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Running title

Prediction models of MAPK inhibitors efficiency in advanced melanoma.

Abstract

Purpose: Baseline genomic data have not demonstrated significant value for predicting the response to MAPK
inhibitors (MAPKi) in patients with BRAFV600-mutated melanoma. We used machine learning algorithms and
pre-processed genomic data to test whether they could contain useful information to improve the progression-
free survival (PFS) prediction.

Experimental design: This exploratory analysis compared the predictive performance of a dataset that
contained clinical features alone and supplemented with baseline genomic data. Whole and partial exon se-
quencing data from four cohorts of patients with BRAFV600-mutated melanoma treated with MAPKi were
used: two cohorts as training/evaluation set (n = 111) and two as validation set (n = 73). Genomic data were
pre-processed using three strategies to generate eight different genomic datasets. Several machine learning algo-
rithms and one statistical algorithm were employed to predict PFS. The performance of these survival models
was assessed using the concordance index, time-dependent receiver operating characteristic (ROC) curve and
Brier score.

Results: The cross-validated model performance improved when pre-processed genomic data, such as mu-
tation rates, were added to the clinical features. In the validation dataset, the best model with genomic data
outperformed the best model with clinical features alone. The trend towards improved prediction with baseline
genomic data was maintained when data were censored according to the two clinical setting scenarios (duration
of clinical benefit and progression before 12 months).

Conclusion: In our models, baseline genomic data improved the prediction of response duration and could be
incorporated into the development of predictive models of response pattern to MAPKi in melanoma.
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Translational Relevance

Currently, biomarkers are lacking to robustly predict the response to therapy targeting the MAPK pathway
in advanced melanoma. Therefore, in the clinic, a trial-and-error approach is often used. Baseline genomic
mutation profiles represent a comparably stable biological readout that is easily accessible and measurable in
clinical routine. Therefore, they might represent candidate predictive biomarker signatures. However, previous
studies could not show a clear predictive signal for the response to MAPK inhibitors (MAPKi) in patients with
BRAFV600-mutated melanoma. Here, our exploratory machine learning-based analysis highlighted an improved
prediction of progression-free survival when clinical and genomic data were combined, even when using only
partial exome sequencing data. This suggests that baseline genomic data could be incorporated in the develop-
ment of predictive models of the response to MAPKi in advanced melanoma by leveraging the results of current
routine partial exome sequencing.
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1 Introduction

MAPK inhibitors (MAPKi) and immune checkpoint inhibitors (ICI) have totally revolutionized the treatment
of patients with advanced melanoma [1, 2, 3].However, their efficacy is hampered by primary or secondary
tumor resistance. Patients with melanoma harboring BRAFV600 mutations show a good overall response rate
to MAPKi at treatment start, while ICI have a more durable response. Therefore, the choice between these
therapeutic options requires a robust prediction of the response and its duration.
Baseline genomic data represent a reliable and easily accessible source of information to identify predictive
biomarkers. However, for MAPKi response prediction, previous studies failed to show any predictive value
of baseline genomic data [4, 5], with the exception of TERT promoter mutations [6, 7]. Conversely, tumor
mutation burden is an U.S. Food and Drug Administration-approved biomarker of the response to ICI [8].
Therefore, research on biomarkers of MAPKi response has progressively moved from baseline tumor genomic
data to melanoma cell identity [9], tumor microenvironment immune components [10] and blood proteins [11].
Machine learning models have already shown their value in prognosis and diagnosis [12]. Recently, machine
learning approaches have been developed to identify predictive biomarkers of the response to ICI [11, 13, 14, 15],
and also to predict early-stage melanoma recurrence [16, 17] and sentinel lymph node status [18].
In this study, we employed several machine learning models to assess the value of baseline genomic data to
predict MAPKi response. To investigate a relevant number of patients, we collected four independent cohorts of
patients with melanoma treated with MAPKi and with pre-treatment whole or partial tumor exome sequencing
data. Our results showed a significant improvement in the accuracy of progression-free survival (PFS) predic-
tion when pre-processed mutation data were added to the clinical characteristics of the two cohorts used for
the training/evaluation step. We validated this observation using the other two cohorts, and confirmed the
prediction improvement in two clinical setting scenarios (duration of clinical benefit and disease progression
before 12 months).
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2 Materials and Methods

