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Abstract  8 

Drug resistance is a problem in many pathogens, including viruses, bacteria, fungi and parasites (Murray et 9 

al. 2022). While overall, levels of resistance have risen in recent decades, there are many examples where 10 

after an initial rise, levels of resistance have stabilized (Krieger et al. 2020; Colijn et al. 2009; Diekema et 11 

al. 2019; Rhee et al. 2019; Rocheleau et al. 2018). The stable coexistence of resistance and susceptibility 12 

has proven hard to explain (Krieger et al. 2020; Colijn et al. 2009; Cobey et al. 2017; Kouyos, Klein, and 13 

Grenfell 2013; Blanquart et al. 2018). Here, we show that a simple stochastic model, mathematically akin 14 

to mutation-selection balance theory, can explain several key observations about drug resistance: (1) the 15 

stable coexistence of resistant and susceptible strains (2) at levels that depend on population-level drug 16 

usage and (3) with resistance often due to many different strains (resistance is present on many different 17 

genetic backgrounds). The model works for resistance due to both mutations or horizontal gene transfer 18 

(HGT). It predicts that new resistant strains should continuously appear (through mutation or HGT and 19 

positive selection within treated hosts) and disappear (due to the fitness cost of resistance). The result is 20 

that while resistance is stable, which strains carry resistance is constantly changing. We used data from a 21 

longitudinal genomic study on E. coli in Norway to test this prediction for resistance to five different drugs 22 

and found that, consistent with the model, most resistant strains indeed disappear quickly after they appear 23 

in the dataset.  24 

 25 

Significance statement  26 

It is unclear why drug-resistant and drug-susceptible strains of pathogens can co-exist. Basic evolutionary 27 

models would predict that one or the other would have higher fitness and thus take over the population. 28 

Here we propose the Resistance Acquisition - Purifying Selection model that can explain how resistant 29 

strains appear (due to treatment) and disappear (due to a fitness cost of resistance). We show how E. 30 

coli data are mostly consistent with the model. A better understanding of the balance between resistant and 31 

susceptible strains can help design interventions to reduce resistance levels.  32 
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Introduction 33 

Drug resistance is common in viruses (HIV), bacteria (S. aureus, E. coli, M. tuberculosis), parasites (P. 34 

falciparum) and fungi (Candida species), making it a major public health threat [1]. What can we do to 35 

prevent the rise of drug-resistant strains? Or to revert the trend if the level of resistance is already high? To 36 

plan successful science-backed interventions, we must understand what determines the level of drug 37 

resistance in each pathogen. Therefore, a need exists for better models to explain current resistance levels, 38 

predict how resistance rates will change over time and identify which interventions would most reduce the 39 

burden of resistance. Here, we present a simple model that does all these things. 40 

Any model that might be used to predict drug resistance levels for different pathogens must be able 41 

to explain several observations that are currently not well explained [2,3,12]. First, while overall drug 42 

resistance has increased over the years, in many cases, an initial increase in resistance is followed by stable 43 

coexistence between drug-resistant and drug-sensitive strains. For an example, see Figure 1A on quinolone 44 

resistance in E. coli in Europe. Other examples of stable coexistence of resistant and susceptible strains can 45 

be found in S. pneumoniae [2,3], S. aureus [4] and HIV [5,6]). Second, a positive linear relationship has 46 

been observed between treatment intensity at the population level and drug resistance levels [13](Figure 47 

1B). And third, many different resistant strains (i.e., resistance on different genetic backgrounds) often 48 

segregate at the same time in a pathogen population [5,14] (see Figure 1C for an example of resistance to 49 

the quinolone drug ciprofloxacin in E. coli in the UK; resistance appears repeatedly on the phylogenetic 50 

tree [15,16]).  51 

The second observation feels intuitive to most of us: If we use more drugs, we get more drug 52 

resistance. But the first observation of stable coexistence, is puzzling: if there is selection for drug 53 

resistance, why doesn’t the level of resistance keep increasing until it reaches 100%? The third observation 54 

of resistance in many strains or genetic backgrounds, can be seen in many phylogenetic trees in articles 55 

about drug resistance, but usually does not receive a lot of attention. For example, in a large study of HIV 56 

isolates in Northern California, Rhee and colleagues found 82 phylogenetic clusters with one or more drug-57 

resistance mutations [5]. In an E. coli dataset from the UK, 31 independent phylogenetic clusters with 58 

ciprofloxacin-resistant strains were found [15], and Casali and colleagues found 106 independent 59 

phylogenetic clusters with pyrazinamide resistance in M. tuberculosis [17]. These results show that 60 

resistance has evolved de novo or been acquired through horizontal gene transfer (HGT) many times 61 

