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Abstract: 

Background/objective: Pain is a challenging multifaceted symptom reported by most 

cancer patients, resulting in a substantial burden on both patients and healthcare 

systems. This systematic review aims to explore applications of artificial 

intelligence/machine learning (AI/ML) in predicting pain-related outcomes and supporting 

decision-making processes in pain management in cancer.  

Methods: A comprehensive search of Ovid MEDLINE, EMBASE and Web of Science 

databases was conducted using terms including “Cancer”, “Pain”, “Pain Management”, 

“Analgesics”, “Opioids”, “Artificial Intelligence”, “Machine Learning”, “Deep Learning”, and 

“Neural Networks” published up to September 7, 2023. The screening process was 

performed using the Covidence screening tool. Only original studies conducted in human 

cohorts were included. AI/ML models, their validation and performance and adherence to 

TRIPOD guidelines were summarized from the final included studies. 

Results: This systematic review included 44 studies from 2006-2023. Most studies were 

prospective and uni-institutional. There was an increase in the trend of AI/ML studies in 

cancer pain in the last 4 years. Nineteen studies used AI/ML for classifying cancer 

patients’ pain development after cancer therapy, with median AUC 0.80 (range 0.76-

0.94). Eighteen studies focused on cancer pain research with median AUC 0.86 (range 

0.50-0.99), and 7 focused on applying AI/ML for cancer pain management decisions with 

median AUC 0.71 (range 0.47-0.89). Multiple ML models were investigated with. median 

AUC across all models in all studies (0.77). Random forest models demonstrated the 

highest performance (median AUC 0.81), lasso models had the highest median sensitivity 

(1), while Support Vector Machine had the highest median specificity (0.74). Overall 

adherence of included studies to TRIPOD guidelines was 70.7%. Lack of external 

validation (14%) and clinical application (23%) of most included studies was detected. 

Reporting of model calibration was also missing in the majority of studies (5%). 

Conclusion: 
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Implementation of various novel AI/ML tools promises significant advances in the 

classification, risk stratification, and management decisions for cancer pain. These 

advanced tools will integrate big health-related data for personalized pain management 

in cancer patients. Further research focusing on model calibration and rigorous external 

clinical validation in real healthcare settings is imperative for ensuring its practical and 

reliable application in clinical practice. 

 

Keywords: Cancer pain; Cancer pain management; Machine learning; Artificial 

intelligence.  
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Introduction: 

According to The International Association for the Study of Pain, pain is a subjective 

unpleasant sensation and distressing sensory or emotional experience related to tissue 

damage that can vary in intensity and duration [1, 2]. In cancer, pain represents a 

pervasive issue affecting a large proportion of cancer patients which significantly impacts 

their quality of life (QoL) and increases morbidity as well as mortality rates [2, 3]. More 

than 55% of cancer patients, especially those with advanced stages and metastasis, 

complain from pain [4, 5]. Additionally, 30% of cancer patients experience chronic pain, 

either because of the cancer itself or due to cancer treatment such as surgery, 

chemotherapy (CT), and radiation therapy (RT) [6]. The burden of pain in cancer patients 

is substantial, impacting their physical, psychological, and social well-being [4]. Moreover, 

untreated or poorly managed pain can lead to decreased QoL, functional impairment, and 

increased opioids prescription and healthcare costs [4-7]. Pain in people with cancer can 

manifest in various forms, including acute or chronic. Acute pain is usually temporary but 

severe while chronic pain can persist and last more than 3 months after starting point of 

pain throughout the cancer journey in cancer survivors, [8, 9]. 

The management of pain in cancer patients is a complex evolving field. It involves a 

multimodal approach that may include pharmacological interventions, such as opioids, 

non-opioid analgesics and adjuvant medications, as well as non-pharmacological 

approaches like physical therapy, psychotherapy, and interventional techniques [10]. 

Pain management in cancer patients follows the widely recognized and recommended 

World Health Organization (WHO) analgesics ladder, which consists of a three-step 

approach guiding healthcare providers in selecting and prescribing appropriate pain 

medications based on the severity of the pain, with the aim of providing effective pain 

relief while minimizing side effects. [11]. Overuse of unneeded high doses of opioids 

raises the risks of opioids’ side effects and chronic abuse rates, which negatively affects 

patients’ QoL [5]. Striking the right balance between pain relief and avoiding opioid-related 

adverse effects and potential abuse is a significant challenge in cancer pain management 

[4, 5, 10]. 

While healthcare providers follow the WHO pain management ladder, effectively 

controlling pain in cancer patients remains a significant challenge. There is an unmet 

need for accurate guidelines to help clinicians predict, classify, and manage pain in 

cancer patients. Novel tools are necessary to support clinicians in risk stratification and 

personalized pain management, particularly in the context of cancer-related pain.  

In recent years, the healthcare industry has witnessed a surge in the adoption of artificial 

intelligence (AI) and machine learning (ML) tools. These technologies have demonstrated 

their potential to transform healthcare delivery, diagnosis, and treatment decision-making 

[12]. AI/ML tools can analyze vast amounts of data, identify patterns, and provide 

predictive insights, thereby aiding healthcare professionals in making informed decisions  

[12, 13]. ML is a subfield of AI that includes systems that ‘learn from experience (E) with 
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respect to some class of tasks (T) and performance measure (P), if its performance at 

tasks T, as measured by P, improves with experience E’ [14, 15]. 

Neural Networks are a subtype of ML algorithms, which can 

have different degrees of complexity and evolve into the so-

called deep learning (DL) algorithms when they involve a 

large number of layers.  Both ML and DL algorithms can be 

classed into supervised, unsupervised and reinforcement 

learning based on the way in which training data is 

presented to the model [14] (Figure 1). In supervised 

learning, the model is expected to learn the mapping 

between the training inputs and outputs presented during 

training to then be able to predict the outputs on an unseen 

input dataset.  In unsupervised learning, the model is 

presented with unlabeled data and expected to learn the 

patterns and correlations by itself based on the input data 

only. In reinforcement learning, the algorithm learns to map 

inputs to actions by maximizing (or minimizing) a reward (or punishment) action 

evaluation signal. Additionally, AI algorithms can be grouped based on the task they are 

asked to perform: segmentation, regression or classification. Natural Language 

Processing (NLP) is an application of AI algorithms that is recently gaining interest in the 

clinical domain.  

AI/ML applications have begun to make inroads into the field of cancer pain prediction 

and management. These technologies offer the promise of more accurate pain 

assessment, personalized treatment recommendations, and improved patient outcomes 

[16]. However, the extent of their utilization and their impact on cancer pain prediction 

and management is an area that requires further investigation, and the results of the best 

performing models in cancer induced pain remain controversial and disperse.  

In the dynamic landscape of AI/ML, the Transparent Reporting of a multivariable 

prediction model for Individual Prognosis or Diagnosis (TRIPOD) guidelines stand as a 

crucial framework for ensuring the transparency and reproducibility of predictive models. 

Developed to enhance the reporting quality of studies involving prediction models, 

TRIPOD provides a structured approach to the design, analysis, and interpretation of 

such models [17]. Adhering to these guidelines is paramount as it not only facilitates the 

effective communication of research findings but also fosters trust in the outcomes of 

predictive models. In the realm of ML, where complex algorithms increasingly influence 

decision-making across various health domains, the importance of adhering to TRIPOD 

guidelines is accentuated by the critical need for model validation [18]. Lastly, the 

validation process plays a pivotal role in assessing a model's generalizability and 

reliability, ensuring that its predictive capabilities extend beyond the training data [17, 18]. 

The performance and generalizability of an AI/ML prediction model is assessed by testing 

the model on a data subset that has not been used during the model training process. 

Figure 1: Types of Artificial 

Intelligence (AI) models. 
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The validation of a model can be internal or external, depending on whether the test 

dataset belongs to the same study cohort to that of the training dataset or is obtained 

from an entirely independent cohort. Both validation steps are crucial for the clinical 

implementation of a prediction model [18]. In particular, internal cross validation is a 

method to partition the data into training and testing subsets multiple times in order to 

provide a more accurate measure of model performance, especially with small datasets.  

Comprehensive ML model performance assessment should include reporting of the 

model’s discrimination ability and model calibration as part of the internal and external 

validation process [19, 20]. Model discrimination is a measure of the model’s ability to 

differentiate between two classes (e.g., event vs. no event) given the available inputs [20]. 

Model calibration involves ensuring that the predicted probabilities align closely with the 

actual probabilities of events occurring [19].  

Our scientific questions are: 

• Which AI/ML algorithms are used in cancer pain research and cancer pain 

management? 

• What are the applications of AI/ML models in cancer pain medicine?  

• Which are the best performing models for cancer pain prediction and opioids 

optimization? 

• To what degree do the existing AI/ML models in cancer pain prediction follow the 

TRIPOD guidelines with respect to model performance reporting? 

This systematic review aims to answer these questions and address the current gap in 

knowledge by analyzing existing literature on the role of AI/ML in cancer pain prediction 

and management decision-making. We also provide an overview of common supervised 

and unsupervised learning techniques, their general characteristics, and specific 

applications in cancer pain research, either in cancer pain prediction, cancer treatment 

related pain or pain management and opioids decisions. 

 

Materials and Methods: 

Protocol Registration: 

Registration of this systematic review in the international prospective register database 

of systematic reviews (PROSPERO), was done on 16 October 2023 [ID number: 

CRD42023469865] in the context of human health care. 

Search Strategy and Study Eligibility: 

We conducted a systematic search of Ovid MEDLINE, Ovid EMBASE, and Clarivate 

Analytics Web of Science, for publications in English from the inception of databases to 

September 7, 2023. The concepts searched included “Cancer”, “Pain”, “Pain 

Management”, “Pain Measurement”, “Analgesics”, “Opioids”, “Artificial Intelligence”, 
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“Machine Learning”, “Deep Learning”, “Expert System” and “Neural Networks”.  Both 

subject headings and keywords were utilized. The terms were combined using AND/OR 

Boolean Operators. Animal studies, in vitro studies, and conference abstracts were 

excluded. The complete search strategy is detailed in Tables S1–S3. 