2.1 Patient data and Tumor specimens

We collected the data of four cohorts of patients with BRAFV600E/K-mutated melanoma treated with MAPKi:
(1) Blateau et al. (vemurafenib, vemurafenib and cobimetinib, dabrafenib, dabrafenib and trametinib; n=53) [6];
(2) Catalanotti et al (vemurafenib, vemurafenib and cobimetinib, dabrafenib, dabrafenib and trametinib; n=66)
[19]; (3) Louveau et al. (vemurafenib and cobimetinib, dabrafenib and trametinib; n=20) [5]; (4) Van Allen et al.
(vemurafenib, dabrafenib; n=45) [20]. Pretreatment tumors were from patients with stage IV or unresectable
stage III BRAFV600E/K melanoma. Clinical responses to therapy were determined using RECIST criteria
[21]. The use of data from these patient cohorts has been approved by the ethics committee of the University
of Montpellier, France (favorable advice UM 2022-009bis). As we did not generate new data for this study, no
additional ethics approval was required. For each patient, tumor tissues were collected, stored as formalin-fixed,
paraffin-embedded (FFPE), or frozen samples, and processed. Somatic single-nucleotide variants and small
insertions or deletions were considered as mutations. Table 1 summarizes the patients’ demographic/clinical
features, outcomes, and DNA sequencing methods/results.

2.2 Genomic data pre-processing

2.2.1 Functional consequences of mutations detected in tumor samples

We used FATHMM [22], a software that predict the functional consequences of the coding and non-coding
variants detected by genome sequencing. We used a binary classification to categorize genes in function of the
FATHMM results. If a somatic mutation detected in a gene was predicted to be a cancer-promoting/driver
mutation by FATHMM, that gene was classified in column 1, otherwise in column 0. We then selected the genes
mutated in at least 5% of the patients (Fathmm dataset). Alternatively, we used Cscape [23], that predicts the
oncogenic status (i.e. disease-driver or neutral) of somatic point mutations in the coding and non-coding regions
of the cancer genome. As done with FATHMM, we employed the obtained information to define a feature set
consisting of binary indicators and selected the genes mutated in at least 5% of the patients (Cscape dataset).
We also defined variants for which only high confidence predictions by Cscape were considered (CscapeHigh

dataset).

2.2.2 Selection of genes involved in melanoma signaling pathways

To select genes involved in melanoma signaling pathways, we used the curated melanoma pathway from the
KEGG database [24] and the curated melanoma pathway model from the Virtual Melanoma Cell (VCELLS)
project [25]. We only considered the 70 proteins of the KEGG melanoma pathway (KEGG-Mel dataset), and
the 119 proteins of the VCELLS melanoma pathway (VCELLS-Mel dataset), both represented by HGNC gene
symbols.

2.2.3 Pathway enrichment analysis

As an alternative to the previously described binary indicator approach, we constructed features by statistical
overrepresentation analysis (hyper-geometric test) of mutated genes in all KEGG pathways (MRKEGG dataset)
and in the KEGG melanoma (MRKEGG-Mel dataset) and VCELLS melanoma (MRVCELLS-Mel dataset) pathways
[26]. We performed this analysis for each patient separately, and obtained one p-value per patient and per
pathway. Because p-values span over several decades, we used the negative logarithm of this p-value as a
feature value.

2.3 Survival analysis algorithms

2.3.1 Elastic net penalized Cox regression (EN-COX)

Penalized models introduce regularization by adding penalty terms to the model equation. The Elastic Net
penalty regularization method is particularly useful in scenarios with more features than observations. It
combines the strengths of lasso (l1) and ridge (l2) penalties, by performing feature selection like lasso and by
shrinking correlated features together like done in ridge regression [27].

2.3.2 Random survival forest (RSF)

RSF is an ensemble method for survival analysis that uses survival trees as its base model. Unlike the decision
trees used in Random Forests (described by Breiman), RSF employs survival trees and averages the ensemble
cumulative hazard function of each tree for prediction [28].
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2.3.3 Extra survival trees (EST)

EST, also known as extremely random survival forest, is a meta-estimator developed as an extension of the RSF
method. This method fits several randomized survival trees, called extra-trees, and like RSF, uses averaging to
improve the predictive accuracy and control overfitting. In this study, we used the scikit-survival package that
includes this method [29].

