus aureus across a detailed contact network 57 

recorded in a LTCF. We show how the most efficient implementation strategy depends on the 58 

intervention (reallocation, contact precautions, vaccination) and target population (staff, 59 

patients, supercontactors). By varying epidemiological parameters, we demonstrate that 60 

these results are broadly applicable to prevent transmission of other nosocomial pathogens.   61 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 11, 2023. ; https://doi.org/10.1101/2023.12.08.23299666doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.08.23299666
http://creativecommons.org/licenses/by-nc/4.0/


Introduction 62 

Healthcare associated infections (HAI) are a major threat worldwide, with more than 4 million 63 

infections occurring each year in Europe [1]. The recent COVID19 pandemic has underlined 64 

the high risk of pathogen dissemination in health care settings, similarly to what was 65 

previously reported for other coronaviruses, seasonal influenza or Ebola epidemics [2,3]. 66 

Bacterial nosocomial outbreaks are also frequently described, becoming more and more 67 

difficult to control with the rise of multidrug resistance [4]. In addition to significantly 68 

impacting the morbidity and mortality of hospitalized patients and potentially healthcare 69 

workers (HCWs), HAI generate additional costs due to longer hospital stays or additional 70 

expensive therapeutics, as well as legal consequences for practitioners and healthcare settings 71 

in case of patient lawsuits. 72 

Methicillin-resistant Staphylococcus aureus (MRSA) is an important cause of such HAI, as these 73 

infections most often affect individuals in a weakened immunological state, such as 74 

hospitalized patients [5]. Crucially, MRSA colonization is a risk factor for infection, since 75 

individuals are more likely to be infected by a S. aureus strain they are carrying [6]. 76 

Consequently, it is essential to understand how individuals become colonized by MRSA in 77 

healthcare settings and to control the acquisition risk. 78 

To limit pathogen dissemination through human cross-transmission in healthcare settings, a 79 

range of measures can be implemented, mostly based on improving contact precautions, such 80 

as patient isolation, hand-washing, wearing of gloves or masks. Vaccines to reduce the risk of 81 

pathogen colonisation also represent ongoing research and development topics, although 82 

none are commercially available and there have only been limited attempts to evaluate their 83 

impact in healthcare settings thus far [7]. However, the high density of human contacts 84 

involving HCWs, patients, and visitors, combined with variations in individual behaviours and 85 

overall stochasticity in transmission often limit the impact of these control measures. For 86 

instance, while efficient in general, hand-washing may fail due to a few “super-spreader” 87 

individuals who do not comply with hygiene recommendations [8]. 88 

Because the structure of contact networks within healthcare settings influences the spread of 89 

HAI pathogens [9], manipulating contact network structures or targeting highly connected 90 

individuals may significantly improve the efficacy of control measures [10]. Here, using 91 
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individual-based modelling of nosocomial pathogen spread, combined with fine-grained 92 

longitudinal data on human close-proximity interactions (CPIs), we show how detailed 93 

knowledge of the structure of human interactions may help design more effective 94 

interventions for HAI control. We illustrate this point through an application to control the 95 

spread of colonisation by MRSA in a long-term care facility (LTCF).   96 
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Results 97 

A simulated hospital contact network that realistically mimics the observed 98 

contact network 99 

We designed a stochastic individual-based model (IBM) to reproduce the realistic dynamic 100 

network of within-hospital between-human interactions. CPI data was collected by equipping 101 

all patients and hospital staff in a French LTCF with proximity log-sensors over 84 days (i-Bird 102 

study [11,12]). The model was then calibrated to generate simulated contact networks with 103 

the same characteristics as the real network provided by the CPI data (see [13] for details). As 104 

shown on Figure 1a, the simulated contact network accurately reproduced real average hourly 105 

patterns of patient-to-patient, staff-to-staff and staff-to-patient interactions.  106 

 107 
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 108 

Figure 1: Real and simulated contacts and MRSA incidence. (A) Hourly distribution of 109 

number of unique contacts. The lines and points show the median estimates, and the 110 

shaded areas show the interquartile ranges. The real values come from the i-Bird study, and 111 

the simulated values are shown for 50 simulated contact networks. (B) MRSA colonisation 112 

weekly incidence over 3 months. Olive points correspond to the observed weekly incidence 113 

during the i-Bird study, with lines indicating the margin of error, estimated using the number 114 

of individuals swabbed that week. Simulated results are obtained from 15,000 stochastic 115 

model simulations (500 simulations of 50 simulated networks). The dark green line shows 116 

the median incidence, and the shaded area shows the 95% prediction interval, defined as 117 

the interval between the 2.5th and 97.5th percentiles.  118 

 119 
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Observed weekly MRSA incidence is well reproduced by simulations of 120 

network-based transmission 121 

A Susceptible-Colonised process was implemented into the IBM to reproduce the transmission 122 

process of a colonising pathogen, here MRSA, in the LTCF. The model was parameterized to 123 

mimic the i-Bird study conditions. An initial 151 patients and 236 hospital staff members were 124 

followed up over 84-day simulations. We categorised hospital staffs into 6 groups, (i) 125 

healthcare assistants, (ii) nurses, (iii) rehabilitation staff, (iv) physicians, (v) hospital porters 126 

and (vi) other. Each day, staff presence and patient admissions and discharges were also 127 

simulated using the real data from the i-Bird study. The simulated dynamic contact network 128 

described in the previous section was used to mimic between-human interactions and 129 

assumed to be the support of MRSA transmission within this LTCF [11,14]. When initializing 130 

the model with MRSA carriage of patients and staff as reported by the i-Bird data, the weekly 131 

incidence of MRSA colonization predicted by the model reproduced well the observed trends 132 

and weekly incidence over the study period (Figure 1b).  133 

 134 

Hospital staff reallocation, especially in healthcare assistants, reduces MRSA 135 

spread 136 

To assess the extent to which the dissemination of MRSA can be restricted through an 137 

optimized patient-staff allocation, we designed a series of interventions formalized as 138 

modifications of the contact network. We assessed the impact of staff reallocation, defined 139 

as the attribution of a reduced number of patients to each staff member during the entire 140 

investigation period. We maintained the global care needs of patients over the entire period, 141 

defined by the number of unique contacts in the data between patients and different staff 142 

categories, by ward. A series of scenarios exploring different combinations of staff categories 143 

affected by reallocation were implemented and, for each scenario, 30 new contact networks 144 

were generated. 145 

Simulating the transmission of MRSA over the different networks, we found that reallocation 146 

scenarios targeting different hospital staff categories can help reduce cumulative incidence of 147 