Screening process: 

Identified articles from the Search process were uploaded into the Covidence screening 

application [21] , and screening through Covidence was conducted by two independent 

reviewers. Screening of the titles and abstract was first conducted and then screening of 

the full text was done on the retrieved articles. Final included articles were extracted from 

Covidence for full-text review and data collection.  

Inclusion Criteria: 

Studies eligible for inclusion in this systematic review had the following criteria 1) be 

published in English, 2) investigate AI/ML applications in cancer pain medicine or cancer 

pain management, and 3) involve human subjects. 

Exclusion Criteria:  

Articles were excluded if they met any of the following criteria: 1) out of scope of our study 

2) no AI/ML application, 3) non-cancer pain study, 3) not an original study (i.e., review 

article, letter, conference abstract), 4) duplicate publication or correction of an original 

article, 5) descriptive study that didn’t apply or test models.  

Data Synthesis: 

This study followed the Preferred Reporting Items for Systematic Reviews and Meta-

Analysis (PRISMA) guidelines [22]. 

Data Collection Process: 

The collected data included the following: AI/ML technique(s) used, input features and 

output variables, validation methods, and model performance metrics. Adherence to 

TRIPOD guidelines was analyzed using TRIPOD checklist [18]. Included articles were 

categorized according to the use of the AI/ML in cancer pain and grouped into the 

following groups: (1) models for prediction of cancer related pain intensity, cancer pain 

diagnosis or cancer pain initiation, (2) models for prediction of post cancer treatment pain 

(e.g., cancer surgery, RT or CT), (3) models for cancer pain management prediction or 

as a decision support system for cancer pain management. 

Results: 

Search and screening Results: 

This comprehensive search resulted in identification of 436 studies through search of 

MEDLINE (n=189), EMBASE (n=189) and Web of Science (n=132). After screening and 

eligibility assessment, 283 articles were excluded. A total of 44 studies met the inclusion 
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criteria and were included in this review. The search strategy process is illustrated in a 

PRISMA flow diagram (Figure 2). All included studies were published between 2006 and 

2023, with an increase in the number of publications for AI/ML studies in cancer pain 

research from 1 (2006-2009) to 26 (2020-2023) (Figure 3).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 2: PRISMA Flow Diagram for systematic reviews of AI and ML in cancer pain research 
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Design and populations: 

Most studies used a prospective uni-institutional cohort to develop their models (n=17 

studies) while the least used approach involved the cross-sectional multi-institutional 

cohort design (n=1) (Figure 3.b). The median sample size to build the models was 320 

(range: 21-46104, IQR 140-1000) 95% CI 156-900. Five studies did not specify the size 

of the study population. In 95% (n=23) of studies the cohort size was between 100-1000 

patients, while 23% (n=9) of studies used >1000 patients and 18% (n=7) used <100 

patients.  

 

AI/ML algorithms used in cancer pain research: 

The most common AI/ML algorithms identified in this review, their general characteristics 

and specific use in cancer pain research are summarized in (Table 1). Some studies used 

a single model, while the majority of studies explored multiple models (each model was 

explored separately) (55%, n=24 articles) (Figure 4.a). The most common algorithms 

used in these multiple models studies were Random Forest (RF) and Logistic Regression 

(LR) (n=15 studies for each) (Figure 4.b). Other single model studies included Neural 

Networks (NN) (16% n=7), Decision Trees (DT) (7% n=3), Decision support system-

Fuzzy (n=2), Clustering (n=2), LR (n=2), Bayesian networks (n=1), NLP (n=1) and 2 

studies used novel models (Figure 4.a). Several other models used in multiple models 

studies (e.g., SVM, transformer, RF, GBM, Lasso, and NB) (Figure 4.b)  
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Figure 3: a. Publications trends for AI/ML models used for cancer pain research between 2006-2023. b. 

Types of studies and the number of articles per each type. 
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 Table 1: AI/ML model characteristics and applications in cancer pain research. 

Machine Learning 
Algorithm  

Characteristics  Cancer Pain Usage  

Supervised Learning 
[23] 

The output is labeled with the desired value 
(e.g., pain score or opioids dose) 

 

           Classification  The output variable is a binary and/or 
categorical response 

 

Decision trees (DT) 
[24], [25], [26], [27], [28], 
[29], [16], [30], [31] 

Generates understandable rules with both 
categorical and continuous variables for 
prediction and classification purposes. 

• Cancer pain prediction 

• Post cancer treatment 
pain prediction 

• Cancer pain analgesics 

requirement 

Random Forest (RF) 
[24], [32], [33], [34], [26], 
[35], [27], [36], [37], [16], 
[10], [38], [39], [40], [41] 

An ensemble approach that combines the 
output of multiple decision trees to reach a 
single high accurate result. It provides a good 
predictive performance, low overfitting, and 
easy interpretability. 

• Cancer pain prediction 

• Post cancer treatment 
pain prediction 

• Cancer pain analgesics 

requirement 

• Cancer pain related 

unscheduled healthcare 

prediction 

• Prediction of remote 

consultation/visits or 

patient satisfaction due 

to cancer pain. 

Gradient boosting 
(GBM); extreme gradient 
boosting (XGBoost) 
[32], [33], [35], [27], [28], 
[37], [16], [38], [41] 

A robust ensemble boosting algorithm that 
trains the model sequentially for prediction 
and classification purposes. It combines 
several weak learners into strong learners. 

• Post cancer treatment 
pain prediction 

• Cancer pain related 
unscheduled healthcare 
prediction 

• Cancer pain analgesics 

requirement 

• Cancer persistent pain 

prediction 

Naïve Bayes (NB) 
Classifier 
[26], [37], [16] 

Used for binary or multi-class classification 
problems, based on Bayes rule and 
conditional independence assumption. 

• Post cancer treatment 
pain prediction 

• Cancer persistent pain 
prediction 

           Regression Predicts the probability using continuous 
data. 
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Generalized linear 
mixed models (GLMMs), 
least absolute shrinkage 
and selection operator 
(Lasso), Linear 
regression (LR), Logistic 
regression (LR), 
Bayesian regression 
[42], [32], [43], [33], [34], 
[35], [27], [44], [45], [46], 
[39], [41], [31] 

Model that estimates the relationship 
between one dependent variable and one or 
more independent variables using a line. 

• Cancer pain prediction 

• Post cancer treatment 
pain prediction 

• Cancer pain analgesics 
requirement 

• Cancer pain related 
unscheduled health 
care prediction 

• Association between 
epigenetics and 
persistent cancer pain 

 

Support vector 
machine (SVM) 

[43], [34], [47], [26], [27], 
[28], [37], [40], [41] 

Type of supervised learning algorithm used 
to solve classification and regression tasks. 
Creates a hyperplane to separate two 
classes. 

• Cancer pain prediction 

• Post cancer treatment 
pain prediction 

• Cancer pain analgesics 

requirement 

Unsupervised 
Learning 

[36] 

Unlabeled and unclassified datasets used to 
train machines; Used to categorize unsorted 
data based on features, similarities and 
differences.  

• Mapping parameters 
and post cancer 
treatment persistent 
pain 

           Clustering  
[25], [48], [49] 

Machines divide the data into clusters based 
on features, similarities and differences.  

• Risk features 
identification for cancer 
pain  

• Identifying groups 
sharing patterns in post 
cancer treatment 
persistent pain 

           Association  
[50] 

Machines find interesting relations and 
connections among variables within large 
datasets that are input.  

• Correlation between 
genetic SNPs and post 
treatment cancer pain 
outcome. 

Neural Networks (NN) 
[33], [25], [34], [26], [27], 
[28], [51], [52], [16], [10], 
[46], [38], [53], [54], [55], 

[56], [31] 

Composed of node layers, containing an 
input layer, one or multiple hidden layers and 
an output layer. Could be supervised, 
unsupervised or semi-supervised. 

• Cancer pain prediction 

• Post cancer treatment 
pain prediction 

• Cancer pain 

identification using 

video analysis 

• Prediction of remote 

consultation/visits due 

to cancer pain. 

• Association between 

epigenetics and 

persistent cancer pain  
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Deep Learning (DL) 
[57], [56] 

Subclass of NN that Includes many layers of 
the neural network and massive volumes of 
complex and disparate data.  

• Genetic mutation 
associated cancer pain 

• Cancer pain prediction 

Natural Language 
Processing (NLP) 

[58], [59], [60] 

A component of AI that uses the ability of a 
computer program to understand human 
language either written or spoken, it could be 
supervised or unsupervised. 

• Identification of cancer 
pain and cancer 
attributes 

Decision Support 
System 

[61], [62], [31] 

A subtype of AI using computerized 
programs to help decision making, judgment 
and actions in an organization. 

• Evaluate decision 
support computer 
program for cancer pain 
management. 

• Pain treatment 
recommendations and 
staging 

• Pain intensity 
identification 

 

 

 

 

 

 

AI/ML Models used for cancer related pain research: 

This review identified 18 studies describing the implementation of AI/ML in cancer pain 

research (Table 2).  