2.3.4 Gradient boosting survival model (GBS)

GBS is an ensemble learning method that combines the predictions of multiple weak base learners to create a
powerful overall model. Unlike random forest, GBS combines the base learners into a weighted ensemble model,
giving extra weight to weak learners for correct predictions. In survival analysis, the loss function is derived
from the Cox partial likelihood function and regression trees are used as base learners [30].

2.3.5 Survival support vector machines (SVM)

SVM are supervised learning models initially used to maximize the margin between classes and to find the
separating hyperplane that minimizes misclassification between classes. In our case SVMs are employed to
learn a ranking based all possible pairs of patients rather than a binary classification. More specifically, the
SVM is trained to assign patients with shorter survival a lower rank than those with longer survival [31]. The
observations on the margin of the decision hyperplane are known as support vectors. SVM can manage non-
linear relationships between features and survival data using the kernel trick. The kernel function transposes the
input features into high-dimensional feature spaces where a linear ranking function functioned can be estimated.

2.4 Data pre-processing
To train the survival models, the input feature sets underwent various data pre-processing steps that included
handling missing values, scaling numerical variables, and encoding categorical variables using one-hot encoding.
For missing value imputation, we used Iterative Imputer with the Random Forest classifier as the imputation
model. This strategy models each feature with missing values as a function of other features and uses the
function to estimate values for imputation. As the features with missing values were categorical in nature, we
opted for a Random Forest classifier. We fitted the imputer to the training dataset only and then applied it to
transform the test dataset. Imputation was carried out in the outer loop of the nested cross-validation procedure,
and a random seed was used to reproduce the same imputed values for all feature sets across repetitive trials.
This helped to ensure the feature set comparability.
As the clinical features included predominantly categorical variables, we used one-hot encoding to transform
them into numerical variables. We scaled continuous variables to a range of [0, 1] using max-min normalization
to ensure that the same scales were used for all input variables.

2.5 Nested cross validation
We employed a nested, stratified 5-fold cross-validation to train and tune hyperparameters for the time-to-event
models. The dataset was split into five outer folds, while balancing samples from different sources. In each
outer fold, the pre-processed training set was further split into three inner folds for training and tuning hyper-
parameters. We selected the model and hyperparameters with the highest concordance index across the inner
folds to evaluate the outer test dataset. We repeated this procedure ten times for all survival models with all
feature sets for reproducibility. We used random seeds as necessary.

2.6 Evaluation of the model prediction performance

2.6.1 Concordance index

The Concordance Index (C-index) proposed by Uno et al [32] is a widely used performance metric to compare
survival models applied to right-censored data. The C-index value is defined by the proportion of concordant
predictions and outcomes of all comparable pairs. It defines the number of correctly ordered pairs by models. A
risk score is attributed to each sample. Samples with a higher estimated risk score have a shorter actual survival
time. Two samples are considered a comparable pair if they both experienced an event at two different times
or if the one with a shorter observed survival time experienced an event, in which case the event-free subject
“outlived” the other. Two samples are not comparable if they experienced events at the same time.

2.6.2 Time-dependent area under the ROC curve (AUC)

When predicting survival, the patients disease status is not fixed and can change over time. Consequently,
performance measures, such as specificity and sensitivity, become time-dependent measures. We considered
an estimator of the cumulative/dynamic AUC at specific time points to evaluate our models [33]. [31]. The
function considers comparable pairs of instances [i.e. one instance experienced an event before time t (ti ≤ t)
and the other at time ti > t, and calculates the AUC at discrete time points. The time-dependent AUC for any
specific survival time t can be calculated as follows:
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AUC(t) = P (t̂i < t̂j |ti < t, tj > t) = 1
num(t)

∑
i:ti<t

∑
j:tj>t

I(t̂i < t̂j),

where t ∈ T is the set of all possible survival times, ti and t̂i represent the observed time and the predicted value
respectively, num(t) is the number of comparable pairs at time t and I(.) is the indicator function [34]. Then,
we can then determine how well a model can distinguish subjects who fail (i.e. disease progression) before given
time (ti ≤ t) from subjects who fail after this time ti > t.