MRSA colonisation (Figure 2a for scenarios where 1, 2, or all staff categories were reallocated, 148 
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Supplementary Figure 1a for all scenarios). Importantly, the benefit of the intervention varied 149 

depending on the categories of staff reallocated. When only a single staff category was 150 

reallocated, the highest incidence reduction was obtained for healthcare assistant 151 

reallocation (median decrease: 10%, 95% confidence interval: 9–11). All scenarios with two 152 

categories reallocated involving healthcare assistants prevented between 10–20% of 153 

colonisations over the entire simulation period. For comparison, reallocating all staff 154 

categories prevented 39% of colonisations (CI: 38–40). Reallocation of either porters or 155 

physicians alone barely led to any change in incidence compared to baseline, since these 156 

interventions did not substantially change the number of unique staff-patient contacts within 157 

the hospital and, therefore, did not substantially affect MRSA spread (Supplementary Figure 158 

2). A pseudo-random contact network in which patients were homogenously distributed 159 

among all staff members led to more contacts and a higher incidence as compared to the one 160 

generated by the baseline network (36% increase, CI: 35–37), since this increased unique staff-161 

patient contacts within the hospital (Supplementary Figure 2). 162 

To see if the variability between scenarios was due to the different number of individuals 163 

reallocated in each scenario, we divided the relative incidence reduction for each scenario by 164 

the corresponding number of staff reallocated (Figure 2b). This changed the order of the 165 

scenarios with the highest benefit, now calculated as relative incidence reduction per 166 

reallocated staff. Scenarios where nurses or healthcare assistants were reallocated were 167 

lower in the ranking, since they required a large number of staff to be allocated. On the other 168 

hand, reallocation of rehabilitation staff and other staff led to the highest overall relative 169 

reduction per staff reallocated (2.7 x 10-3 %, CI: 2.6 x 10-3–2.9 x 10-3), even higher than if all 170 

staff are reallocated (1.4 x 10-3 %, CI: 1.4 x 10-3–1.5 x 10-3). In any case, we still note 171 

heterogeneity in the efficacy of different scenarios, indicating that there are other relevant 172 

characteristics which differ between staff categories. 173 
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174 

Figure 2: Relative reduction in cumulative incidence of MRSA colonisation for different 175 

hospital staff reallocation scenarios, shown per scenario (a), or per scenario divided by 176 

number of staff reallocated in that scenario (b). Top: Each bar depicts, for a given scenario, 177 

the median relative reduction between 500 model simulations with no intervention, and 500 178 

simulations with staff reallocation, along with the 95% confidence interval. A negative 179 

reduction indicates that the intervention led to an increase in cumulative incidence. Bottom: 180 
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In each scenario, staff categories coloured are those reallocated. In scenario 64, the contact 181 

network is random. In each plot, the scenarios are ranked from most to least effective. 182 

 183 

Reinforced contact precautions of nurses or healthcare assistants are more 184 

effective than staff reallocation or vaccination 185 

Next, we investigated the impact of reinforced contact precautions taken by hospital staff 186 

(e.g., glove wearing or improved hand hygiene compliance) and vaccination. Contact 187 

precautions were simulated as a 2- to 10-fold reduction in both patient-to-hospital staff and 188 

hospital staff-to-patient MRSA transmission probabilities during contacts. Vaccination was 189 

simulated as a 2- to 10-fold reduction in MRSA acquisition probabilities during contacts 190 

between any colonised individual and a non-colonised vaccinated individual. As for the 191 

previous analysis, MRSA transmission dynamics were simulated for the different scenarios of 192 

reinforced contact precautions and vaccination in the 6 hospital staff categories (Figure 3).  193 

 194 

 195 

Figure 3: Effect of contact precautions and vaccination targeting different hospital staff 196 

categories, compared to staff reallocation. The dashed lines show the median reduction 197 

when reallocating all staff (turquoise), healthcare assistants only (orange), or nurses only 198 

(brown). All other estimates are shown as median with 95% confidence interval calculated for 199 

500 intervention simulations. 200 
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Contact precautions targeting healthcare assistants led to a large reduction in MRSA 201 

colonisations, ranging from 10% to 21% as the assumed level of reduction in transmission 202 

probabilities increased from 2 to 10-fold (Figure 3). This was closely followed by contact 203 

precautions targeting nurses (10-18% reduction). Contact precautions for healthcare 204 

assistants or nurses appear to be more effective than reallocation of either of those staff 205 

categories alone, as even an assumed 4-fold reduction in transmission probabilities was 206 

sufficient to achieve a decrease in incidence slightly higher than reallocation (Figure 3). Whilst 207 

vaccination of healthcare assistants or nurses did reduce incidence, the reduction ranged from 208 

6 to 12%, which is approximately equivalent to reallocation (Figure 3). 209 

By opposition, contact precautions or vaccination focused exclusively on either hospital 210 

porters, physicians, rehabilitation or other staff appeared ineffective, with percent reductions 211 

below 5% irrespective of the assumed transmission probability reduction (Figure 3).  212 

 213 

Heterogeneous distribution of “supercontactors” amongst patients and staff  214 

To understand why intervention effectiveness to reduce the spread of MRSA varied depending 215 

on the staff category targeted, we examined the extent to which different individuals were 216 

connected in the contact network. We identified individuals substantially more connected 217 

than others, and henceforth refer to them as “supercontactors”. We distinguish between two 218 

types of supercontactors: (i) individuals with the highest number of daily distinct contacts 219 

(henceforth called “frequency-based supercontactors”) and (ii) individuals with the highest 220 

overall daily contact duration (henceforth called “duration-based supercontactors”). 221 

We identified the top 60 duration- and frequency-based supercontactors for both patients 222 

and staff (i.e. top 20% of individuals). If all individuals had the same probability of being 223 

supercontactors, we expect that the distribution of patients/staff categories amongst 224 

supercontactors (Figure 4, red and blue) would be aligned with the distribution of those same 225 

categories amongst all patients/staff (grey). 226 

Amongst patients, neurology patients are the first category of supercontactors (Figure 4, left; 227 

34% of duration-based, 45% of frequency-based). The observed distribution of patient 228 

categories amongst duration-based supercontactors (red) differed significantly from the 229 
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distribution of those categories amongst all patients (grey; log likelihood ratio test: p value < 230 

0.001). We observed a greater proportion of PVS and geriatric patients amongst duration-231 

based supercontactors than amongst all patients (Figure 4, left). The difference was not 232 

statistically significant for frequency-based supercontactors (log likelihood ratio test: p value 233 