Figure 4: a. Distribution of articles by AI/ML algorithm type. b. 'Frequency of ML algorithm applied 

in multiple model articles' (M; multiple) 
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In a study by Knudsen et al. (2011) [42]  a cross-sectional analysis of 2278 cancer patients 

utilized Linear regression to identify key variables associated with pain, revealing 

breakthrough pain, psychological distress, sleep issues, and opioid dose as significant 

factors. Shimada et al. (2023) [29] employed DT in a retrospective study predicting end-

of-life cancer patients' pain, showcasing the potential of ML in understanding complex 

patient scenarios. Cascella et al. (2023) [52]  and Cascella et al. (2022) [10]  explored 

video analysis and telemedicine, respectively, employing NN and various models to 

enhance cancer pain management. DiMartino et al. (2022) [58] used NLP to evaluate 

uncontrolled symptoms (i.e., pain), showing promise of AI in pain prediction (accuracy 

61%). Lou et al. (2022) [39] delved into patient satisfaction in cancer pain consultation, 

using LR and RF, revealing associations with physician factors but facing limitations in 

data collection and ML metric reporting. Lu et al. (2021) [59] tested ML algorithms on 

young cancer survivors, with Bidirectional Encoder Representations from Transformers 

(BERT) showing higher accuracy in identifying pain interference. Moscato et al. (2022) 

[40] explored physiological signals for pain assessment. Results demonstrated the 

feasibility of using ML for pain assessment via physiological signals in real-world contexts. 

Heintzelman et al. (2013) [60] demonstrated the feasibility of text mining using NLP for 

predicting pain severity in metastatic prostate cancer. Miettinen et al. (2021) [30] identified 

pain phenotype clusters using DTs, while Xuyi et al. (2021) [55] predicted multiple 

symptoms using NNs. Akshayaa et al. (2019) [57] achieved high accuracy in detecting 

chronic pain with CNN, and Bang et al. (2023) [56] predicted breakthrough pain onset 

with DL models. Masukawa et al. (2022) [41] utilized LR, RF, GBM, and SVM to detect 

social distress and spiritual pain in palliative care. Pombo et al. (2016) developed a 

Computerized clinical decision support system (CCDSS) for pain intensity prediction, 

showing accuracy but limited clinical validation discussion. Xu et al. (2020) [63] explored 

herbal drugs' molecular mechanisms in pain subtypes. Pantano et al. (2020) [49] 

identified Break through cancer pain (BTcP) clusters. 

These studies employ various AI/ML models, showcasing their potential in understanding 

patient satisfaction, identifying pain-related attributes, and predicting pain in cancer 

patients across different age groups and healthcare settings. Most studies used clinical 

and demographic variables as input; however, some studies applied models utilizing 

innovative inputs such as physiological signals [40], facial expressions [52], textual data 

[41], and even herbal categories [63], indicating the exploration of novel data sources. 

This diversity in inputs strengthens the versatility of the models. Some studies showcase 

innovation by assessing pain through video analysis of facial expressions [52], wearable 

devices capturing physiological signals [40], and even employing NLP for identifying pain 

severity in unstructured medical records [58]. These novel approaches strengthen the 

potential for non-traditional but effective pain assessment. 

Most studies lacked detailed information on the extent of external validation of the AI 

models applied and the clinical application in real healthcare scenarios. Only 3 out of 18 

studies performed external validation, and 7 studies discussed the clinical evaluation and 

application of the models used. Cascella et al, 2022 & 2023 [10] [38] applied external 
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validation and clinical evaluation of the models for the remote consultation prediction in 

cancer patients. Additionally, Cascella et al, 2023 [52] performed a clinical trial to test the 

NN using video recording of facial expression for discriminating between the absence and 

presence of pain in cancer patients.  Heintzelman et al., 2013 [60] proved the feasibility 

and generalizability of NLP through an external validation using separate data source, 

furthermore, they evaluated the clinical application of the NLP using text mining for pain 

prediction in patients with metastatic prostate cancer. Pombo et al., 2016 [31] clinically 

evaluated the CCDSS compared with clinical advice for pain intensity, however, there 

was a lack of generalizability of the decision model due to the uni-institutial cohort. 

Moscato et al., 2022 [40] applied a real-world context to develop an automatic pain 

assessment model, however, the small size cohort was a limitation with the need for 

bigger cohort for clinical validation. 

 

Table 2: Characteristics of studies that used AI/ML algorithms in cancer pain research. 

Author, 
year 

Populatio
n 

Cohort 
study 

AI/ML 
model 
(s) 

Input variables Output 
variable 

Assessm
ent tools 

Aim/ 
objectiv
e 

Knudse
n et al., 
2011 
[42] 

2278 
Cancer 
patients 

Cross-
Sectional; 
Multi-
institution
al 

LR 46 variables 
-Functional 
status  
-Cognitive 
function  

1. 
Average 
pain 
2.Worse 
pain 
3.Pain 
relief 

11-point 
Numerica
l Rating 
Scales 
(0-10) 

Identify 
variables 
associate
d with 
pain 

Shimad
a et al, 
2023 
[29] 

213 
patients 
with 
cancer 

Retrospe
ctive; 
Multi-
Institution
al 

DT -Patient clinical 
and 
demographic 
characteristics -
performance 
status 

Pain in 
cancer 
patients 

Character
istic 
visual 
informatio
n 

Using ML 
to predict  
pain in 
End of 
Life 
cancer 
patients  

Cascella 
et al, 
2023 
[52] 

Cancer 
patients 

Prospecti
ve; Multi-
Institution
al   

NN 
 

-Facial 
expressions 
characteristic. -
video recordings 

Pain in 
cancer 
patients 

video 
recording
s. 
A set of 
17 Action 
Units 
(AUs) 
was 
adopted. 
For each 
image 

Construct
ed a ML 
model for 
discrimin
ating 
between 
the 
absence 
and 
presence 
of pain in 
cancer 
patients 
using 
video 
analysis 
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Cascella 
et al., 
2022 
[10] 

158 
cancer 
patients 

Prospecti
ve; Uni-
Institution
al  

RF 
 
GBM 
 
LASSO-
RIDGE 
 
NN 

-Demographic   
-Clinical 
variables 
-Therapeutics 
Drugs for pain,  

Number 
of remote 
consultati
ons due 
to pain 

-Number 
of remote 
consultati
ons 
-Pain 
severity 
assessm
ent: 
Morphine 
dose 

Develop
ment of 
ML 
predictive 
models 
for 
identifyin
g patients 
who may 
require 
more 
remote 
consultati
ons due 
to pain. 

DiMartin
o et al., 
2022 
[58] 

Cancer 
patients 
admitted 
to UNC 
Hospitals, 
a total of 
1,644 
hospitaliza
tions were 
included. 

Retrospe
ctive; Uni-
institution
al   

NLP -Clinical notes 
and records of 
symptom 
documentation  
-highest severity 
reported for pain 

Pain 
severity 
labeled 
as: 
“controlle
d” (none, 
mild, not 
reported) 
or as 
“uncontro
lled” 
(moderat
e or 
severe) 

Common 
Terminol
ogy 
Criteria 
for 
Adverse 
Events 
(CTCAE) 
grade. 

To 
evaluate 
NLP used 
to identify  
pain in 
EHR 
among 
hospitaliz
ed cancer 
patients. 

Cascella 
et al., 
2023 
[38] 

226 
cancer 
patients 
and 489 
telemedici
ne visits 
for cancer 
pain 
managem
ent 

Prospecti
ve; Multi-
Institution
al   

DL (NN) 
 
RF 
 
GBM 
 
LASSO-
RIDGE 
regressio
n 

-Demographic  
-Clinical 
variables 
-Background 
pain 
(nociceptive, 
neuropathic) 
and 
breakthrough 
cancer pain 
(BTcP) 

The 
number 
of remote 
consultati
ons” 

The 
number 
of remote 
consultati
ons 
recorded. 

Investigat
e specific 
AI model 
efficacy 
for 
enhancin
g the 
telemedic
ine 
approach 
to cancer 
pain 
manage
ment. 

Lou et 
al., 2022 
[39] 

Cancer 
patients 
with 
uncontroll
ed pain 
who 
participate
d in clinical 
consultatio
ns with 
physicians
. 

Retrospe
ctive; Uni-
institution
al 

LR 
 
RF 

-Depth of 
prognosis 
discussion 
-Doctor's age, 
gender 
-Patient's race 
-Extent of 
shared decision 
making  
 

Patient 
Satisfacti
on with 
provider 
visit/treat
ment 

Question
s asked 
by 
physician 
and 
standardi
zed 
patients 
(SPs) 

Use ML 
to 
examine 
the 
associati
on 
between 
patient 
satisfacti
on and 
physician 
factors in 
clinical 
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consultati
ons about 
cancer 
pain. 

Lu et al., 
2021 
[59] 

Child and 
adolescent 
survivors 
of cancer, 
aged 8 to 
17 years, 

Cross-
Sectional; 
Uni-
Institution
al 

Transfor
mers 
(BERT) 
 
NLP 
 
SVM 
 
XGboost 

Meaning units in 
pain and fatigue 
as variables. 

1. Pain  
2. Fatigue 

Standard 
surveys 
with 
prespecifi
ed 
content of 
PROs 

Test the 
validity of 
NLP and 
ML 
algorithm
s in 
identifyin
g 
different 
attribute‐ 
es of pain 
experien
ced by 
child and 
adolesce
nt 
survivors 
of cancer. 
. 

Moscato 
et al., 
2022 
[40] 

21 cancer 
patients 
 

Prospecti
ve; Uni-
institution
al 

SVM 
 
RF 
 
MP 
 
LR  
 
AdaBoos
t 

Physiological 
signals (e.g., 
photoplethysmo
graphy, 
electrodermal 
activity) 

Pain 
Experien
ce (Pain 
ratings) 

Edmonto
n 
Symptom
s 
Assessm
ent 
Scales 
(ESAS) 
for pain 
assessm
ent. 

Develop 
an 
automati
c pain 
assessm
ent 
method 
based on 
physiolog
ical 
signals 
recorded 
by 
wearable 
devices. 