2.6.3 Time-Dependent Brier score

In survival analysis, the time-dependent Brier score (BS) is a crucial metric for assessing the model calibration
over time because it takes into account dynamic changes in survival probabilities. It quantifies the concordance
between predicted and observed outcomes at various time points, offering a comprehensive evaluation of model’s
calibration [35]. We consider that for each patient, at t = 0, we have information on a vector X of patient
specific covariates. This is used to predict a time-to-event variable T . Let us suppose that the complete
data (Ti,Xi), i = 1, . . . , n is available for n patients. We also consider that T is censored and we observe
T̃i = min(Ti, Ci), δi = I(Ti ≤ Ci), where Ci are the (hypothetical) times under observation. Under the common
assumption of random censorship (T and X are independent on C) the empirical Brier score is defined as:

BS(t) = 1
n

n∑
i=1

{
I(T̃i ≤ t, δi = 1) (0−π̂(t|Xi))

2

Ĝ(T̃i)
+ I(T̃i > t) (1−π̂(t|Xi))

2

Ĝ(t)

}
,

where π̂(t|X) is the predicted probability of remaining event-free up to time point t given the feature vector X
and Ĝ(t) is the probability of censoring weight, estimated by the Kaplan-Meier estimator.
Additionally, the integrated Brier score provides a concise measure of calibration across the entire time period:

IBS = 1
tmax

∫ tmax

0
BS(t) dt.

2.6.4 Wilcoxon signed-rank test

We used the Wilcoxon signed-rank test to compare the performance of the survival models. This non-parametric
test compares paired differences in the C-index, derived from the same sample, using a significance level of 0.05.
We ensured reproducibility by using a consistent random state, resulting in the same training and test datasets
in identical fold conditions for each model. Consequently, we could pair the C-indexes of two models. We then
compared the performance of the top-performing models and feature sets. We also used a one-sided test, at
5% significance, to evaluate whether the median of the better-performing model was higher, effectively testing
whether the highest-ranked model performance was significantly better.

2.7 Code availability
The open source code has been made available for the computational biology community:
https://github.com/sarahlne/MelanomaMLProject
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3 Results

3.1 Patient characteristics and genomic data pre-processing
The clinical features of the four patient cohorts did not show any significant imbalance (Table 1). Although the
number of sequenced genes greatly varied among cohorts (from full exon sequencing to a list of 35 genes), the
percentage of mutated genes in tumors before treatment was comparable among cohorts (Table 1). Only in the
Catalanotti et al. cohort, the mean percentage of mutated genes per patient was higher, although the number
of sequenced genes was intermediate compared with the other cohorts.
Melanoma is among the tumors with the highest mutational burden [36], making it difficult to distinguish
between disease-driver and neutral mutations. To extract features that might be informative for predicting the
response to treatment, we pre-processed the initial mutational data using three strategies and obtained eight
different genomic datasets (Fig. 1 and Supplementary Table S1). The first strategy was to select genes with
mutations that had a functional consequence (Fathmm, Cscape and CscapeHigh datasets). The second strategy
was to select genes involved in melanoma signaling pathways (KEGG-Mel and VCELLS-Mel datasets). The
third strategy was to consider only the mutation rate in generic (MRKEGG dataset) or melanoma (MRKEGG-Mel

and MRVCELLS-Mel datasets) signaling pathways.

Table 1: Patients, treatment outcomes and genomic data

Feature Values Total (%) Van Allen et al. Blateau et al. Catalanotti et al. Louveau et al.
Total number of patients - 184 45 53 66 20

Sex male
female

101 (55 %)
83 (45 %)

22 (48 %)
23 (52 %)

28 (53 %)
25 (47 %)

41 (62 %)
25 (38 %)

10 (50 %)
10 (50 %)

Age Median (range), years 54 (18-94) 51 (25-76) 57 (21-90) 54.5 (21-83) 51.5 (18-94)

Lactate dehydrogenase
elevated
normal
missing

53 (29 %)
63 (34 %)
68 (37 %)

6 (13 %)
-
39 (87 %)

23 (43.3 %)
25 (47 %)
5 (9.43 %)

24 (36 %)
38 (57.5 %)
4 (6 %)

-
-
20

Type of drug

vemurafenib
dabrafenib + trametinib
dabrafenib
vemurafenib + cobimetinib
N.A

83 (45%)
67 (4%)
22 (12%)
11 (6%)
1 (0.5%)

31 (69 %)
-
14 (31 %)
-
-

4 (7.5 %)
42 (79 %)
2 (3.7 %)
4 (7.5 %)
1 (2 %)