> 0.2).  234 

Amongst staff, the majority of supercontactors were either healthcare assistants (Figure 4, 235 

right; 52% of duration-based, 33% of frequency-based) or nurses (Figure 4, right; 26% of 236 

duration-based, 40% of frequency-based). The observed distribution of staff categories 237 

amongst supercontactors differed significantly from the distribution of those categories 238 

amongst all staff (log likelihood ratio test: duration-based p value < 0.01, frequency-based p 239 

value < 0.05). Compared to the distribution amongst all staff, we observed a greater 240 

proportion of healthcare assistants amongst duration-based supercontactors, and a greater 241 

proportion of nurses, porters and rehabilitation staff amongst frequency-based 242 

supercontactors (Figure 4). 243 

There was almost no overlap between the identities of the frequency and duration-based 244 

supercontactors. Only three persistent-vegetative state patients, two neurology patients, one 245 

nurse and one rehabilitation staff were in both categories. 246 

 247 
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248 

Figure 4: The distribution of supercontactors (SC) amongst hospital patients and staff is not 249 

homogeneous. The grey bars show the distribution of categories amongst all patients (left) or 250 

staff (right), the red bars show the distribution of duration-based supercontactors, the blue 251 

bars show the distribution of frequency-based supercontactors. If supercontactors were 252 

homogeneously distributed amongst categories, all the coloured bars would be aligned with 253 

the grey bars. Here, only the distribution of the top 60 frequency-based and duration-based 254 

supercontactors for patients and staff is shown. PVS: persistent-vegetative state. 255 

 256 

Targeting supercontactors is most effective to reduce MRSA spread 257 

We used supercontactors as target for interventions in the hospital. We compared the effect 258 

of reinforced contact precautions or vaccination, targeting different combinations of 60 259 

supercontactors (i.e. contact-based or duration-based supercontactors among both patients 260 

or hospital staff), 60 staff randomly chosen, or 60 patients randomly chosen. Here, we only 261 

show the reductions for an assumed 6-fold reduction in transmission probabilities, with other 262 

fold reductions shown in Supplementary Figure 3. 263 

Targeting supercontactors within either staff or patients with an intervention was at least as 264 

effective to reduce incidence than randomly targeting individuals in the same group with the 265 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 11, 2023. ; https://doi.org/10.1101/2023.12.08.23299666doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.08.23299666
http://creativecommons.org/licenses/by-nc/4.0/


same intervention (grey, Figure 5). When selecting duration-based supercontactors (red), 266 

vaccination targeting patients led to a higher reduction in MRSA colonisations than any 267 

intervention targeting hospital staff (Figure 5). Conversely, when selecting frequency-based 268 

supercontactors (blue), contact precautions targeting hospital staff gave better results in 269 

terms of MRSA colonisations reduction than any intervention targeting patients (Figure 5). 270 

Targeting a mix of half frequency- and half duration-based supercontactors (purple) gave 271 

intermediary results (Figure 5). Regardless of the type of supercontactors targeted, reinforced 272 

contact precautions were more effective than vaccination when targeting staff, whilst 273 

vaccination was more effective than contact precautions when targeting patients (Figure 5). 274 

Overall, vaccination of duration-based patient supercontactors appeared to be the most 275 

effective, with up to 21% (CI: 20-22%) of colonisations prevented. These conclusions are 276 

maintained when assessing different contact precautions or vaccination efficacies, i.e. 277 

assuming 2, 4, 8 or 10-fold reductions in transmission or acquisition probabilities, respectively 278 

(Supplementary Figure 3), or when targeting 20 or 100 individuals instead of 60 279 

(Supplementary Figure 4). 280 

 281 

282 

Figure 5: Comparison of contact precautions or vaccination for 60 staff, patients, or a mix of 283 

staff and patients, targeting either duration-based supercontactors (SC), frequency-based 284 

SC, a mix of duration and frequency-based SC, or random individuals. We assume the 285 
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interventions lead to a 6-fold reduction in transmission probabilities. For each strategy, the 286 

bar indicates the median relative reduction in cumulative incidence, with 95% confidence 287 

interval, obtained for 500 simulations. 288 

 289 

Targeting supercontactors is also an effective strategy for other nosocomial 290 

pathogens 291 

Although the epidemiological parameters we used in the previous sections were directly 292 

estimated using data on MRSA, our model can be applied to any nosocomial pathogen for 293 

which close-proximity interactions are the main vector of transmission. Naturally, the 294 

epidemiology of such pathogens would likely vary compared to MRSA, with different 295 

transmission rates and carriage/infectiousness durations compared to the values we 296 

estimated. To investigate the applicability of our results to other pathogens, we repeated our 297 

analysis above, doubling or halving either the transmission rates or the 298 

carriage/infectiousness durations. Our qualitative results on the value of targeting 299 

supercontactors to improve intervention effectiveness remained valid (Figure 6a-d), even with 300 

different baseline incidences due to the parameter changes (Figure 6e). Interestingly, we see 301 

that in a few scenarios targeting patients randomly could be slightly more effective than 302 

targeting frequency-based patient supercontactors (Figure 6a-d). This is due to the high 303 

effectiveness of targeting duration-based patient supercontactors in such instances, 304 

combined with the non-overlapping identities of duration- and frequency-based 305 

supercontactors. Inevitably, by exclusively targeting frequency-based supercontactors we 306 

exclude duration-based supercontactors, while random targeting may still incidentally include 307 

these individuals. 308 
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 309 

Figure 6: Comparison of contact precautions or vaccination for 60 staff or patients, targeting 310 

either duration-based supercontactors (SC), frequency-based SC, a mix of duration and 311 

frequency-based SC, or random individuals, and varying either the baseline transmission 312 

rate or carriage duration. a) Halved transmission rate; b) Doubled transmission rate; c) 313 

Halved carriage duration; d) Doubled carriage duration. We assume the interventions lead 314 

to a 6-fold reduction in transmission probabilities. For each strategy, the bar indicates the 315 

median relative reduction in cumulative incidence, with 95% confidence interval, obtained for 316 

500 simulations. e) Absolute cumulative incidence without intervention using estimated 317 

parameter values, higher/lower transmission, or higher/lower carriage duration. Points 318 

indicate the mean, and lines mean +/- standard deviation, obtained for 500 simulations. 319 

  320 
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Discussion 321 

In this study, we present how the dynamic interindividual contact network of a healthcare 322 

institution can be analysed to implement efficient interventions aimed at reducing pathogen 323 

transmission. We first applied an individual-based model to a French long-term care facility 324 

and confirmed that it reproduced well both the recorded network and MRSA dynamics. We 325 

then evaluated and compared several network-based control strategies, demonstrating that 326 

while hospital staff reallocation can help reduce MRSA transmission overall, staff contact 327 

precautions and vaccination could be as or more effective than reallocation. Interestingly, the 328 

efficacy varied depending on which staff category was targeted by the intervention. We 329 

identified “supercontactors” in the contact network with more or longer contacts and found 330 

that these were heterogeneously distributed amongst staff and patient categories. The 331 

effectiveness of contact precautions and vaccination was further increased by targeting these 332 

supercontactors in the LTCF, compared to randomly targeting individuals. Our conclusions 333 

remained valid when varying epidemiological parameters, suggesting that targeting 334 

supercontactors is also an effective strategy for other nosocomial pathogens transmitted via 335 

close-proximity interactions. 336 

Here we demonstrated that staff reallocation is an efficient strategy to reduce transmission 337 

risk. Moreover, reallocation strategies involving healthcare assistants were the most effective. 338 