Heintzel
man et 
al., 2013 
[60] 

33 men 
with 
metastatic 
prostate 
cancer 

Retrospe
ctive; Uni-
institution
al   

NLP 
 
LR 

-Electronic, 
radiologic, RT, 
and pathology 
medical records 
Pain severity 
-Factors 
associated with 
pain experience 
(e.g., receipt of 
opioids and 
palliative 
radiation 
-Patient 
demographics 
(age, 
race/ethnicity). 

Pain 
Phenotyp
e 
intensity:  
1. Severe 
Pain  
2. No 
Severe or 
controlled 
Pain 

Pain 
categoriz
ation 
model 
based on 
a 
conservat
ive four-
tiered 
pain 
scale: no 
pain 
(category 
0); some 
pain 
(category 
1); 
controlled 

To test 
the 
feasibility 
of using 
text 
mining to 
predict 
pain in 
patients 
with 
metastati
c prostate 
cancer. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted December 8, 2023. ; https://doi.org/10.1101/2023.12.06.23299610doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.06.23299610


pain 
(category 
2); severe 
pain 
(category 
3). 

Miettine
n et al., 
2021 
[30] 

320 
cancer 
patients 
with 
persistent 
pain 

Prospecti
ve; Multi-
institution
al   

DT 
(CART 
and 
PART) 

-Pain 
Phenotype-
Intensity related 
features 
-Pain etiology-
related 
information 
-Psychological 
parameters 
-Demographic 
parameters 
-Lifestyle-
related 
parameters, -
Previous 
treatments 
-Comorbidities. 

1. Pain 
Intensity  
2. 
Number 
of Pain 
areas  
3. Pain 
Duration  
4. Activity 
Pain 
Interferen
ce  
5. 
Affective 
Pain 
interferen
ce 

The Brief 
Pain 
Inventory 
(BPI) for 
assessin
g pain 
intensity. 

(1) 
identify 
patterns 
arising 
from 
different 
pain 
phenotyp
ic 
paramete
rs 
(2) 
selecting 
paramete
rs in 
associati
ng a 
patient 
with a 
particular 
pain 
phenotyp
e. 

Xuyi et 
al., 2021 
[55] 

Cancer 
patients 
between 
2008 and 
2015. 
[training 
and test 
cohorts 
consisted 
of 35,606 
and 
10,498 
patients, 
respectivel
y] 

Retrospe
ctive; Uni-
institution
al 

NN 39 unique 
covariates:  
-Demographics, 
-Clinical 
features, 
-Treatment 
characteristics 
-Baseline PRO  
-Health care 
utilization 
measures. 

1. Severe 
Pain  
2. 
Moderate 
to severe 
depressio
n 
3. Poor 
Well-
being 

ESAS; 
and 
interRAI 
 
 

Predict 
the risk of  
Severe 
Pain in 
cancer 
patients 

Akshaya
a et al., 
2019 
[57] 

900 
Images of 
Cancer 
patients 
experienci
ng chronic 
pain and 
with 
ZFHX2 
mutations. 

Prospecti
ve; Uni-
Institution
al 

Deep 
Convoluti
onal 
Neural 
Network 
(CNN) 

-Pathological 
images with 
ZFHX2 mutation 
-epigenomic 
alterations (DNA 
methylation), 

Chronic 
pain 

-Not 
specified 

Designin
g an early 
mutation 
detection 
tool to 
identify 
the 
presence 
of pain 
inducing 
gene 
ZFHX2 
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using 
deep 
CNN.  

Bang et 
al., 2023 
[56] 

34,304 
cancer 
patients. 

Retrospe
ctive; Uni-
institution
al 

Transfor
mer 
CNN 
(DL) 

-Pain intensity 
scores 
- lengths and 
time 

Cancer 
Pain 
Exacerba
tion 

11-point 
Numerica
l Rating 
Scales 
(0-10) 

Investigat
e the 
clinical 
relevanc
e of DL 
models 
that 
predict 
the time 
of 
breakthro
ugh pain 
onset in 
cancer 
patients. 

Masuka
wa et al., 
2022 
[41] 

808 
patients 
who died 
of cancer 

Retrospe
ctive; Uni-
Institution
al   

LR 
 
RF  
 
GBM 
 
SVM 

-Unstructured 
text data 
contained in 
EMRs. 
-Social distress 
-Spiritual pain 
Severe 
physical/psychol
ogical 
symptoms. 

1. Social 
Distress  
2. 
Spiritual 
Pain  
3. Severe 
Physical 
and 
Psycholo
gical 
Symptom
s (e.g., 
pain) 

Japanese 
version of 
the 
Support 
Team 
Assessm
ent 
Schedule 
(STAS-J). 

Develop 
models to 
detect 
social 
distress, 
spiritual 
pain in 
terminally 
ill cancer 
patients. 

Pombo 
et al., 
2016 
[31] 

32 cancer 
volunteers 

Prospecti
ve; Uni-
Institution
al 

CCDSS 
 
ANN 
 
Bayesian 
algorithm
s 
 
LR 
 
DT 

Clinical data, 
Treatment 
protocol 
Patient reported 
data 

Mean 
pain 
intensity 

-Not 
specified 

To 
develop 
and 
validate a 
CCDSS 
as a 
method 
used pain 
evaluatio
n system 
for pain 
intensity 
predictio
n. 

Xu et al., 
2020 
[63] 

Not 
specified 

Retrospe
ctive; 
Multi-
institution
al   

Herb 
Networks 
(SHN) 
and 
(THN) 

-Pain-related 
herbs 
-Herbal 
molecules 
-Human and gut 
microorganism 
targets 
-Pathways 

1. Cancer 
pain 
2. 
Chronic 
cough 
related 
neuropat
hic pain  
3. 
Reproduc

Not 
specified 

Under- 
standing 
of the 
molecula
r 
mechanis
ms of 
pain 
subtypes 
that 
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Herb categories 
(HC1, HC2, 
HC3) 

tion and 
autoimmu
ne related 
pain 

herbal 
drugs are 
participati
ng 
 

Pantano 
et al., 
2020 
[49] 

4,016 
cancer 
patients 
suffering 
from 
BTcP. 

Retrospe
ctive; Uni-
institution
al   

Cluster 
analysis 

Eight BTcP-
defining 
variables (e.g., 
number of 
episodes, peaks 
duration, type, 
intensity, etc.) 

 Break 
through 
cancer 
pain 
(BTcP) 

11-point 
Numerica
l Rating 
Scales 
(NRS) (0-
10) 

Explore 
distinct 
subtypes 
of BTcP 
using an 
unsuperv
ised 
learning 
algorithm
.  

 

 

AI/ML Models used for cancer treatment induced pain research: 

Nineteen articles focused on implementing AI/ML algorithms in cancer treatment pain 

research were detected in our review. The characteristics of these studies are 

summarized in Table 3. 

The study by Chao et al. in 2018 [24] aimed to predict radiation-induced chest wall pain 

in Non-Small Cell Lung Cancer (NSCLC) patients using DT and RF models. The study 

demonstrated that ML models are predictive for chest wall pain toxicity after RT in Lung 

cancer patients. Additionally, Olling et al. (2018) [43]  conducted a study aimed at 

predicting pain while swallowing (odynophagia) post-RT in lung cancer, applying LR, SVM 

and Generalized Linear Models (glmnet) based on various parameters. These models 

accurately predicted odynophagia during lung cancer RT, revealing their effectiveness in 

pain prediction during the course of treatment for lung cancers. Studies conducted by Sun 

et al. (2023) [32], Juwara et al. (2020) [33], Lotsch et al. (2017) [23] , Lotsch et al. (2018) 

[36], Sipila et al. (2012) [44], Lotsch et al. (2018) [34] and Wang et al. (2021) [27], 

investigated various ML models for persistent/chronic pain prediction and features 

identification in post-surgery in breast cancer patients. Studies by Sun et al. (2023) [32] 

and Juwara et al. (2020) [33] revealed that the novel ML approaches, including RF, GBM, 

and XGBoost, exhibited higher performance in predicting Chronic Postsurgical Pain 

(CPSP) over the traditional regression models. Lotsch et al. (2017) [23] revealed that 

supervised classification ML techniques robustly excluded post-surgical persistent pain, 

exhibiting a high accuracy of 94.4% based on preoperative cold pain sensitivity. Sipila et 

al. (2012) [44] developed a screening tool using ML to identify risk factors contributing to 

persistent post-surgery pain using a Bayesian model. The study's ML model showed high 

predictive performance and identified significant predictors of prolonged pain after breast 

cancer surgery, such as preoperative chronic pain and multiple previous operations. 

Lotsch et al. (2020) [48] used automated evolutionary algorithms, hierarchical clustering, 

and LR to identify distinct pain patterns from 6 to 36 months post-surgery and revealed 
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three unique patient groups exhibiting differing persistent postoperative pain patterns. 

Wang et al. (2021) study results demonstrated that XGBoost algorithm exhibited the 

highest precision in predicting chronic pain, while the Naive Bayes (NB) model showed 

commendable performance in recall rate and F1 score. Sipila et al. (2020) [25] used 

various ML techniques to identify psychological factors influencing persistent post-

treatment pain. They found that psychological and sleep-related parameters played a 

crucial role in grouping patients dealing with persistent pain after breast cancer 

treatments. 

In a retrospective and prospective study, Guan et al. (2023) [26] investigated 

postoperative pain in hepatocellular carcinoma (HCC) patients after trans arterial 

chemoembolization (TACE). Using various ML models, they found that the RF model 

accurately predicted the risk of pain following TACE in HCC patients. Barber et al. (2022) 

[35] investigated a group of 34 women after gynecologic cancer surgery, utilizing ML 

models such as LR, RF, GBM, and XGBoost. They employed patient-reported outcomes 

(PROs) and wearable device data to predict the specific day of unscheduled healthcare 

utilization events, with a particular emphasis on pain intensity. The study's primary finding 

was the feasibility of a PRO-based program in accurately predicting the occurrence of 

unscheduled healthcare utilization following surgery, especially concerning pain.  