48 (72 %)
8 (12 %)
6 (9 %)
4 (7 %)
-

-
17 (85 %)
-
3 (15 %)
-

Best Overall Response

progressive disease
stable disease
partial response
complete response
N.E = not evaluated

59 (32 %)
30 (16 %)
70 (38 %)
19 (10 %)
4 (2 %)

7 (15 %)
12 (27 %)
25 (56 %)
1 (2 %)
-

40 (78 %)
3 (6 %)
5 (9 %)
3 (6 %)
2 (1 %)

10 (15 %)
13 (20 %)
31 (47 %)
8 (12 %)
4 (6 %)

2 (10%)
2 (10%)
9 (45 %)
7 (35 %)
-

Progression-free survival - months 0.7-68 (median=6.0) median median=5.2 median=6.1 median=5.75 median=9.5
Overall survival - months 0.7-69 (median=13.5) median - median=10.5 median=14.5 median=28

Vital status 1=dead
0=alive

90 (65 %)
48 (34 %)

-
-

37 (71 %)
15 (29 %)

45 (68 %)
21 (31 %)

8 (40 %)
12 (60 %)

Sequencing method Whole exome or targeted sequencing - WES Targeted (35 genes) Targeted (300 genes) Targeted (74 genes)
Mutated genes (%) 5.32 % 5 % 18.8 % 2 %

Summary of clinical features, treatment outcomes and genomic data collected for the study. Each outcome is
detailed by cohort. Categorical outcomes are described with numbers and percentages, and continuous outcomes
using the median of the distribution for each cohort. The number of sequenced genes and the percentage of
mutated genes in each cohort are indicated.
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RSF – Random Survival Forest

GBS – Gradient Boosting Survival

EST – Extra Survival Trees

SVM – Survival Support Vector Machine
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EN-COX – Cox PH with Elastic Net Penalty

Figure 1: Overall scheme of information extraction, training and testing procedures. Background
knowledge (e.g. melanoma network and signaling pathway data) were extracted from the KEGG and VCELLS
databases. FATHMM and Cscape were used to retrieve putative cancer-promoting/driver mutation. These
background knowledge was then used in the feature integration section to define features from the patients
genomic data. Four survival analysis models were trained using the generated genomic datasets after data pre-
processing through a 5-fold nested-cross validation process. For model evaluation, survival analysis metrics (i.e.
Uno’s C-index, dynamic AUC and integrated Brier score) were used to assess the model performance. Finally,
the Wilcoxon signed-rank test was used to identify the best performing algorithm/data set pair.
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3.2 Evaluation of the model performance
To evaluate the value of baseline genomic data for predicting the response to MAPKi, we compared the results
obtained using clinical features alone and supplemented with each of the eight genomic datasets (Supplementary
Table S1). To train and test our models, we chose to work with the two patient cohorts with the highest number
of sequenced genes (Catalanotti et al.; Van Allen et al.). As the prediction was constrained by few data and
cases, we embedded the best overall response in the data used for the prediction. We then applied a panel
of statistical and machine learning algorithms adapted to survival analysis to predict progression-free survival
during treatment (Figure 1).
All models trained using the Clinical-only showed a good C-index (0.72 to 0.74), and the RSF and SVM algo-
rithms displayed the best score (0.74) (Figure 2a). We observed a similar stability for the models trained using
the MRKEGG-Mel and MRVCELLS-Mel datasets that contained only one additional variable compared with the
Clinical-only dataset. Conversely, other models trained with clinical and genomic data and containing more
variables had more fluctuating scores in function of the algorithm, for example between 0.63 and 0.74-0.75 for
the MRKEGG and Cscape datasets. This suggested that the addition of variables made the models more sensitive
to the type of algorithm. Nevertheless, when we averaged the scores obtained with the different datasets, we
observed that all algorithms displayed a C-index between 0.71 and 0.74.
Among the models trained on clinical features supplemented with genomic data, those trained using the
MRKEGG-Mel and MRVCELLS-Mel datasets had a significantly higher mean C-index than models trained us-
ing clinical features alone (Figure 2a). Specifically, the best dataset/algorithm pairs were MRVCELLS-Mel/GBS
and MRVCELLS-Mel/SVM. Indeed, they displayed significantly higher C-index values than the Clinical-only/RSF
OR SVM pair (Figure 2b). Additionally, the models trained using the MRVCELLS-Mel dataset had a significantly
lower integrated Brier score (i.e. better calibration) than models trained using clinical features alone (Supple-
mentary Figure 1). They also performed better than models trained on clinical features alone at all time points,
as indicated by the time-dependent AUC values (Supplementary Figure 2). This means that the addition of
the mutation rate of genes implicated in melanoma signaling pathways improved the prediction obtained with
clinical features alone. This effect was less important when the lists of mutated genes were added.