[18,19].  62 

Several different explanations have been put forward to explain the coexistence of resistance and 63 

susceptibility and the positive relationship between treatment and resistance levels [2,3]. These 64 

explanations have usually focused on mechanisms that require population structure or coinfection to create 65 

stabilizing selection [2,3,7–9]. We propose a simpler model akin to mutation-selection balance. Our model 66 

requires few assumptions, which means it could be applicable to a large variety of pathogens, and few 67 

parameters, which makes it easy to use.  68 

We call our model the “resistance acquisition and purifying selection” (RAPS) model and will 69 

show that it can explain all three key observations about drug resistance listed previously.  We will also 70 

describe which observations cannot directly be explained by the RAPS model. Note that when resistance is 71 

due to HGT, we don’t aim to explain why genetic elements that confer drug resistance exist or how they 72 

evolved, but rather why they are carried by a stable frequency of strains in pathogen populations.  73 
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 74 
Figure 1. Three key observations about drug resistance, illustrated with data on resistance to quinolones in E. 75 

coli. a. Observation 1. Typically, an initial increase in resistance is followed by stable coexistence between drug-76 

resistant and drug-sensitive strains. Each line depicts the fraction of E. coli strains resistant to quinolones in a country 77 

over two decades in the 10 most populous countries (formerly) in the European Union (EU). b. Observation 2. 78 

Treatment intensity at the country level is correlated with drug resistance levels. A strong positive correlation exists 79 

between quinolone usage and quinolone resistance levels in 20 countries in the EU. Publicly available data from the 80 

Surveillance Atlas of Infectious Diseases were used to create Figures 1a and 1b [20,21]. c. Observation 3. Many 81 

different resistant strains often segregate at the same time. Quinolone (specifically ciprofloxacin) resistance in 82 

bacteremia patients in the UK is due to many different origins of resistance (here only phylogroup D and F are shown). 83 

Data from [16], figure reproduced from [15]. 84 

The resistance acquisition – purifying selection (RAPS) model 85 

Here we show that the RAPS model based on classic mutation-selection balance can explain the three 86 

striking observations of drug resistance at the population level: (1) a stable coexistence of resistance and 87 

susceptibility, (2) a positive relationship between drug usage and resistance levels, and (3) the simultaneous 88 

existence of many drug-resistant strains. Note that our goal here is not to determine whether the RAPS 89 
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model can better explain the data than the models proposed by others. Instead, we provide a proof of concept 90 

to show that the model can, in principle, lead to the main observations and should be considered as a 91 

possibility. The RAPS model works for resistance acquisition due to de novo mutation or HGT.  92 

The RAPS model is based on the classic mutation-selection balance model, because this model has 93 

already been used to explain a stable level of deleterious mutations and the existence of multiple alleles that 94 

carry a deleterious mutation [22,23]. Mutation-selection balance is a well-understood dynamic equilibrium, 95 

and we can borrow mathematical results from that theory directly here [24,25]. 96 

Mutation-selection balance has not received much attention as a potential explanation for drug 97 

resistance patterns. We see three main reasons for this omission: First, it is erroneously believed that 98 

mutation-selection balance can only lead to resistance frequencies close to 0%, whereas observed drug 99 

resistance frequencies are often much higher. Second, in the basic form, the model only considers negative 100 

selection (against mutations) and not positive selection (for mutations), whereas in the case of drug 101 

resistance, we know that positive selection plays an important role too. Third, a lot of focus in drug 102 

resistance research has been on well-established resistant strains. While well-established strains indeed 103 

require an explanation, it is important to realize that a lot of resistance is not due to these well-established 104 

strains.  105 

In the basic mutation-selection balance model, mutation creates deleterious alleles at probability μ 106 

per individual per generation and these alleles reduce the fitness of the individual carrying them by selection 107 

coefficient s per generation, see Table 1. Standard population genetic theory then predicts that the 108 

deleterious allele frequency is μ/s [24].  109 

To apply mutation-selection equilibrium theory to the problem of drug resistance, we make several 110 

adjustments. First, as others have done, we treat the population of the pathogen as a metapopulation where 111 

each host is considered a “deme” [26]. Hosts can be infected (I), susceptible to infection (S) and recovered 112 