Reinbolt et al. (2018) [50] examined a novel analytic algorithm (NAA) to analyze genetic 

single nucleotide polymorphisms (SNPs) for predicting Aromatase Inhibitor Arthralgia 

(AIA) in breast cancer patients treated with Aromatase Inhibitors (AIs). Their key finding 

was the identification of 70 SNPs from 57 genes that predicted AIA with a notable 

accuracy of 75.93%. The study demonstrated the potential of using genetic markers to 

anticipate AIA, providing a promising avenue for preemptive risk identification. 

Furthermore, Kringel et al. (2019) [46] utilized kNN, SVM, LR, and NB, their ML analysis 

to understand the association between DNA methylation of glial/opioid-related genes and 

persistent post-surgery pain in breast cancer patients. Their study highlighted that global 

DNA methylation held a comparable diagnostic accuracy for persistent pain, compared 

to established non-genetic predictors. Finaly, Lotsch et al. (2022) [53] explore the 

potential of ML techniques such as (PCA, NN, RF) to identify proteins that distinguish 

patients with persistent postsurgical neuropathic pain (PPSNP). The study revealed 19 

proteins that showed significant differences between the groups, marking a key finding. 

As for the previous set of studies, most studies considered in this subgroup also lacked 

detailed information on the extent of external and clinical validation in real healthcare 

scenarios. Three out of 19 studies, used external clinical validation of the AI/ML models. 

Guan et al., 2023 and Wang et al., 2021  [26] [28] used an external prospective clinical 

cohort for clinical evaluation of the models. Additionally, Im et al., 2006 [61] used external 

cohorts of nurses from the internet for the clinical evaluation of the decision support 

computer program (DSCP) developed for pain prediction and management. Although 

studies used genomic, epigenomic and proteomic data to build the classification and 

clustering pain models, got the identified molecules from the clinical settings, were 
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previously identified, however, no actual clinical validation and application were used, and 

the clinical evaluations of the models are still needed.  

Table 3: Characteristics of studies used AI/ML algorithms in cancer treatment related pain 

research. 

Author
, year 

Population Cohort 
study 

AI/ML 
model 
(s) 

Input 
variables 

Output 
variable 

Asses
sment 
tool 

Aim/ 
objective 

Chao 
et al., 
2018 
[24] 

197 cancer 
patients with 
Stage I NSCLC 
treated with 
SBRT 

Prospe
ctive; 
Uni-
instituti
onal  

DT 
 
RF 
 

25 
patient, 
tumor and 
dosiomic 
features 

Radiation 
induced 
chest wall 
pain, 
Chest wall 
syndrome 
(CWS) 

CTCAE
v4 
grade 
≥2 
chest 
wall 
pain 

Utilize ML algorithms 
to identify chest wall 
pain RT toxicity 
predictors to develop 
dose–volume 
constraints 

Sun et 
al., 
2023 
[32] 

1152 patients 
with primary 
breast cancer 
undergoing 
mastectomy 

Prospe
ctive; 
Multi-
Instituti
onal 

RF 
 
GBM 
 
LR 
 
XGBoo
st 
 

6 leading 
predictors 
including 
(pain 
score, 
post-
menopau
sal status, 
urban 
medical 
insurance
, history of 
at least 
one 
operation, 
under 
fentanyl 
with 
sevoflura
ne 
general 
anesthesi
a, and 
received 
axillary 
lymph 
node 
dissection
) 

Chronic 
postsurgic
al pain 
(CPSP) at 
12 months 
after 
surgery 

-
Modifie
d Brief 
Pain 
Invento
ry > 0 
 
-2016 
Internat
ional 
Associ
ation 
for the 
Study 
of Pain 
(IASP) 
criteria 

Develop prediction 
models for CPSP 
after breast cancer 
surgery using ML 
approaches 

Olling 
et al., 
2018 
[43] 

131 NSCLC 
cases received 
RT 

Retrosp
ective; 
Uni-
Instituti
onal  

LR 
 
SVM 
 
General
ized 
Linear 
Models 
(glmnet
) 

Clinical, 
tumor and 
dose 
volume 
paramete
rs. 

Pain while 
swallowin
g (odynop 
hagia) 
after RT in 
lung 
cancer 

Semi-
structur
ed 
weekly 
in-
person 
intervie
ws 
reporte
d by RT 

Generate predictive 
ML models for 
odynophagia needing 
prescription pain 
medication during 
lung RT lung cancer 
using nursing 
workflow 
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Techno
logist 
Nurse 
(RTN) 

Juwara 
et al., 
2020 
[33] 

195 female 
patients 
scheduled to 
undergo breast 
cancer surgery 

Prospe
ctive; 
Uni-
instituti
onal   

Solitary 
Least 
square 
regressi
on 
(OLS) 
 
Ridge 
regressi
on (RR) 
 
Elastic 
net 
(EN) 
 
RF 
 
GBM 
 
NN 
 
LR 

Demogra
phic and 
Clinical 
features 

Neuropath
ic pain 
after 
breast 
cancer 
surgery 

4 
intervie
w 
scores 
(DN4-
intervie
w; 
range: 
0–7)- 3 
months 
after 
surgery 

Assess the utility of 
ML models 
developed as a tool 
to predict pain and 
identify specific pain 
characteristics after 
breast cancer surgery 

Sipila 
et al., 
2020 
[25] 

337 women 
treated for breast 
cancer 

Cross-
Section
al; Uni-
instituti
onal  

Cluster 
analysis 
 
NN 
 
DT 

-
Psycholo
gical and 
sleep-
related 
paramete
rs  
-
Paramete
rs related 
to pain 
intensity 
and 
interferen
ce 

Persistent 
pain in 
breast 
cancer 
survivors 

Brief 
Pain 
Invento
ry (BPI) 
for 
pain. 
11-
point 
Numeri
cal 
Rating 
Scales 
(NRS) 
(0-10) 

Identify psychological 
features that may 
influence poorer 
coping with persistent 
pain 

Guan 
et al., 
2023 
[26] 

Retrospective 
857 patients and 
prospective 368 
patients with 
HCC received 
TACE 

Retrosp
ective 
and 
Prospe
ctive; 
Uni-
Instituti
onal  

RF 
 
SVM 
 
NN 
 
Naïve 
Bayes 
 
DT 

24 
candidate 
variables, 
Demogra
phics, 
clinical, 
tumor, 
and 
surgery 
data 

Postopera
tive pain in 
HCC 

NR: 
0 
points, 
no 
pain; 1-
3 
points, 
mild 
pain; 4-
6, 
modera
te pain; 
7-10, 
severe 
pain.  

To develop an early 
ML model for 
predicting pain after 
TACE in patients with 
HCC 
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Lotsch 
et al., 
2017 
[23] 

900 women who 
were treated for 
breast cancer 

Retrosp
ective; 
Uni-
Instituti
onal  

Supervi
sed 
classific
ation 
ML 
techniq
ues 

Paramete
rs 
acquired 
during the 
cold pain 
tolerance 
test 

Presence 
or 
absence 
of 
persistent 
pain after 
breast 
cancer 
surgery, in 
12-
36 months 

-11-
point 
Numeri
cal 
Rating 
Scales 
(NRS) 
(0-10) 
 
-Tonic 
cold 
pain 
test 

Use Supervised ML 
techniques to test 
how accurately the 
patients’ performance 
in a preoperatively 
performed tonic cold 
pain test could 
predict persistent 
post-surgery pain in 
breast cancer 

Barber 
et al., 
2022 
[35] 

34 women after 
gynecologic 
cancer surgery 

Prospe
ctive; 
Uni-
instituti
onal  

LR 
 
RF 
 
GBM 
 
XGBoo
st 

-Clinical 
features 
-PRO 
response
s 
-wearable 
device 
output 

The day of 
an 
unschedul
ed health 
care 
utilization 
event 
using PRO 
parameter
s (e.g., 
Pain 
intensity) 

Patient
-
Report
ed 
Outco
mes 
Measur
ement 
Informa
tion 
System 
(PROM
IS) 
 

Test the feasibility of 
implementing a 
postoperative 
monitoring program 
for women with 
gynecologic cancers 
composed of PROs 
and a wearable 
activity monitor. And 
predict the day of 
unscheduled health 
care utilization for 
pain 

Reinbo
lt et al., 
2018 
[50] 

Patients with 
Breast Cancer 
received 
Aromatase 
inhibitors 

Retrosp
ective; 
Uni-
Instituti
onal  

ML: 
novel 
analytic 
algorith
m 
(NAA)- 
Correlat
ion 
network 

-Genetic 
SNPs 
-
Demogra
phics 
features. 

Aromatas
e inhibitor 
arthralgia 
(AIA) in 
breast 
cancer 
patients 

AIA- 
positive 
and - 
negativ
e 
patient
s, we 
ranked 
based 
on their 
discrimi
natory 
power. 