RSF GBS EST SVM EN-COX median
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Figure 2: Prediction of the model performance using the concordance index (C-index). (a) Heatmap
showing the performance of each dataset/algorithm pair evaluated using the Uno’s C-index. The median C-
index was calculated though the training and testing procedure and is represented as a color gradient according
to the distribution of the obtained values (0.63-0.76). The median performance values for each dataset with all
algorithms and for each algorithm using all datasets are shown in the last row and last column, respectively.
The Wilcoxon signed-rank test was used for pair comparison; *p <0.05 (versus the Clinical-only dataset). (b)
Boxplot showing the C-index values for the best dataset/algorithm pairs: (MRVCELLS-Mel/GBS and SVM)
compared with the best performing Clinical-only dataset/algorithm (RSF and SVM).
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3.3 Validation of the predictive value of baseline genomic data
To validate the predictive value of our models, we chose to test them using data from the two patient cohorts
not used for training (Blateau et al.; Louveau et al.). Genomic data from these two cohorts were generated by
targeted sequencing of a limited number of cancer-related genes, carried out routinely for diagnostic purposes
at these two hospital centers. To take into account the bias due to the lower number of genes sequenced in
these two cohorts, we only used the genomic datasets with the mutation rate. These were also the ones that
produced the best scores in the training step. The C-index score of the MRKEGG/GBS pair was higher than
that of the Clinical-only/SVM pair (0.78 vs 0.76) Clinical-only/SVM pair (Figure 3). This result validated the
improved prediction of the response to MAPKi by adding baseline genomic data.
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Figure 3: Prediction performance in the two validation cohorts using the C-index. (a) Heatmap rep-
resentation showing the performance of each dataset/algorithm pair using the Uno’s C-index. Algorithms were
trained using the training cohorts (Catalanotti et al.; Van Allen et al.) and tested using data from the other two
cohorts (Blateau et al.; Louveau et al.) The median C-index values are represented as a color gradient according
to their distribution (0.65-0.78). The median performance values for each dataset using all algorithms and for
each algorithm using all datasets are shown in the last row and last column, respectively. (b) Boxplot showing
the C-index values for the best dataset/algorithm pairs: Clinical-only/SVM and MRKEGG/GBS. *pvalue<0.05.
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3.4 Assessment of the improved prediction in clinical context
To assess the improved prediction of our models in a clinical context, we built two scenarios and tested them
by censoring data in line with each scenario. In the first "duration of clinical benefit" scenario, patients would
start MAPKi treatment, and those with disease progression would stop treatment in the first few months.
In this scenario, the question was to predict the duration of clinical benefit for the remaining patients. For
this scenario, we censored patients with progressive disease as best overall response. In the second scenario
"progression before 12 months", the question was to predict before treatment initiation, which patients would
progress during treatment before 12 months. For this scenario, we censored progression-free survival data at 12
months.
To train and test our models, we chose to work with the two patient cohorts that had the highest number
of sequenced genes (Catalanotti et al and Van Allen et al) and with the genomic datasets that included the
mutation rate. Overall, the C-index values were lower than those obtained during the evaluation and validation
steps, certainly due to data censoring (Figure 4). Nevertheless, we still obtained a trend of improved prediction
when we added the baseline genomic data. For the "duration of clinical benefit" scenario, the best score
was obtained by the MR/SVM pair (C-index = 0.7) compared with the Clinical-only/SVM pair (C-index
= 0.69) (Figure 4a). For the "progression before 12 months" scenario, the median C-index values of the
MRVCELLS-Mel/RSF pair and Clinical-only/RSF pair were 0.64 and 0.61, respectively (Figure 4b). These
results highlight the value of baseline genomic data for predicting the duration of the response to MAPKi in
two clinical setting scenarios.
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Figure 4: Prediction performance in clinical scenarios. Heatmap showing the performance of each
dataset/algorithm pair evaluated using the Uno’s C-index. (a) "Duration of clinical benefit" scenario and
(b) "Progression before 12 month" scenario. The median C-index was calculated through the training and
testing procedures and is represented as a color gradient according to the distribution of the obtained values.
The median values for each dataset using all algorithms and for each algorithm using all datasets are shown in
the last row and last column, respectively.