(R). Time is measured in units of duration of infection, so that R0 is the expected number of new infections 113 

(i.e., newly colonized demes) in a situation where all demes are susceptible [26] (alternatively, time could 114 

be measured per month or year, as we will do in the discussion). Next, we assume that demes have a 115 

probability, t⋅e, per unit of time, to be treated (t) and to evolve to become resistant (e). The treatment 116 

parameter t is the probability (per unit time) that the host is treated, and the evolution parameter e is the 117 

probability that the within-host pathogen population evolves to become resistant through mutation or the 118 

acquisition of a genetic element, given that the host is treated. Mathematically, t⋅e plays the role of the 119 

mutation parameter μ in the standard model (see Table 1). Next, we assume that resistance comes with a 120 

mild fitness cost, c, which can be understood as a reduction in R0 compared to the R0 of the susceptible 121 

pathogen strain. The fitness cost parameter, c, determines how likely the resistant strain is to be transmitted 122 

to non-resistant hosts [27]. Mathematically, c plays the role of s (negative selection) in the standard 123 

mutation-selection model (see Table 1). We refer to the fraction of hosts that is infected with a resistant 124 

strain out of all infected hosts as f. Only hosts with susceptible strains (1-f of the pathogen population) can 125 

evolve to become resistant.  126 

Under this model, the frequency of resistant strains, f, will increase with t⋅e⋅(1-f) per unit time 127 

through positive selection within hosts and will be reduced by negative selection with -c⋅f ⋅(1-f). Thus, the 128 

change in frequency (𝑓′) can be written as:   129 

𝑓′  =  (𝑡 ⋅ 𝑒) (1 − 𝑓)  − 𝑐 ⋅ 𝑓(1 − 𝑓) .   130 

An equilibrium will thus be reached when  131 

 (𝑡 ⋅ 𝑒) (1 − 𝑓)  =  𝑐 ⋅ 𝑓 (1 − 𝑓)  ,  132 

which means that the predicted equilibrium frequency of resistance will be: 133 
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 𝑓 =  (𝑡 ⋅ 𝑒)/(𝑐) , see Figure 2. This equilibrium result can explain the stability of the level of 134 

resistance (f), the linear relationship between treatment levels (through t) and the level of resistance (f), 135 

while allowing for evolution of new resistant strains to occur.  136 

 137 

 138 
 139 

Figure 2: The level of resistance predicted by the Resistance Acquisition –  140 

Purifying Selection (RAPS) model for a population of pathogens is a function of the probability of 141 

resistance evolution per infection, t⋅e, and the cost of resistance, c. Higher levels of treatment lead to 142 

higher values of t⋅e, consistent with Key Observation 2 about drug resistance. Strains acquire resistance 143 

by mutation or through HGT. Resistant strains can be transmitted to other hosts, with an R0 that is reduced 144 

by c compared to the R0 of susceptible strains.  145 

 146 

Table 1. Parameters for resistance acquisition-purifying selection (RAPS) model vs classical mutation-147 

selection equilibrium model.  148 

Model  

parameter 

Mutation –  

selection balance 

Resistance acquisition –  

negative selection balance 

Generation of new 

variants 

μ mutation per generation t⋅e treatment and within-host evolution 

due to treatment per infection 

Selection against the 

variants 

s deleterious selection 

coefficient per 

generation 

c cost of drug resistance in the general 

population per infection 

Equilibrium frequency of 

the variant 
f = 

𝜇

𝑠
  f = 

𝑡⋅𝑒

𝑐
  

 149 
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Genomic and phenotypic data   150 

Using 16 years of publicly available data for resistance to several drugs in E. coli in Norway [28], 151 

we show that resistance acquisition is common and that most resistant strains are short-lived, which is 152 

consistent with the RAPS model. We used a dataset of E. coli genomes from bloodstream infections in 153 