Evaluate the potential 
of a NAA to predict 
AIA using germline 
SNPs data obtained 
before treatment 
initiation 

Im et 
al., 
2006 
[61] 

122 nurses 
working with 
cancer patients 

Retrosp
ective; 
Uni-
Instituti
onal  

Decisio
n 
support 
comput
er 
progra
m 
(DSCP) 

Age, 
Ethnic 
and 
socioecon
omic 
characteri
stics 
variables 

Usage 
profile, 
accuracy, 
and 
acceptanc
e of the 
DSCP 

-
Accura
cy: 
measur
ed by 
determi
ning 
whethe
r the 
decisio
n 
support 
was 
approp
riate 
and 

To evaluate a DSCP 
for cancer pain 
management 
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accurat
e - 
Satisfa
ction. 
(satisfa
ction 
score 
on a 1-
10 
scale) 

Wang 
et al., 
2021 
[28] 

746 lung cancer 
patients with 
bone metastasis  

Retrosp
ective; 
and 
prospec
tive; 
Uni-
Instituti
onal  

DT 
 
 
XGBoot
s 
 
SVM 
 
Bayesia
n NN 
(BNN) 
 
 

-
Demogra
phic and 
Clinical 
data.  
-The 
driver 
gene of 
lung 
cancer 
-Five 
differentia
lly 
expresse
d proteins 
of bone 
metastas
es 
 -VAS 
pain 
assessme
nt 

Local 
treatment 
in lung 
cancer 
pain with 
bone 
metastasi
s to 
decrease 
pain. 
output 

-Visual 
analog 
scale 
(VAS) 
-
Quality 
of life 
(QoL) 
scores 
Bone 
Metast
ases 
Module 
(EORT
C QLQ-
BM22) 

Developed and 
validate ML models to 
predict patients who 
should receive local 
treatment to reduce 
pain in lung cancer 
patients with bone 
metastasis 

Lotsch 
et al., 
2018 
[36] 

1000 breast 
cancer patients 
undergoing 
breast surgery 

Prospe
ctive; 
Uni-
Instituti
onal  

Both 
supervi
se and 
unsuper
vised 
mappin
g ML 
models 
 
1.A 
supervi
sed 
classific
ation 
 
2.A 
symboli
c rule-
based 
classifie
r 

542 
different 
variables 
(clinical, 
demograp
hics, 
medical 
history, 
medicatio
n, pre-op 
pain, 
opioids, 
tumor 
data) 

Persistent 
pain after 
surgery in 
breast 
cancer 
patients 

11-
point 
Numeri
cal 
Rating 
Scales 
(NRS) 
(0-10) 

Identify parameters 
that predict 
persistence of 
significant pain in 
breast cancer after 
surgery using ML 
models 

Sipila 
et al., 

489 breast 
cancer treated 
with surgery 

Prospe
ctive; 
Uni-

Bayesia
n model 

-
Demogra
phics 

Persistent 
pain after 

11-
point 
Numeri

Develop a ML 
screening tool to 
identify presurgical 
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2012 
[44] 

Instituti
onal  

-Clinical 
-Vitals 
 -
treatment/ 
Hormonal
, Chemo, 
radio 
therapy 
-Type of 
surgery 
-Pre-
surgery 
pain 
-
Psycholo
gical 
features 

surgery in 
6 months 

cal 
Rating 
Scales 
(NRS) 
(0-10) 

factors that predict 
persistence of pain 
after 6 months from 
surgery in breast 
cancer 

Lotsch 
et al, 
2020 
[48] 

763 women 
treated with 
surgery for breast 
cancer 

Prospe
ctive; 
Uni-
Instituti
onal  

Unsupe
rvised 
automat
ed 
evolutio
nary 
(genetic
) 
algorith
ms 
 
Hierarc
hical 
clusteri
ng 
 
 
LR 

Patients’ 
temporal 
features 
of NRS 
ratings 

Clusters or 
groups of 
patients 
sharing 
patterns in 
the time 
courses of 
pain 
between 6 
and 36 
months 
after 
breast 
cancer 
surgery. 

11-
point 
Numeri
cal 
Rating 
Scales 
(NRS) 
(0-10) 

Identify subgroups of 
patients sharing 
similar time courses 
of postoperative 
persistent pain in 
breast cancer, using 
ML algorithms 

Lotsch 
et al, 
2018  
[64] 

 1000 Breast 
cancer received 
surgery 

Prospe
ctive; 
Uni-
Instituti
onal  

Supervi
sed ML 
implem
ented 
as RF 

Psycholo
gical 
factors 
(depressi
ve 
symptom
s, state 
and trait 
anxiety, 
and anger 
inhibition) 

Persistent 
pain after 
breast 
cancer 
surgery 
(PPSP) 

11-
point 
Numeri
cal 
Rating 
Scales 
(NRS) 
(0-10) 

Create a simple 
questionnaire with a 
good ML predictive 
power for persisting 
pain after surgery in 
breast cancer 
patients. 

Kringel 
et al, 
2019 
[37] 

140 women 
undergoing 
breast cancer 
surgery 

Prospe
ctive; 
Uni-
instituti
onal   

RF 
 
Adaptiv
e 
boostin
g 
 
kNN 
 

Next-
generatio
n 
sequenci
ng for 
selected 
77 genes. 

Persistent 
Pain vs 
Non-
persistent 
pain after 
breast 
cancer 
surgery 

11-
point 
Numeri
cal 
Rating 
Scales 
(NRS) 
(0-10) 

Assessment whether 
NGS-derived 
genotypes were 
associated with 
persistent pain in 
patients who were 
treated with breast 
cancer surgery. 
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Naïve 
Bayes 
 
SVM 
 
LR 

Wang 
et al., 
2021 
[16] 

3489 Breast 
Cancer patients 

Prospe
ctive; 
Uni-
Instituti
onal  

DT 
 
RF 
 
XGBoo
st 
 
Naive 
Bayes 
(NB) 
 
CNN 

Age, 
endocrine 
therapy, 
radiothera
py, and 
chemothe
rapy 

Pain in 
post-
operative 
breast 
cancer 
patients 

-Not 
reporte
d 

Investigate the factors 
influencing chronic 
pain after 
radical mastectomy in 
breast cancer 
patients, using AI/ML 
algorithms 

Kringel 
et al., 
2019 
[46] 

140 women who 
had undergone 
breast cancer 
surgery 

Prospe
ctive; 
Multi-
Instituti
onal  

kNN 
 
SVM 
 
LR 
 
Naïve 
Bayes 

Global 
DNA 
methylati
on. DNA 
methylati
on status 
of TLR4, 
OPRM1, 
and 
LINE1  

Persistenc
e of 
postoperat
ive pain. 

11-
point 
Numeri
cal 
Rating 
Scales 
(NRS) 
(0-10) 

Examine the 
association between 
the DNA methylation 
of two key genes of 
glial/opioid 
intersection and 
persistent 
postoperative pain. 

Lotsch 
et al., 
2022 
[53] 

57 women who 
had undergone 
breast cancer 
surgery 

Prospe
ctive; 
Uni-
Instituti
onal   

Supervi
sed and 
Unsupe
rvised 
 
PCA 
 
NN 
 
RF 

Proteomic
s: 
patterns 
in 74 
serum 
proteomic 
marker 

Persistent 
postsurgic
al 
neuropathi
c pain 
(PPSNP) 
 

-11-
point 
Numeri
cal 
Rating 
Scales 
(NRS) 
(0-10), 
sensor
y 
examin
ation to 
diagno
se 
PPSNP
. 
 
-Brief 
Pain 
Invento
ry (BPI) 

Identify proteins that 
are most informative 
in identifying patients 
with and without 
PPSNP after breast 
cancer surgery 
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AI/ML Models used for cancer pain management prediction and decision: 

Seven articles focused on implementing AI/ML algorithms in cancer pain management 

research were detected in our review. The characteristics of these studies are 

summarized in Table 4. 

Kumar et al. (2023) [34] to create and validate AI/ML predictive models for postoperative 

fentanyl analgesic demand and associated outcomes. Employing generalized linear 

regression models (GLM), Linear-SVM, RF, and Bayesian regularized neural network 

(BRNN), their research amalgamated nongenetic clinical and genetic factors (SNPs), cold 

pain test (CPT) scores, and pupillary response to fentanyl (PRF) to predict 24-hour 

postoperative fentanyl needs, pain scores, and time for the first analgesic. The models 

demonstrated varied R-squared values (0.313 for SVM—Linear, 0.434 for SVM—Linear, 

and 0.532 for RF), indicating moderately good predictive capacity for these outcomes. 

Olesen et al. (2018) [47] conducted a study to predict oral morphine equivalent dose 

(MED) in cancer patients using SVM based on 18 SNPs within genes linked to opioid 

receptors and metabolic pathways. The SVM analysis found no significant associations 

between the specific genetic variants and the required opioid dose in cancer pain patients. 

While Bobrova et al. (2020) [27] conducted a study involving 90 pancreatic cancer 

patients utilizing fentanyl transdermal therapeutic system (TTS) for pain relief. The 

research employed diverse ML models and examined 57 genetic and non-genetic factors 

to predict pharmaco-resistance of fentanyl. The study identified the SVM as the most 

effective model for classifying pharmaco-resistance. Facciorusso et al. (2019) [51] 

conducted a study with 156 pancreatic cancer patients undergoing repeat celiac plexus 

neurolysis (rCPN) using ANN and LR to predict pain response post-rCPN. The study 

found that the ANN outperformed the LR model in predicting treatment response. Dolendo 

et al. (2022) [45] analyzed 148 cancer patients who underwent mastectomy, utilizing LR 

to assess factors affecting postoperative opioid use. The study suggested that these 

models, if implemented, could significantly impact preoperative counseling and patient 

satisfaction by aiding in the prediction of postoperative pain. Im et al. (2011) [62]  involved 

428 ethnic minority cancer patients to evaluate a Decision Support Computer Program 

for Cancer Pain Management (DSCP-CA). The DSCP-CA was developed to assist nurses 

in managing cancer pain among ethnic minority patients, potentially enhancing care in 

this specific patient population. Sokouti et al. (2014) [54] created an ANN model for pain 

management using thermal and electrical stimulations and time parameters to address 

total pain intensity and pain quality. The main finding revealed the ANN's accurate 

emulation of clinical data derived from stimulations, effectively managing severe pain in 

patients. A lack of external validation and clinical evaluation of the models was also 

detected in all studies involved in this subgroup. 
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Table 4: Characteristics of studies used AI/ML algorithms in cancer pain management 

prediction and decisions research. 