11

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted December 9, 2023. ; https://doi.org/10.1101/2023.12.07.23299389doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.07.23299389


4 Discussion

In this study, we tested whether baseline genomic data could improve the prediction of the response to MAPKi
in patients with advanced BRAFV600-mutated melanoma. To the best of our knowledge, machine learning
approaches had never been used for this purpose. We used several algorithms in combination with different
strategies for pre-processing tumor mutation data. Our results show that baseline (before treatment) tumor
mutation data contain information that can be used to better predict progression-free survival.
This observation was not obvious because progression-free survival is influenced by primary and also acquired
resistance. Although primary resistance is mainly linked to the initial tumor cell status and their microenviron-
ment, to date there is still no biomarker to identify patients with BRAFV600-mutated melanoma who will not
respond to MAPKi. Acquired resistance involves the adaptation of tumor cells through genetic or non-genetic
mechanisms [37, 38]. A single-cell study showed that tumor heterogeneity and melanoma cell plasticity influ-
ence tumor behavior and evolution under MAPKi pressure [39]. Therefore, it would seem counter-intuitive to
detect information relevant for predicting the response duration using pre-treatment bulk genomic sequencing
data. The mechanistic relationships between the genetic context before treatment and the tumor response to
treatment, including plasticity phenomena, are subjects for future research.
We acknowledge the constraints and limitations inherent in our study. First of all, our sample size was small,
and we used data from different cohorts from different centers. Indeed, we grouped together patients treated
with a BRAF inhibitor and patients treated with a combination of BRAF and MEK inhibitors. Despite this
diversity, we found that baseline genomic data improved the treatment response prediction. If the existing data
were more easily accessible, we could work with more homogeneous patient cohorts. This would allow us to
determine whether this observation is specific to the molecule administered. Second, the majority of sequencing
data were only partial, and therefore, we probably missed gene alterations relevant to the prediction of the
response to MAPKi. However, our results demonstrated that partial sequencing, which is routinely used in
clinical practice, already provides potentially valuable information for predicting the response to MAPKi. A
future analysis using whole exome sequencing data could allow determining the minimal and optimal gene set
for prediction.
Our results demonstrate the predictive potential of baseline genomic data, and the value of integrating them in
the development of predictive models for the response to MAPKi in the context of advanced melanoma. They
also show that better exploiting the sequencing data already available at cancer centers will open new avenues
for therapeutic decision-making.
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Supplementary data

Table S1: Description of the dataset composition

Dataset Description Feature composition Total # feature
Clinical-only Clinical features 8 8
KEGG-Mel Clinical features + KEGG melanoma network data 8+70 78
VCELLS-Mel Clinical features + VCELLs melanoma network data 8+119 127
MRKEGG Clinical features + All pathway probabilities (KEGG+VCELLs) 8+332 340
MRKEGG-Mel Clinical features KEGG melanoma pathway probabilities 8+1 9
MRVCELLS-Mel Clinical features + VCells melanoma pathway probabilities 8+1 9
FATHMM Clinical features + fathmm data (5% threshold) 8+39 47
Cscape Clinical features + Cscape data 8+53 61
CscapeHigh Clinical features + Cscape data (only high confidence genes) 8+171 179
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Supplementary Figure 1: Integrated Brier scores. The median integrated Brier score was calculated from
the Brier scores obtained through the training and testing procedures. Values are represented as a color gradient
according to the distribution of the obtained values (0.161-0.19). The Wilcoxon signed-rank test was used to
feature dataset/algorithm pair comparison; *p-value<0.05 versus the Clinical-only dataset
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Supplementary Figure 2: Evaluation of model predictions over time (Time-dependent AUC) Com-
parison of the performance of the feature datasets for all algorithms over 22 months. Each line refers to the
mean AUC value of that feature datasets at each time point with their associated standard deviation.
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Supplementary materials and methods