Our simulation results are consistent with previous work on this topic, showing the best staff 339 

reallocation strategies were those significantly lowering the degree of the hospital worker-to-340 

patient subgraph [10,15–21]. In a previous study, we examined the potential of different 341 

hospital staff categories to spread nosocomial pathogens and to play a role of super-spreader, 342 

showing the importance of adherence to contact precautions in “peripatetic” hospital staff. 343 

These later were defined as hospital staff members with relatively short contacts, but with 344 

many patients, a definition similar to the “frequency-based supercontactors” here [8].  345 

Since transmission was modelled through the contact network, supercontactors can 346 

mechanistically play the role of super-spreaders, but also be themselves more at risk of 347 

acquiring the bacteria during a contact with a colonised individual. These factors explain why 348 

targeting supercontactors for interventions led to a substantial reduction in colonisation 349 

incidence. The most appropriate supercontactor type to target (duration-based or frequency-350 
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based) surprisingly differed between patients and hospital staff: while targeting frequency-351 

based supercontactors was more relevant for hospital staff, duration-based supercontactors 352 

were selected for patients. We also predicted that the most effective intervention to reduce 353 

the overall incidence of colonisation was to vaccinate duration-based supercontactors 354 

amongst patients with a vaccine, which here we assume protects against acquisition. 355 

Interestingly, in staff, vaccination was less effective than reinforced contact precautions. 356 

These results may be specific to the type of hospital investigated here. In LTCF, the frequency 357 

and duration of patient-patient interactions are much higher than in acute care facilities. Our 358 

results highlight the necessity of involving patients in intervention implementation in LTCF.  359 

It is important to note that the hospital followed up during the i-Bird study included neurologic 360 

wards hosting patients in persistent vegetative state (PVS). These PVS patients accounted for 361 

one fifth of the individuals classified as duration-based supercontactors (Figure 3). While they 362 

may be considered similar to sedated and ventilated patients in intensive care units, the 363 

presence of this type of patients with particularly long contacts and specific behaviours is not 364 

universal across all types of LTCF. To improve the generalisability of our results to other LTCF, 365 

we performed an additional analysis in which PVS patients were excluded when identifying 366 

supercontactors: this hypothesis did not affect our conclusions (Supplementary Figure 5).  367 

The results presented here should be interpreted in the light of the following limits. Firstly, we 368 

only considered here that MRSA transmission occurred through inter-individual contacts 369 

among participants, with a risk of transmission saturating after one hour. This assumption was 370 

based on previous analysis of the same data, suggesting that the proximity network was the 371 

main transmission route for MRSA acquisition in this setting [11]. In this study, whilst 372 

participation was high (95% of staff and patients agreed to wear the sensors), it was also 373 

estimated that 25% of MRSA acquisitions were not explained by the contact network, and may 374 

instead be mediated by other acquisition mechanisms not included in our model, such as 375 

environmental contamination, or bacterial evolution within the host leading to the emergence 376 

of resistance. Importations of new colonisations, through for example hospital visitors or 377 

patient’s permissions outside the hospital were also not included in the model, while they 378 

could also have been sources of MRSA acquisition during the i-Bird study. This may explain 379 

why model simulations slightly underestimated the incidence point on the 6th week, as 380 

illustrated in Figure 1b. 381 
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Secondly, we did not account for the infection status of patients in the model. Over the study, 382 

several infections occurred in participating patients (eschar, cutaneous infection, 383 

gastrostomy, colostomy, tracheotomy, ulcer etc.). When an infection occurs, bacterial load is 384 

usually much higher, which could potentially increase the risk of bacterial dissemination in the 385 

environment or transmission to contacts. Infections could also impact the dynamic of contacts 386 

and of nurse scheduling, as infected patients are bound to have a higher care load, thus 387 

requiring more contacts. Interestingly, this higher care load could reclassify infected patients 388 

as supercontactors and, as we have shown here, identify them as key targets for interventions 389 

to reduce spread. For these reasons, future work taking into consideration infected patients 390 

may further improve our ability to implement effective interventions.  391 

Lastly, the epidemiological parameters of the model, which included transmission probability 392 

and carriage duration, were directly estimated for MRSA from the admission, schedule, swab 393 

and contact data [11,12]. However, these parameters can vary depending on the estimation 394 

period (e.g. holidays versus term-time), setting (e.g. long-term versus acute care), population 395 

(e.g. older versus younger), and circulating bacterial or viral pathogen in the hospital. For 396 

example, the probability of MRSA transmission that we estimated is slightly lower than in 397 

other studies (e.g. 0.000023 per 30 seconds of contact on average for hospital staff-to-hospital 398 

staff and 0.000789 for hospital staff-to-patient in our study with the real RFID network, 399 

compared to a probability between 0.0005 and 0.0050 per 30 seconds of contact in the study 400 

by Hornbeck et al [22]). The durations of MRSA colonization that we estimated from the data 401 

(31 days for patients, 27 days for hospital staff) are also either shorter or longer than 402 

previously reported estimates, but these values can be clone or setting-specific [23,24]. 403 

Among other pathogens transmitted by close-proximity interactions, Klebsiella pneumoniae 404 

has characteristics within the range we explored in our analysis (transmission probability of 405 

0.0005 per 30 seconds of contact, carriage duration of 3 weeks) [25]. SARS-CoV-2 is another 406 

example with a similar transmission probability, although the infectious period (equivalent to 407 

the carriage duration) is lower (9 days) [26]. As we have shown, our conclusions on the value 408 

of interventions strategies targeting supercontactors were not impacted by changes in 409 

parameters to reflect the epidemiology of these other pathogens instead of MRSA. 410 

Despite their limitations, mathematical models are powerful tools to inform the efficacy of 411 

control strategies in hospital settings [27], when they are based on a good understanding of 412 
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pathogen transmission routes and heterogeneity in human interactions [28,29]. Over the last 413 

decades, different approaches have been used to acquire knowledge on interindividual 414 

contacts, such as observational studies, diaries, interviews and more recently wearable 415 

sensors [30–38]. While several IBMs of pathogen spread within hospitals [28,39–47] have 416 

been developed to assess measures such as hygiene compliance [22] or antiviral prophylaxis 417 

impact on influenza [48], few models have actually attempted to directly integrate such rich 418 

empiric data. To our knowledge, only two published individual-based models simulated 419 

transmission along an RFID-based contact network [11,22], one of which studied MRSA spread 420 