Norway consisting of 3254 isolates from a surveillance program from 2002 - 2017. The fraction resistant 154 

strains in the dataset closely follows the reported fractions resistance from the European CDC surveillance 155 

atlas (see Figure 3A), which shows that even though the samples come from bloodstream infections, they 156 

are capturing important E. coli resistance dynamics in Norway.  157 

Using the phylogenetic tree and the phenotypic resistance data provided by the authors of the 158 

original paper [28], we estimated that ampicillin resistance evolved over 400 times on the tree, and 159 

resistance to the other drugs (cefotaxime, ciprofloxacin, gentamicin and piperacillin-tazobactam) evolved 160 

between 43 and 93 times (Figure 3B) [see Methods]. Note that the big difference in the number of 161 

evolutionary origins between ampicillin and the other drugs is consistent with the fact that ampicillin is an 162 

antibiotic that is much more often prescribed than the others [20].  163 

We found that for the five drugs we looked at, at least 75% of the strains were observed in only one 164 

year in the dataset (Figure 3C). The lifespan of individual resistant strains was estimated by determining, 165 

for each origin of resistance, in which years the resulting resistant strain was observed in the dataset. Next, 166 

we created an area plot that shows how most ciprofloxacin (quinolone) resistant strains are only seen for a 167 

short time span, but that also shows a few longer-lived strains and one resistant strain that is long-lived and 168 

reaches a high frequency (3D). While the many strains that appear and disappear again are consistent with 169 

the RAPS model, the model cannot explain the behavior of the strain that increases in frequency over several 170 

years. In fact, it is unlikely that this increase is driven by the resistance to ciprofloxacin, instead, as others 171 

have suggested, it could be that by chance the ciprofloxacin resistance mutations landed on a background 172 

with positively selected elements and are hitchhiking to high frequency [16].  173 

In summary, our analysis of the Norwegian dataset shows that resistant strains to five different 174 

drugs evolve often, yet most resistant strains do not stay in the population for long, which is consistent with 175 

ongoing selection against resistance and with the RAPS model. Yet, there are a few long-lived resistance 176 

strains which are unexplained by the RAPS model which account for a significant portion of resistance in 177 

E. coli.   178 
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 179 
Figure 3: Dynamics of drug resistant strains in Norway. a. Resistance trends in Norway for five drugs 180 

based on [20,28]. b. Estimated number of origins of resistance to five drugs. c.  Lifespans of resistant 181 

strains. d. Turnover of ciprofloxacin (quinolone) resistant strains 182 

Discussion 183 

In order to understand, predict and influence levels of drug resistance in pathogens, we need mathematical 184 

models. Here we show that a simple model with strong positive selection for drug resistance within treated 185 

hosts and mild negative (purifying) selection in the rest of the population can explain three key observations 186 

about drug resistance in a variety of pathogens (Figure 1). First, the resistance acquisition – purifying 187 

selection (RAPS) model explains the stable coexistence of resistance and susceptibility in pathogen 188 

populations. Second, it explains the positive correlation between the amount of drug used and the frequency 189 
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of drug resistance (Figure 2). And finally, it recapitulates the simultaneous existence of many different 190 

strains that carry a resistance mutation or genetic element at any one time (Figure 1C).  191 

A major strength of the RAPS model is its simplicity. It relies on only a few assumptions and 192 

doesn’t require consideration of co-infection or spatial structure of the host population. One benefit of this 193 

simplicity is that the model is more likely to be applicable to different pathogen systems. The most 194 

important assumption we make is that resistance comes with a fitness cost for the pathogen, reducing its 195 

R0 – if that is not the case, resistant strains will outcompete susceptible strains [29]. A major difference 196 

between our model and some previous models that attempt to explain stable coexistence of drug resistance 197 

and susceptibility [2,3] is that the RAPS model includes the creation and dying out of resistant strains. This 198 

can happen even when the specific genetic elements that confer resistance are stably present in the 199 

population. One reason why researchers have often chosen to ignore the creation and dying out of resistant 200 

strains is because it is assumed that drug-resistant strains are stable. However, stability at the phenotypic 201 

level doesn’t necessarily mean stability at the genetic level. New strains may evolve resistance in the same 202 

way as previous strains, even acquiring genetic elements from previous strains. The result is that the genetic 203 

element or the mutation may be stably present, but “who” carries it may always be changing (Figure 3D).  204 

Another major strength of our model is that it makes clear and testable predictions. 1. It predicts 205 

that for a given drug, the higher levels of resistance in countries with high drug usage is due to the fact that 206 

resistance acquisition happens more often. We should therefore see more independently evolved resistant 207 

strains in countries with high levels of resistance. 2. The lifespan of resistant strains in a population should 208 

depend on the cost of the resistance for the pathogen. High-cost resistance should be associated with a 209 

shorter life span and, conversely, when resistance strains are generally short-lived this suggests that costs 210 

of resistance are high. 3. The time scale at which resistance levels change when treatment habits change 211 

should depend on the lifespans of resistant strains. Short life spans mean that a new equilibrium can be 212 

reached faster, and interventions should pay off more quickly. Intervention studies where ciprofloxacin 213 