Survival analysis algorithms

Elastic net penalized Cox regression model

Penalized models introduce regularization by adding penalty terms to the model equation. The Elastic Net
penalty regularization method is particularly useful in scenarios with more features than observations. It
combines the strengths of lasso (l1) and ridge (l2) penalties, by performing feature selection like lasso and by
shrinking correlated features together as done in ridge regression [27]. In the Cox regression model, regularization
is added to the log partial likelihood, resulting in the following equation:

β = argmaxβ [l(β)− λPα(β)]

where l(β) is the log partial likelihood, λ ≥ 0 the regularization parameter and Pα(β) a penalty form. In
the elastic net penalized Cox regression model, the penalty term is expressed as:

λPα(β) = λ(α
p∑

i=1

|βi|+ 1
2 (1− α)

p∑
i=1

β2
i )

where p is the number of variables and α ∈ (0, 1] is the additional parameter that controls the amount of
shrinkage that comes from the l1 and l2 penalties. Setting α = 1 corresponds to the lasso penalty.

Random survival forest (RSF)

RSF is an ensemble method used for survival analysis that uses survival trees as its base model. Unlike the
decision trees used in random forests (described by Breiman), RSF employs survival trees and averages the
ensemble cumulative hazard function of each tree for prediction [28]. RSF is based on the bagging method in
which random samples are repeatedly drawn from the input data to reduce the base model variance and avoid
overfitting. However, an extra level of randomness is added to RSF while growing the trees. This random subset
of features is used for splitting a node instead of using all features. This reduces the correlation among trees in
the forest and improves the prediction performance. Each node of the tree is split using the random subset of
features to maximize the dissimilarity between child-nodes. The non-parametric Nelson-Aalen estimator is used
to estimate the ensemble cumulative hazard function by taking the average of all cumulative hazard functions
of each survival tree [30, 34, 40].

Extra survival trees (EST)

EST, also known as extremely random survival forest, is a meta-estimator developed as an extension of the
random survival forest method. This method fits several randomized survival trees, called extra-trees, and like
RSF, uses averaging to improve the predictive accuracy and to control overfitting. The extra level of randomness
in extra survival trees comes from how splits are computed, which is different from the method used in RSF.
Instead of taking the most discriminative thresholds at each node, thresholds for each feature are drawn ran-
domly, and the best of these randomly generated thresholds is used for splitting the node. This approach tends
to improve the model generalization by reducing the overall model bias and variance. The log-rank statistic
is used as a splitting criterion for extra survival trees, like in RSF. The scikit-survival package includes this
method, and it was used in the current study in addition to other models [29].

Gradient boosting survival (GBS)

Gradient boosting is an ensemble learning method that combines the predictions of multiple weak base learners
to create a powerful overall model. Unlike random forest, gradient boosting combines the base learners into a
weighted ensemble model, giving extra weight to weak learners for correct predictions. This algorithm updates
base learners in an additive manner. The addition of each base learner boosts the overall model. Gradient
boosting optimizes the loss function using a gradient descent algorithm in which the steepest gradient step
is taken at each boosting step. The model sequentially minimizes the residual error and improves prediction
performance ([34, 41].

In survival analyses, the loss function is derived from the Cox partial likelihood function, and regression
trees are used as base learners [30]. Specifically, the linear model in the partial likelihood function of the Cox
model is replaced by an additive model, and the objective of the loss function is to maximize the log partial
likelihood. Gradient boosting survival models are constructed sequentially in a greedy stagewise fashion.

17

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted December 9, 2023. ; https://doi.org/10.1101/2023.12.07.23299389doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.07.23299389


Survival support vector machines (SVM)

SVM are supervised learning models initially used to maximize the margin between classes and find the sep-
arating hyperplane that minimizes misclassification between classes. The observations on the margin of the
hyperplane are known as support vectors. SVM can manage non-linear relationships between features and
survival data using the kernel trick. The kernel function transposes the input features into high-dimensional
feature spaces where a linear survival function can be estimated.
SVM were initially proposed for solving binary classification problems and were then extended to other prob-
lems, such as regression, clustering, ranking, and finally censored targets in survival analysis [31]. Survival
analysis in with SVM can be tackled in two different ways: a) by ranking samples according to their survival
times, and b) by using a regression approach in order to find a function that estimates the observed survival
times as continuous outcomes.
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