[22]. In that work, Hornbeck et al. showed that the number of colonised patients increased 421 

when the most connected nurses did not comply with infection control recommendations, 422 

which is consistent with our results. 423 

We must consider the feasibility, cost and social acceptability when deciding which control 424 

strategies should be implemented. For instance, we suggest that the best strategy would be 425 

to implement contact precautions or vaccination focusing on supercontactors, but identifying 426 

and targeting supercontactors, in particular among patients, may not be as socially acceptable 427 

as broadly targeting hospital staff categories. The benefit of patient vaccination, which we 428 

identified as the best strategy in the LTCF, may also be reduced in acute care settings, due to 429 

shorter patient lengths of stay and to the likely delay required for immunity to develop 430 

following vaccination. In addition, here we chose to simulate the impact of the vaccine as a 431 

reduction in the probability of pathogen acquisition, but alternatives could be considered 432 

based on recent clinical trials, for example with the vaccine reducing the risk of infection 433 

rather than colonisation or reducing the risk of transmission from vaccinated individuals [49]. 434 

In any case, achieving a 10-fold reduction in transmission probabilities with these 435 

interventions might not actually be feasible, depending on the baseline level of pathogen 436 

transmission, which is why we explored a range of reductions as previous studies have done 437 

[50]. On the other hand, reallocation requires greater logistical efforts, and may not always 438 

be feasible depending on the economic context of the healthcare institution and the care load. 439 

Finally, the most effective reallocation strategies may not be the most “cost-effective”. For 440 

instance, when considering the relative reduction in incidence per staff reallocated, targeting 441 

only rehabilitation staff ranked higher than targeting all staff (Figure 2b). 442 
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In conclusion, this work sheds light on the importance of targeting control and prevention 443 

measures in an LTCF towards specific hospital staff categories, but also of involving patients 444 

in such efforts as they may too play an important role in the transmission network. Patients 445 

need to be actors of their own prevention especially when their length of stay is long. More 446 

importantly, we underline how monitoring contacts can be helpful to design highly effective 447 

control strategies aimed at “supercontactor” individuals.   448 
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Materials and methods 449 

Data description 450 

Data used here were previously collected during the Individual-Based Investigation of 451 

Resistance Dissemination (i-Bird) study [11,12], which took place within a rehabilitation and 452 

LTCF from the beginning of July to the end of October 2009. Over this period, each participant 453 

(patient or hospital staff) was wearing an RFID sensor that recorded close-proximity 454 

interactions (CPIs, at less than 1.5m) every 30 seconds. A dynamic network of proximities is 455 

therefore available over 117 days with information on individual ID, ward of affectation, age, 456 

gender etc. In addition, dedicated nurses swabbed patients and hospital staff each week to 457 

detect MRSA colonization.  458 

The hospital was structured into five wards: (i) three neurological wards, (ii) one nutritional 459 

care ward and (iii) one geriatric ward. In addition to neurologic, geriatric and nutritional care 460 

patients, the hospital hosted a few persistent vegetative state (PVS), post-operative and 461 

orthopaedic patients. Most patients had long hospitalization durations (median: 7 weeks). In 462 

addition to “classic” staff categories such as nurses, physician, rehabilitation staff, patients 463 

could interact with other staff members, such as hairdressers. 464 

Overall, a total of 327 patients and 263 hospital staff had recorded contacts during the 465 

investigation period. This study is described in more detail in [11,12]. 466 

 467 

Model description 468 

We developed a stochastic Susceptible-Colonized-Susceptible individual-based model that 469 

simulates the dynamic transmission of a pathogen within a hospital over a network 470 

incorporating data on the detailed structure of CPIs. Individuals could either be patients or 471 

hospital staff members. Hospital staff were divided into six categories: healthcare assistants, 472 

nurses (including nurses, head nurses, and students), rehabilitation staff (occupational 473 

therapists, physiotherapists, and other rehabilitation staff), physicians, hospital porters, and 474 

other staff (animation, logistic, administration, and hospital service agents). The model 475 

accounts for admissions and discharges from the hospital and inter-individual contacts. Once 476 
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admitted, a patient remains in the hospital until discharged, whereas hospital staff can be 477 

present or absent according to their daily schedule. A probability per time unit for hospital 478 

staff presence simulates this schedule.  479 

Transmission process 480 

Every individual can either be colonized or non-colonized (susceptible) by the pathogen (here, 481 

MRSA). At each contact between a susceptible and a colonized individual, the pathogen can 482 

be transmitted from the colonized to the susceptible individual with a given probability. This 483 

transmission probability is computed as the product of the between-individual contact 484 

duration and the pathogen-specific transmission probability, assuming that risks saturate 485 

after 1 hour. The model accounts for four different transmission probabilities depending on 486 

the status of the individuals involved: patient-to-patient, patient-to-staff, staff-to-patient and 487 

staff-to-staff (see Supplementary Text 1). A colonized individual can naturally recover to the 488 

susceptible state after a colonization duration randomly drawn from a lognormal distribution. 489 

Such individuals may subsequently be recolonised (no immunity is assumed). We also assume 490 

that no active decolonisation measures are implemented. 491 

Individuals are assumed to be screened for colonization with a probability estimated from the 492 

data that depends on weekdays. 493 

Model parameterization 494 

The model was parameterized using i-Bird data. Simulations ran over 84 days, with an initial 495 

151 patients and 236 hospital staff members present, to reflect the duration and conditions 496 

of the data collection. Values for model parameters were also computed from the observed 497 

data on MRSA colonization among the patients and hospital staff. A summary list of model 498 

parameters is provided in Table S2. Detailed information on parameter value calculations is 499 

provided in Supplementary Text 1. 500 

 501 

Building synthetic contacts 502 

We built an algorithm to generate both realistic full and reported stochastic dynamic networks 503 

of interindividual interactions in the hospital using parameters estimated from the observed 504 
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data. Details of parameters computations and CPI generation algorithm are provided in 505 

reference [13].  506 

 507 

Implementing control strategies 508 

We evaluated three distinct contact-based control strategies: staff reallocation, contact 509 

precautions, and vaccination.  510 

Reallocation was simulated as a modification of the contact network, in which patients were 511 

allocated to a given staff member of each category for their entire length of stay. We then 512 

generated contacts using the algorithm we previously described [13], choosing in priority the 513 

staff member allocated to that patient (or vice-versa) when a corresponding contact occurred. 514 