(quinolone) use was reduced seem to indicate that this influences resistance levels in a few months [30,31].  214 

Thanks to publicly available data, we were able to show that stability at the population level hides 215 

dynamic changes at lower levels (see Figure 3A-D). Although the resistance phenotype is present at a 216 

stable level (Figure 3A), resistance is due to many evolutionary origins (Figure 3B) and 75% of resistant 217 

strains are only present for a year (Figure 3C-D). It will be of interest to see if more granular data (e.g., 218 

monthly surveillance from a hospital) would show the waxing and waning of resistant strains. A major open 219 

question is why there are some long-lived resistance strains while most are so short-lived. Are these long-220 

lived strains hitchhiking with other genetic elements as others have suggested [16]? Do these strains 221 

occasionally lose the resistant phenotype, as would be expected if the resistance is a costly hitchhiker?  222 

It is of interest to see if what we know about treatment levels and drug resistance evolution 223 

probabilities roughly fits with the model. We are aware of estimates for f (fraction resistant), t (treatment 224 

probability per year) and e (probability of evolution given treatment) for quinolone drugs. We can plug in 225 

those numbers in the equilibrium equation to get an (admittedly very rough) estimate for the cost of 226 

resistance per year. In 2015, the fraction of E. coli resistant to quinolones f ≈ 10% in Norway. We also 227 

know, for Norway, that the use of quinolones is around 0.5 doses per day per 1000 people [21] . If we 228 

assume that a course of quinolones is 5 days, this translates into t ≈ 3.3% probability per year of someone 229 

taking a course of quinolones ((0.5 DDD*365 days) / (5 days per course*1000 people)*100%). A recent 230 

study estimated that the probability of resistance evolution due to a course of quinolones is e ≈ 10% [32]. 231 

Because our model proposes that 𝑓 =  (𝑡 ⋅ 𝑒)/(𝑐) , we have 0.1 =  0.033 ∗ 0.1 / 𝑐, which means that the 232 

fitness cost should be around 0.033 or 3.3% per year. While we cannot currently know if this number is 233 
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correct, it is encouraging to see that the number is at least of an order of magnitude that seems plausible. It 234 

would be of interest to see whether phylogenetic approaches can be used to determine if resistant strains 235 

indeed have a lower R0 compared to non-resistant strains [33,34]. 236 

If stable levels of resistance mask the ongoing appearance of new resistant strains, this may have 237 

implications for machine learning methods that are used to predict drug resistance phenotypes from 238 

genomic data. At any given year and location, a machine learning algorithm may learn to recognize certain 239 

strains responsible for much of the resistance burden in a species. Yet, over time, these resistant strains may 240 

be replaced by others, which means that we likely need to re-train such models for current and local 241 

situations [35].  242 

Our study has several limitations. One limitation is that the model considers only resistance to a 243 

single drug and not interactions between drugs or resistances. For example, when plasmids carry multiple 244 

resistance genes, resistance to one drug can be acquired due to selection for resistance to another drug. We 245 

also assumed that treatment does not affect transmission. If treatment itself is associated with strongly 246 

reduced transmission (as is the case in HIV), then it would be useful if the model included the treatment 247 

state of hosts, where the transmission probability of hosts on treatment is significantly lower than those not 248 

on treatment [33,36]. The cost of resistance may also vary between strains and may be affected by 249 

compensatory mutations [29,37].  250 

In conclusion, we propose a simple model that explains why drug resistance can stably co-exist 251 

with susceptible strains at levels that depend on drug usage. The model also explains why drug resistance 252 

is often present in many different strains (phylogenetic clusters, genetic backgrounds or sequence types) 253 

and predicts that resistant strains evolve and disappear again regularly. Data for resistance to several drugs 254 

in E. coli in Norway are largely consistent with these predictions, though the model does not explain why 255 

some resistant strains are seen over many years. This novel model has the potential to help us understand, 256 

predict and influence drug resistance levels and because of its simplicity, it can be readily tested in many 257 

different pathogen systems such as S. pneumoniae [2,3], S. aureus [4] and HIV [5,6]).  258 
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Methods  376 