Author, 
year 

Populati
on 

Cohort 
study 

AI/ML 
model 
(s) 

Input 
variables 

Output 
variable(s) 

Assessm
ent tool(s) 

Aims/ 
Objectiv
es 

Kumar et 
al., 2023 
[34] 

257 
cancer 
patients 
undergoi
ng major 
breast 
surgery. 

Cross-
Sectional; 
Uni-
institutiona
l 

Generali
zed 
linear 
regressi
on 
model 
(GLM) 
 
SVM—
Linear 
 
RF  
 
Bayesia
n 
regulariz
ed 
neural 
network 
(BRNN) 

-Nongenetic 
clinical and 
genetic 
factors 
(SNPs) 
 
-Cold pain test 
(CPT) scores 
-Pupillary 
response to 
fentanyl 
(PRF) 

1. 24-hour 
fentanyl 
requirem
ent 

2. 24-hour 
pain 
scores 

3.  Time for 
first 
analgesi
c (TFA) 
in the 
postoper
ative 
period 

-Cold pain 
testing 
 
-11-point 
Numerical 
Rating 
Scales 
(NRS) (0-
10) 
 
-Pupillary 
response 
to fentanyl 
(PRF) 
using a 
linear 
Ultrasound 
probe 
(Sonosite, 
WA). 

Develop 
and 
validate 
robust 
AI/ML 
predictive 
models 
for 
postopera
tive 
fentanyl 
analgesic 
requirem
ent and 
other 
related 
outcomes 

Olesen 
et al., 
2018 
[47]  

1237 
cancer 
pain 
patients 

Retrospec
tive; Multi-
institutiona
l 

SVM 18 SNPs 
within the µ 
and δ opioid 
receptor 
genes and 
the catechol-
O-
methyltransf
erase gene 

Required 
opioid dose 
in cancer 
pain 
patients. 
in oral MED  

Oral 
morphine 
equivalent 
dose 
(MED) 

Predict 
required 
opioid 
dose in 
cancer 
pain 
patients, 
using 
genetic 
profiling 

Bobrova 
et al., 
2020 
[27] 

90 
pancreat
ic cancer 
patients 
received 
fentanyl 
TTS for 
pain 
relief 

Prospectiv
e; Uni-
institutiona
l 

LR 
 
k 
nearest 
neighbor
s’ 
algorith
m (KNC) 
 
RF 
 
GBM 
  
DT 
 
NN 
 
SVM 
 

57 genetic 
and 
non-genetic 
factors: 
 
(13 genetics, 
20 clinical, 
demographic
, type of 
surgical 
treatment, 24 
laboratories) 

Developmen
t of 
Pharmaco-
resistance of 
Fentanyl in 
pancreatic 
cancer 
patients with 
chronic pain 

Pharmaco-
resistance: 
according 
to the 
Naranjo 
scale  
 
Quality of 
life was 
assessed 
using the 
Palliative 
Medicine 
Symptom 
Rating 
Scale 
(ESAS), 
and 
cognitive 

Develop a 
calculator 
for 
personali
zed risk 
assessm
ent of 
opioid-
associate
d drug 
resistanc
e in 
patients 
with 
pancreas 
cancer 
using 
fentanyl 
transder
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functions 
were 
assessed 
using the 
Mental 
Status 
Assessme
nt Scale 
(MMSE). 

mal 
therapeuti
c system 
(TTS) as 
an 
example. 

Faccioru
sso et 
al., 2019 
[51] 

156 
pancreat
ic cancer 
patients 
treated 
with 
repeat 
celiac 
plexus 
neurolysi
s 

Retrospec
tive; Uni-
institutiona
l 

Artificial 
NN 
(ANN) 
 
LR 

Baseline 
demographic
s, clinical and 
treatment 
rCPN 
characteristic
s 

Pain 
response 
after 
repeated 
celiac plexus 
neurolysis 
(rCPN) 

Visual 
Analogue 
Scale 
(VAS), 
ranging 
from 0 (no 
pain) to 10 
(maximal 
pain) 

Build an 
artificial 
NN model 
to predict 
pain 
response 
in 
pancreati
c cancer 
patients 
received 
rCPN 

Dolendo 
et al., 
2022 
[45] 

148 
cancer 
patients 
that 
underwe
nt 
mastect
omy 

Retrospec
tive; Multi-
institutiona
l 

LR Patient 
demographic
s, clinical and 
surgical 
characteristic
s 

Total opioid 
use on 
postoperativ
e day 1 

Oxycodon
e milligram 
equivalent
s (OME) 

Identify 
risk 
factors 
and 
develop 
ML-based 
models to 
predict 
patients 
who are 
at higher 
risk for 
postopera
tive opioid 
use after 
mastecto
my. 

Im et al., 
2011 
[62] 

428 
cancer 
patients 
(ethnic 

minority 
cancer 
patients) 

Prospectiv
e; Uni-
Institution
al   

Decision 
support 
compute
r system 
(DSCP) 

-
Demographic
s and 
socioeconom
ics (e.g., 
Ethnicity/ 
race 
Sex) 
-Cancer pain 
experience 
 

Pain 
Treatment 
decisions 

-5 cancer 
pain 
scales (the 
visual 
analog 
scale 
[VAS], the 
verbal 
descriptive 
scale 
[VDS], the 
Wong-
Baker 
Faces 
Pain Scale 
[FS], the 
Brief Pain 
Index-

Develop a 
DSC to 
support 
nurses’ 
decisions 
about 
cancer 
pain 
managem
ent 
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Short 
Form [BPI-
SF], and 
the McGill 
Pain 
Questionn
aire-Short 
Form 
[MPQ-SF]) 
-The 
Memorial 
Symptom 
Assessme
nt Scale 
[MSAS], 
and the 
Functional 
Assessme
nt of 
Cancer 
Therapy 
Scale 
[FACT-G]. 

Sokouti 
et al., 
2014 
[54] 

70 
cancer 
patients  

Prospectiv
e; Uni-
Institution
al 

ANN Thermal and 
electrical 
stimulations, 
and the time 
parameter 

Total pain 
intensity 
management 
(Pain quality) 

11-point 
Numerical 
Rating 
Scales 
(NRS) (0-
10) 

Model an 
AI 
system to 
be more 
bio- 
logically 
efficient in 
pain 
quality 
modulatio
n 

 

Performance of cancer related pain and pain management AI/ML models: 

The main discrimination performance evaluation metrics of the AI/ML models were 

accuracy, receiver operating curve-area under the curve (ROC-AUC), sensitivity, 

specificity and root mean square errors. Several studies did not report any outcome 

performance of the models used. Table 5 summarizes the discrimination performance 

results and includes an assessment on the validation methods used and whether model 

calibration was assessed for the studies that applied AI/ML models in cancer pain studies. 

Median AUC across studies reported the models AUC performance was 0.77% (range 

0.47-0.99). Models used for cancer related pain studies showed the highest AUC with 

median AUC 0.86 (range 0.50-0.99), while the median AUC across studies of AI/ML 

models for cancer treatment related pain research and cancer pain management was 

0.71 (range 0.47-0.89) and 0.80 (range 0.76-0.94), respectively (Figure 5.a). The RF 

model showed the highest median AUC (0.81, range 0.58-0.99), while the Lasso model 

showed the lowest median AUC (0.70, range 0.50-0.79). Median AUC for SVM (0.808, 
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range 0.71-0.87), NB (0.80, range 0.67-0.803), LR (0.78, range 0.65-0.86), NN (0.79, 

range 0.65-0.98), DT (0.76, range 0.58-0.89) and boosting (GBM) (0.71, range 0.56-0.89) 

(Figure 5.b). The Lasso model demonstrated the highest sensitivity (1.00), while the 

lowest specificity (0.00). SVM demonstrated the highest median specificity (0.74, range 

0.52-0.97).  

Only 2 studies (Sun et al., 2023 [32] and Juwara et al., 2020 [33]), out of all articles 

reported the calibration of the AI/ML models (Table 5). Sun et al., used the integrated 

calibration index, E50, E90 and Hosmer-Lemeshow (H-L) test for calibration of the models 

used in the study, where XGBoost model showed better performance than multivariable 

LR model with ICI, 0.05 (95% CI (0.038-0.122)) which was lower than LR ICI, 0.07 (95% 

CI (0.050 – 0.146)) and the other models; RF and GBM didn’t show superiority in ICI and 

H-L P values reported for all models were  (LR: 0.059, RF:0.429, GBM: 0.384 and 

XGBoost: 0.829)  [32]. Jawara et al., generated the calibration plot of the predicted 

probability against the observed probabilities. The MCA adjusted model showed good 

calibration. The MCA unadjusted logistic classifier, the intercept: 0.02 (-0.50,0.47) and 

slope 0.98 (0.42,1.58), while for the MCA adjusted logistic classifier, the intercept: 0.03 (-

3.4,0.34) and slope: 1.00 (0.40, 1.60) [33]. 

 

Table 5: Models performance, validation and calibration reported in included studies. 