For example, if we allocate patient p1 to nurse n1, then nurse n1 will systematically be chosen 515 

in priority whenever the algorithm attempts to create a contact between p1 and a nurse. We 516 

assumed that reallocation did not influence CPI rates.  517 

Contact precautions were simulated by reducing instantaneous patient-to-hospital staff and 518 

hospital staff-to-patient transmissions probabilities 2-, 4-, 6-, 8- or 10-fold, irrespective of CPI 519 

rates. Three specific scenarios were investigated: (i) contact precautions for all members of 520 

different staff categories, (ii) contact precautions for 60 randomly selected staff members 521 

amongst nurses or all staff, and (iii) contact precautions for 60 individuals with the highest 522 

rates of contacts, called “supercontactors”. Two definitions of supercontactors were assessed: 523 

(i) based on the number of contacts (henceforth called “frequency-based supercontactors”) 524 

and (ii) based on the duration of contact (henceforth called “duration-based 525 

supercontactors”). Frequency-based supercontactors were defined as the patients or hospital 526 

staff members who had the highest mean number of daily contacts with distinct individuals. 527 

Duration-based supercontactors were defined as the patients or hospital staff members who 528 

had the highest mean daily cumulative duration spent in contact with other individuals. 529 

Several strategies were explored regarding the type (patients and/or staff members) of 530 

selected supercontactors on whom to focus reinforced contact precautions. 531 

Vaccination was simulated by reducing acquisition probabilities for vaccinated individuals by 532 

2-, 4-, 6-, 8- or 10-fold, irrespective of CPI rates. This effectively corresponds to an 533 
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unvaccinated-to-vaccinated transmission probability reduction, regardless of the categories 534 

of individuals in contact (staff or patient). For example, a 6-fold reduction would translate into 535 

a vaccine efficacy of 1 - 1/6 = 83% to reduce the risk of acquisition. We examined the same 536 

scenarios as for contact precautions. We assume that the vaccine has been administered with 537 

sufficient time before the simulation, and therefore do not consider a delay before reaching 538 

maximum vaccine efficacy. We also do not account for potentially waning immunity due to 539 

the relatively short time period of our simulation. 540 

For all interventions and scenarios, the relative reduction in the cumulative incidence of MRSA 541 

colonisation over the entire simulation period was used as an indicator of intervention 542 

efficacy. This was calculated by simulating each scenario (including baseline) 500 times and 543 

comparing each simulation result with 10 randomly chosen simulations of the baseline 544 

scenario, leading to a total of 5000 comparison points per scenario. We used a Wilcoxon test 545 

to check if the median relative reduction in cumulative incidence was significantly different 546 

from 0. 547 

We used the model to simulate the impact of these control strategies for other pathogens 548 

than MRSA. To represent the varying epidemiological characteristics of these pathogens, we 549 

either doubled or halved the values for the transmission rate or carriage duration (i.e. 550 

infectious period) compared to the values we estimated from the data. 551 

 552 

Acknowledgements and funding sources 553 

This project has received funding from the Innovative Medicines Initiative 2 Joint Undertaking 554 

under grant agreement No 101034420 (PrIMAVeRa). This Joint Undertaking receives support 555 

from the European Union’s Horizon 2020 research and innovation programme and EFPIA.  556 

This communication reflects the author's view and that neither IMI nor the European Union, 557 

EFPIA, or any Associated Partners are responsible for any use that may be made of the 558 

information contained therein.  559 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 11, 2023. ; https://doi.org/10.1101/2023.12.08.23299666doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.08.23299666
http://creativecommons.org/licenses/by-nc/4.0/


References 560 

1.  World Health Organization. Report on the burden of endemic health care-associated infection 561 
worldwide. World Health Organization; 2011. Available: 562 
https://apps.who.int/iris/handle/10665/80135 563 

2.  Vanhems P, Von Raesfeldt R, Ecochard R, Voirin N. Emergence of Ebola virus disease in a french 564 
acute care setting: a simulation study based on documented inter-individual contacts. Sci Rep. 565 
2016;6: 36301. doi:10.1038/srep36301 566 

3.  Rudberg A-S, Havervall S, Månberg A, Jernbom Falk A, Aguilera K, Ng H, et al. SARS-CoV-2 567 
exposure, symptoms and seroprevalence in healthcare workers in Sweden. Nat Commun. 568 
2020;11: 5064. doi:10.1038/s41467-020-18848-0 569 

4.  World Health Organization. Global antimicrobial resistance and use surveillance system (GLASS) 570 
report: 2022. 2022 Dec. Available: https://www.who.int/publications-detail-571 
redirect/9789240062702 572 

5.  O’Gara JP. Into the storm: Chasing the opportunistic pathogen Staphylococcus aureus from skin 573 
colonisation to life-threatening infections. Environmental Microbiology. 2017;19: 3823–3833. 574 
doi:10.1111/1462-2920.13833 575 

6.  Huang SS, Platt R. Risk of methicillin-resistant Staphylococcus aureus infection after previous 576 
infection or colonization. Clin Infect Dis. 2003;36: 281–285. doi:10.1086/345955 577 

7.  Atkins KE, Lafferty EI, Deeny SR, Davies NG, Robotham JV, Jit M. Use of mathematical modelling 578 
to assess the impact of vaccines on antibiotic resistance. The Lancet Infectious Diseases. 579 
2018;18: e204–e213. doi:10.1016/S1473-3099(17)30478-4 580 

8.  Temime L, Opatowski L, Pannet Y, Brun-Buisson C, Boëlle PY, Guillemot D. Peripatetic health-581 
care workers as potential superspreaders. Proc Natl Acad Sci USA. 2009;106: 18420–18425. 582 
doi:10.1073/pnas.0900974106 583 

9.  Curtis DE, Hlady CS, Kanade G, Pemmaraju SV, Polgreen PM, Segre AM. Healthcare Worker 584 
Contact Networks and the Prevention of Hospital-Acquired Infections. PLOS ONE. 2013;8: 585 
e79906. doi:10.1371/journal.pone.0079906 586 

10.  Valdano E, Poletto C, Boëlle P-Y, Colizza V. Reorganization of nurse scheduling reduces the risk 587 
of healthcare associated infections. Sci Rep. 2021;11: 7393. doi:10.1038/s41598-021-86637-w 588 

11.  Obadia T, Silhol R, Opatowski L, Temime L, Legrand J, Thiébaut ACM, et al. Detailed Contact 589 
Data and the Dissemination of Staphylococcus aureus in Hospitals. Salathé M, editor. PLOS 590 
Computational Biology. 2015;11: e1004170. doi:10.1371/journal.pcbi.1004170 591 

12.  Duval A, Obadia T, Martinet L, Boëlle P-Y, Fleury E, Guillemot D, et al. Measuring dynamic social 592 
contacts in a rehabilitation hospital: effect of wards, patient and staff characteristics. Scientific 593 
Reports. 2018;8: 1686. doi:10.1038/s41598-018-20008-w 594 