All code and data are available on github https://github.com/pleunipennings/CoexistencePaper.  377 

Figure 1A European surveillance data  378 

Quinolone resistance over time in 10 European countries.  379 

Data were downloaded from the European Surveillance Atlas for Infectious Diseases.  380 

Link https://atlas.ecdc.europa.eu/public/index.aspx .  381 

As health topic, we chose “Antimicrobial resistance”, as subpopulation “Escherichia coli|” and 382 

“fluoroquinolones” and as indicator “percentage resistance”. We then downloaded a csv file with data for 383 

all available years and regions  384 

(named ECDC_surveillance_data_Antimicrobial_resistance_complete_DownloadApril2024.csv in the 385 

Github repository). For Figure 1A we included the 10 most populous countries in the EU, including the 386 

United Kingdom: Germany, United Kingdom, France, Italy, Spain, Poland, Romania, Netherlands, 387 

Belgium, Czech Republic [20].  388 

Figure 1B European surveillance data  389 

For figure 1B, we used the percentage fluoroquinolone resistance in 2015 from the dataset described for 390 

Figure 1A, but now for the 20 most populous countries. This included in addition to the first 10:  Sweden, 391 

Portugal, Greece, Hungary, Austria, Bulgaria, Denmark, Finland, Slovakia, Ireland.  392 

For data on the use of fluoroquinolones in these countries, we downloaded data from 393 

https://www.ecdc.europa.eu/en/publications-data/antimicrobial-consumption-annual-epidemiological-394 

report-2015 which included “Downloadable tables: Antimicrobial consumption - Annual Epidemiological 395 

Report for 2015” [21].  396 

Figure 1C E. coli phylogenetic tree Kallonen dataset from Nouhuijs et al.  397 

The phylogenetic tree in Figure 1C was reproduced from [15]. Data presented here include only E. coli 398 

strains from phylogroup D and F. The genomes and phenotypes were described in [16]. Briefly, a core 399 

genome alignment was used to create a phylogenetic tree, then we simulated a single history of the 400 

resistance phenotype using the “simmap” function in Phytools [38,39], the simulated history is shown on 401 

the tree with resistant branches in red, susceptible branches in green and intermediate branches in green.  402 

Figure 3A Resistance trends in Norway for five drugs 403 

Data are from Gladstone, 2021 [28] and from the ECDC Surveillance Atlas [20].  404 

Figure 3B Estimated number of origins of resistance to five drugs 405 

We used the tree and metadata provided by Gladstone, 2021 [28]. This dataset consists of 16 years of 406 

surveillance data including 3254 E. coli samples from bacteremia patients in Norway between 2002 and 407 

2017. Intermediate and susceptible strains were lumped in one category. We simulated a single history of 408 

the resistance phenotype using the “simmap” stochastic character mapping function in Phytools [39] which 409 

is based on methods by [38,40]. Next, we used a custom R script to identify the last resistant ancestor for 410 
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each resistant tip of the tree. If two tips share a last resistant ancestor, we assume that they are resistant due 411 

to the same evolutionary origin of resistance. This evolutionary origin may be due to a mutation, several 412 

mutations or horizontal gene transfer – our approach is based on the phenotypes, not the genotypes. Based 413 

on the simmap results, we count the number of times resistance was acquired on the tree.  414 

 415 

 416 
Supplementary figure 1. In this example, there are three resistant tips. The branches are colored according 417 

to the simmap stochastic character mapping. R1 and R2 share a last resistant ancestor and are therefore 418 

assumed to be resistant due to the same evolutionary event in their history, we consider them part of the 419 

same resistant cluster or resistant strain. For R3, the last resistant ancestor is itself. It is the only member of 420 

the resistant cluster or strain.  421 

Figure 3C Lifespans of resistant strains 422 

Using the results from analysis described for 3B and the metadata from [28] to determine for each inferred 423 

resistance cluster for how many years it was observed in the data. For example, if R1 was a sample from 424 

2005 and R2 was a sample from 2007, then we infer that the lifespan of this cluster was 3 years.  425 

Figure 3D Turnover of ciprofloxacin (quinolone) resistant strains 426 

Using the results from analysis described for 3B and the metadata from [28] to determine for each inferred 427 

ciprofloxacin resistance cluster what its frequency was in each year.  428 
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