13.  Duval A, Leclerc QJ, Guillemot D, Temime L, Opatowski L. An algorithm to build synthetic 595 
temporal contact networks based on close-proximity interactions data. medRxiv. 2023. 596 
doi:10.1101/2023.10.23.23296945 597 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 11, 2023. ; https://doi.org/10.1101/2023.12.08.23299666doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.08.23299666
http://creativecommons.org/licenses/by-nc/4.0/


14.  Obadia T, Opatowski L, Temime L, Herrmann J-L, Fleury É, Boëlle P-Y, et al. Interindividual 598 
Contacts and Carriage of Methicillin-Resistant Staphylococcus aureus: A Nested Case-Control 599 
Study. Infection Control & Hospital Epidemiology. 2015;36: 922–929. doi:10.1017/ice.2015.89 600 

15.  Beggs CB, Noakes CJ, Shepherd SJ, Kerr KG, Sleigh PA, Banfield K. The influence of nurse 601 
cohorting on hand hygiene effectiveness. American Journal of Infection Control. 2006;34: 621–602 
626. doi:10.1016/j.ajic.2006.06.011 603 

16.  Hussein K, Rabino G, Eluk O, Warman S, Reisner S, Geffen Y, et al. The association between 604 
infection control interventions and carbapenem-resistant Enterobacteriaceae incidence in an 605 
endemic hospital. Journal of Hospital Infection. 2017;97: 218–225. 606 
doi:10.1016/j.jhin.2017.07.018 607 

17.  Jochimsen EM, Fish L, Manning K, Young S, Singer DA, Baker R, et al. Control of Vancomycin-608 
Resistant Enterococci at a Community Hospital: Efficacy of Patient and Staff Cohorting. Infect 609 
Control Hosp Epidemiol. 1999;20: 106–109. doi:10.1086/501598 610 

18.  Meyers LA, Newman MEJ, Martin M, Schrag S. Applying Network Theory to Epidemics: Control 611 
Measures for Mycoplasma pneumoniae Outbreaks. Emerg Infect Dis. 2003;9: 204–210. 612 
doi:10.3201/eid0902.020188 613 

19.  Austin DJ, Bonten MJM, Weinstein RA, Slaughter S, Anderson RM. Vancomycin-resistant 614 
enterococci in intensive-care hospital settings: Transmission dynamics, persistence, and the 615 
impact of infection control programs. Proc Natl Acad Sci U S A. 1999;96: 6908–6913.  616 

20.  Pelat C, Kardaś-Słoma L, Birgand G, Ruppé E, Schwarzinger M, Andremont A, et al. Hand 617 
Hygiene, Cohorting, or Antibiotic Restriction to Control Outbreaks of Multidrug-Resistant 618 
Enterobacteriaceae. Infect Control Hosp Epidemiol. 2016;37: 272–280. 619 
doi:10.1017/ice.2015.284 620 

21.  Abad CL, Barker AK, Safdar N. A systematic review of the effectiveness of cohorting to reduce 621 
transmission of healthcare-associated C. difficile and multidrug-resistant organisms. Infect 622 
Control Hosp Epidemiol. 2020;41: 691–709. doi:10.1017/ice.2020.45 623 

22.  Hornbeck T, Naylor D, Segre AM, Thomas G, Herman T, Polgreen PM. Using sensor networks to 624 
study the effect of peripatetic healthcare workers on the spread of hospital-associated 625 
infections. J Infect Dis. 2012;206: 1549–1557. doi:10.1093/infdis/jis542 626 

23.  Cluzet VC, Gerber JS, Nachamkin I, Metlay JP, Zaoutis TE, Davis MF, et al. Duration of 627 
Colonization and Determinants of Earlier Clearance of Colonization With Methicillin-Resistant 628 
Staphylococcus aureus. Clinical Infectious Diseases. 2015;60: 1489–1496. 629 
doi:10.1093/cid/civ075 630 

24.  Robicsek A, Beaumont JL, Peterson LR. Duration of Colonization with Methicillin‐Resistant 631 

Staphylococcus aureus. CLIN INFECT DIS. 2009;48: 910–913. doi:10.1086/597296 632 

25.  Duval A, Obadia T, Boëlle P-Y, Fleury E, Herrmann J-L, Guillemot D, et al. Close proximity 633 
interactions support transmission of ESBL-K. pneumoniae but not ESBL-E. coli in healthcare 634 
settings. PLOS Computational Biology. 2019;15: e1006496. doi:10.1371/journal.pcbi.1006496 635 

26.  Smith DRM, Duval A, Pouwels KB, Guillemot D, Fernandes J, Huynh B-T, et al. Optimizing COVID-636 
19 surveillance in long-term care facilities: a modelling study. BMC Medicine. 2020;18: 386. 637 
doi:10.1186/s12916-020-01866-6 638 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 11, 2023. ; https://doi.org/10.1101/2023.12.08.23299666doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.08.23299666
http://creativecommons.org/licenses/by-nc/4.0/


27.  Grundmann H, Hellriegel B. Mathematical modelling: a tool for hospital infection control. The 639 
Lancet Infectious Diseases. 2006;6: 39–45. doi:10.1016/S1473-3099(05)70325-X 640 

28.  Polgreen PM, Tassier TL, Pemmaraju SV, Segre AM. Prioritizing Healthcare Worker Vaccinations 641 
on the Basis of Social Network Analysis. Infection Control & Hospital Epidemiology. 2010;31: 642 
893–900. doi:10.1086/655466 643 

29.  Assab R, Temime L. The role of hand hygiene in controlling norovirus spread in nursing homes. 644 
BMC Infect Dis. 2016;16: 395. doi:10.1186/s12879-016-1702-0 645 

30.  Mossong J, Hens N, Jit M, Beutels P, Auranen K, Mikolajczyk R, et al. Social Contacts and Mixing 646 
Patterns Relevant to the Spread of Infectious Diseases. PLOS Medicine. 2008;5: e74. 647 
doi:10.1371/journal.pmed.0050074 648 

31.  Champredon D, Najafi M, Laskowski M, Chit A, M. Moghadas S, 1 Agent-Based Modelling 649 
Laboratory, York University, Toronto, ON M3J 1P3, Canada, et al. Individual movements and 650 
contact patterns in a Canadian long-term care facility. AIMS Public Health. 2018;5: 111–121. 651 
doi:10.3934/publichealth.2018.2.111 652 

32.  Lowery-North DW, Hertzberg VS, Elon L, Cotsonis G, Hilton SA, Vaughns CF, et al. Measuring 653 
Social Contacts in the Emergency Department. Sueur C, editor. PLoS ONE. 2013;8: e70854. 654 
doi:10.1371/journal.pone.0070854 655 

33.  Isella L, Romano M, Barrat A, Cattuto C, Colizza V, Van den Broeck W, et al. Close Encounters in 656 
a Pediatric Ward: Measuring Face-to-Face Proximity and Mixing Patterns with Wearable 657 
Sensors. Cowling B, editor. PLoS ONE. 2011;6: e17144. doi:10.1371/journal.pone.0017144 658 

34.  Lucet J-C, Laouenan C, Chelius G, Veziris N, Lepelletier D, Friggeri A, et al. Electronic Sensors for 659 
Assessing Interactions between Healthcare Workers and Patients under Airborne Precautions. 660 
Colizza V, editor. PLoS ONE. 2012;7: e37893. doi:10.1371/journal.pone.0037893 661 

35.  Mastrandrea R, Soto-Aladro A, Brouqui P, Barrat A. Enhancing the evaluation of pathogen 662 
transmission risk in a hospital by merging hand-hygiene compliance and contact data: a proof-663 
of-concept study. BMC Res Notes. 2015;8: 426. doi:10.1186/s13104-015-1409-0 664 

36.  Voirin N, Payet C, Barrat A, Cattuto C, Khanafer N, Régis C, et al. Combining High-Resolution 665 
Contact Data with Virological Data to Investigate Influenza Transmission in a Tertiary Care 666 
Hospital. Infect Control Hosp Epidemiol. 2015;36: 254–260. doi:10.1017/ice.2014.53 667 

37.  Herman T, Monsalve M, Pemmaraju S, Polgreen P, Segre AM, Sharma D, et al. Inferring Realistic 668 
Intra-hospital Contact Networks Using Link Prediction and Computer Logins. 2012 International 669 
Conference on Privacy, Security, Risk and Trust and 2012 International Confernece on Social 670 
Computing. Amsterdam, Netherlands: IEEE; 2012. pp. 572–578. doi:10.1109/SocialCom-671 
PASSAT.2012.113 672 

38.  Vanhems P, Barrat A, Cattuto C, Pinton J-F, Khanafer N, Régis C, et al. Estimating Potential 673 
Infection Transmission Routes in Hospital Wards Using Wearable Proximity Sensors. Viboud C, 674 
editor. PLoS ONE. 2013;8: e73970. doi:10.1371/journal.pone.0073970 675 

39.  Almagor J, Temkin E, Benenson I, Fallach N, Carmeli Y, on behalf of the DRIVE-AB consortium. 676 
The impact of antibiotic use on transmission of resistant bacteria in hospitals: Insights from an 677 
agent-based model. Zhou Z, editor. PLoS ONE. 2018;13: e0197111. 678 
doi:10.1371/journal.pone.0197111 679 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 11, 2023. ; https://doi.org/10.1101/2023.12.08.23299666doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.08.23299666
http://creativecommons.org/licenses/by-nc/4.0/


40.  Lanzas C, Dubberke ER. Effectiveness of Screening Hospital Admissions to Detect Asymptomatic 680 
Carriers of Clostridium difficile : A Modeling Evaluation. Infect Control Hosp Epidemiol. 2014;35: 681 
1043–1050. doi:10.1086/677162 682 

41.  Caudill L, Lawson B. A unified inter-host and in-host model of antibiotic resistance and infection 683 
spread in a hospital ward. Journal of Theoretical Biology. 2017;421: 112–126. 684 
doi:10.1016/j.jtbi.2017.03.025 685 

42.  Barker AK, Alagoz O, Safdar N. Interventions to Reduce the Incidence of Hospital-Onset 686 
Clostridium difficile Infection: An Agent-Based Modeling Approach to Evaluate Clinical 687 
Effectiveness in Adult Acute Care Hospitals. Clinical Infectious Diseases. 2018;66: 1192–1203. 688 
doi:10.1093/cid/cix962 689 

43.  Codella J, Safdar N, Heffernan R, Alagoz O. An Agent-based Simulation Model for Clostridium 690 
difficile Infection Control. Med Decis Making. 2015;35: 211–229. 691 
doi:10.1177/0272989X14545788 692 

44.  D’Agata EMC, Horn MA, Webb GF. The Impact of Persistent Gastrointestinal Colonization on 693 

the Transmission Dynamics of Vancomycin‐Resistant Enterococci. J INFECT DIS. 2002;185: 694 

766–773. doi:10.1086/339293 695 

45.  Rubin MA, Jones M, Leecaster M, Khader K, Ray W, Huttner A, et al. A Simulation-Based 696 
Assessment of Strategies to Control Clostridium Difficile Transmission and Infection. Trotter CL, 697 
editor. PLoS ONE. 2013;8: e80671. doi:10.1371/journal.pone.0080671 698 

46.  Barnes SL, Rock C, Harris AD, Cosgrove SE, Morgan DJ, Thom KA. The Impact of Reducing 699 
Antibiotics on the Transmission of Multidrug-Resistant Organisms. Infect Control Hosp 700 
Epidemiol. 2017;38: 663–669. doi:10.1017/ice.2017.34 701 

47.  Ferrer J, Salmon M, Temime L. Nosolink: An Agent-based Approach to Link Patient Flows and 702 
Staff Organization with the Circulation of Nosocomial Pathogens in an Intensive Care Unit. 703 
Procedia Computer Science. 2013;18: 1485–1494. doi:10.1016/j.procs.2013.05.316 704 

48.  Najafi M, Laskowski M, de Boer PT, Williams E, Chit A, Moghadas SM. The Effect of Individual 705 
Movements and Interventions on the Spread of Influenza in Long-Term Care Facilities. Med 706 
Decis Making. 2017;37: 871–881. doi:10.1177/0272989X17708564 707 

49.  Clegg J, Soldaini E, McLoughlin RM, Rittenhouse S, Bagnoli F, Phogat S. Staphylococcus aureus 708 
Vaccine Research and Development: The Past, Present and Future, Including Novel Therapeutic 709 
Strategies. Front Immunol. 2021;12: 705360. doi:10.3389/fimmu.2021.705360 710 

50.  Hogea C, Van Effelterre T, Cassidy A. A model-based analysis: what potential could there be for 711 
a S. aureus vaccine in a hospital setting on top of other preventative measures? BMC Infectious 712 
Diseases. 2014;14: 291. doi:10.1186/1471-2334-14-291 713 

51.  Duval A, Smith D, Guillemot D, Opatowski L, Temime L. CTCmodeler: An Agent-Based 714 
Framework to Simulate Pathogen Transmission Along an Inter-individual Contact Network in a 715 
Hospital. In: Rodrigues JMF, Cardoso PJS, Monteiro J, Lam R, Krzhizhanovskaya VV, Lees MH, et 716 
al., editors. Computational Science – ICCS 2019. Springer International Publishing; 2019. pp. 717 
477–487. doi:10.1007/978-3-030-22741-8_34 718 

 719 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 11, 2023. ; https://doi.org/10.1101/2023.12.08.23299666doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.08.23299666
http://creativecommons.org/licenses/by-nc/4.0/