Study AI/ML 
model 

Accura
cy 

AUC Sensitivi
ty/ 
Recall 

Specifici
ty/ 
Precisio
n 

Root 
mean 
squa
re 
error 

Validati
on 

Calibrati
on  

 AI/ML Models used for cancer related pain research 

Shimada 
et al, 2023 
[29] 

DT 0.685 
 

0.582 0.849 0.241 Not 
report
ed 

10-fold 
Cross-
Validatio
n 

Not 
Reported  

Cascella 
et al, 2023 
[52] 

NN 0.9448  
 

0.98 0.968 0.9528 Not 
report
ed 

Train/ 
test 

Not 
Reported  

Cascella 
et al., 
2022 [10] 

RF 
 
 

0.7 
 
 

0.98 0.69 0.71 Not 
report
ed 

8-fold 
cross-
validatio
n 

Not 
Reported  

GBM 0.5 0.59 0.69 0.29 Not 
report
ed 

LASSO-
RIDGE 

0.53 0.5 1 0 Not 
report
ed 

ANN 0.57 0.95 0.5 0.64 Not 
report
ed 
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DiMartino 
et al., 
2022 [58] 

NLP 0.61 Not 
report
ed 

0.69 0.46 Not 
report
ed 

10-fold 
cross-
validatio
n 

Not 
Reported  

Cascella 
et al., 
2023 [38] 

RF 0.8 0.99 0.69 0.71 Not 
report
ed 

K-fold 
cross-
validatio
n 

Not 
Reported  

GBM 0.62 0.87 0.69 0.29 Not 
report
ed 

LASSO 0.57 0.7 1 0 Not 
report
ed 

ANN 0.71 0.92 0.5 0.64 Not 
report
ed 

Lou et al., 
2022 [39] 

RF Not 
reported 

0.96 Not 
reported 

Not 
reported 

Not 
report
ed 

Not 
reported 

Not 
Reported  

LR Not 
reported 

0.75 Not 
reported 

Not 
reported 

Not 
report
ed 

Lu et al., 
2021 [59] 

BERT 0.870 0.875 0.507 0.950 Not 
report
ed 

5-fold 
cross-
validatio
n 

Not 
Reported  

SVM 0.859 0.868 0.366 0.969 Not 
report
ed 

XGBoost 0.852 0.830 0.324 0.969 Not 
report
ed 

Moscato 
et al., 
2022 [40] 

SVM 0.73 0.71 0.90 0.52 Not 
report
ed 

10-fold 
cross-
validatio
n 

Not 
Reported  

RF 0.64 0.65 0.72 0.54 Not 
report
ed 

MP 0.61 0.59 0.68 0.52 Not 
report
ed 

LR 0.65 0.66 0.73 0.49 Not 
report
ed 

Adaboost 0.52 0.56 0.72 0.43 Not 
report
ed 

Heintzelm
an et al., 
2013 [60] 

NLP 0.95 Not 
report
ed 

Not 
reported 

Not 
reported 

Not 
report
ed 

Blind test 
set 

Not 
Reported  

Miettinen 
et al., 
2021[30] 

Cluster 0.799 Not 
report
ed 

0.741 0.877 Not 
report
ed 

1000 
Cross-
Validatio
n runs 

Not 
Reported 

DT 0.67 Not 
report
ed 

Not 
reported 

Not 
reported 

Not 
report
ed 
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Akshayaa 
et al., 
2019 [57] 

CNN 0.95 Not 
report
ed 

Not 
reported 

Not 
reported 

Not 
report
ed 

Train/ 
Test 

Not 
reported 

Masukaw
a et al., 
2022 [41] 

RF Not 
reported 

0.90 Not 
reported 

Not 
reported 

Not 
report
ed 

5-fold 
cross-
validatio
n 

Not 
reported 

SVM Not 
reported 

0.87 Not 
reported 

Not 
reported 

Not 
report
ed 

LR Not 
reported 

0.86 Not 
reported 

Not 
reported 

Not 
report
ed 

GBM Not 
reported 

0.89 Not 
reported 

Not 
reported 

Not 
report
ed 

AI/ML Models used for cancer treatment induced pain research 

Sun et al., 
2023 [32] 

RF Not 
reported 

Not 
report
ed 

0.362 0.914 Not 
report
ed 

10-fold 
Cross-
Validatio
n 

  
XGBoost
: 1. ICI; 
0.050 
(0.038-
0.122) 
2. E50; 
0.046 
(0.024-
0.123) 
3. E90; 
0.071 
(0.064-
0.257) 
RF:  
1.ICI; 
0.093 
(0.053-
0.168) 
2. E50; 
0.109 
(0.034-
0.170) 
3. E90; 
0.129 
(0.107-
0.303) 
GBM:  
1.ICI; 
0.072 
(0.049-
0.156) 
2. E50; 
0.071(0.0
35-0.138) 
3. E90; 
0.114(0.0
83-0.286) 

LR Not 
reported 

Not 
report
ed 

0.769 0.622 Not 
report
ed 

GBM Not 
reported 

Not 
report
ed 

0.338 0.922 Not 
report
ed 

XGBoost Not 
reported 

Not 
report
ed 

0.339 0.907 Not 
report
ed 
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Logistic 
Regressi
on:  
1. ICI; 
0.070 
(0.050 – 
0.146)  
2. E50; 
0.070 
(0.027 – 
0.127)  
3. E90; 
0.111 
(0.095 – 
0.307) 

Olling et 
al., 2018 
[43] 

LR 0.83 0.84 0.95 0.61 Not 
report
ed 

Cross-
Validatio
n 

Not 
Reported 

Juwara et 
al., 2020 
[33] 

OLS Not 
reported 

Not 
report
ed 

Not 
reported 

Not 
reported 

1.43 10-fold 
cross-
validatio
n 

LR:  
1. 
Unadjust
ed: 
Intercept: 
0.02 (-
0.50,0.47) 
and Slope 
0.98 
(0.42,1.58
)  
2. 
Adjusted
: 
Intercept: 
0.03 (-
3.4,0.34) 
and Slope 
1.00 
(0.40, 
1.60 

RR Not 
reported 

Not 
report
ed 

Not 
reported 

Not 
reported 

1.28 

EN Not 
reported 

Not 
report
ed 

Not 
reported 

Not 
reported 

1.31 

RF Not 
reported 

Not 
report
ed 

Not 
reported 

Not 
reported 

1.39 

GBM Not 
reported 

Not 
report
ed 

Not 
reported 

Not 
reported 

1.16 

NN Not 
reported 

Not 
report
ed 

Not 
reported 

Not 
reported 

1.50 

LR Not 
reported 

0.68 Not 
reported 

Not 
reported 

Not 
report
ed 

Sipila et 
al., 2020 
[25] 

DT 0.661 Not 
report
ed 

0.583 0.636 Not 
report
ed 

Train/test Not 
Reported 

Guan et 
al., 2023 
[26] 

RF Not 
reported 

0.871 Not 
reported 

Not 
reported 

Not 
report
ed 

Train/Te
st-
Internal 
and 
external 
validatio
n 

Not 
Reported  

DT Not 
reported 

0.864 Not 
reported 

Not 
reported 

Not 
report
ed 

ANN Not 
reported 

0.827 Not 
reported 

Not 
reported 

Not 
report
ed 

SVM Not 
reported 

0.808 Not 
reported 

Not 
reported 

Not 
report
ed 
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NB Not 
reported 

0.803 Not 
reported 

Not 
reported 

Not 
report
ed 

Lotsch et 
al., 2017 
[23] 

Supervise
d 
classificat
ion ML 
technique
s 

0.944 Not 
report
ed 

Not 
reported 

Not 
reported 

Not 
report
ed 

Not 
Reported 

Not 
Reported  

Barber et 
al., 2022 
[35] 

RF Not 
reported 

0.75 Not 
reported 

Not 
reported 

Not 
report
ed 

5-fold 
cross-
validatio
n 

Not 
Reported  

Reinbolt 
et al., 
2018 [50] 

NAA Not 
reported 

0.759 Not 
reported 

Not 
reported 

Not 
report
ed 

Leave-
One-Out-
Cross 
Validatio
n 

Not 
Reported  

Wang et 
al., 2021 
[28] 

DT 0.901 0.89 0.894 0.903 Not 
report
ed 

Train/test 
10-fold 
cross 
validatio
n 

Not 
Reported  

SVM Not 
reported 

0.77 Not 
reported 

Not 
reported 

Not 
report
ed 

BNN Not 
reported 

0.71 Not 
reported 

Not 
reported 

Not 
report
ed 

Lotsch et 
al., 2018 
[36] 

Supervise
d 
classificat
ion model 

0.86 Not 
report
ed 

Not 
reported 

Not 
reported 

Not 
report
ed 

100-fold 
cross-
validatio
n 

Not 
Reported  

Sipila et 
al., 2012 
[44] 

BM 0.627 Not 
report
ed 

0.81 0.44 Not 
report
ed 

Not 
Reported 

Not 
Reported  

Lotsch et 
al, 2018 
[36] 

Rule 
Based 
Classifier 

0.86 
 

0.47 
 

0.706 
 

0.454 
 

Not 
report
ed 

Cross-
Validatio
n 

Not 
Reported  

Kringel et 
al, 2019 
[37] 

RF 0.71 0.71 0.74 0.74 Not 
report
ed 

Cross-
Validatio
n 

Not 
Reported  

GBM 0.71 0.71 0.69 0.74 Not 
report
ed 

KNN 0.65 0.65 0.61 0.696 Not 
report
ed 

NB 0.67 0.67 0.696 0.696 Not 
report
ed 

SVM 0.71 0.71 0.696 0.74 Not 
report
ed 

LR 0.65 0.65 0.57 0.74 Not 
report
ed 
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Wang et 
al., 2021 
[16] 

DT 0.878 0.652 0.017 0.167 Not 
report
ed 

Train/Te
st- 10-
fold 
Cross 
validatio
n 

Not 
Reported  

RF 0.871 0.666 0.050 0.222 ------ 

XGB 0.885 0.703 0.017 0.500 Not 
report
ed 

MLPC 0.867 0.675 0.008 0.048 Not 
report
ed 

GNB 0.721 0.685 0.500 0.205 Not 
report
ed 

CNN 0.883 0.708 0.008 0.250 Not 
report
ed 

Kringel et 
al., 2019 
[46] 

CART 0.717 0.794 Not 
reported 

Not 
reported 

Not 
report
ed 

Train/Te
st- Cross 
validatio
n 

Not 
Reported  

kNN 0.739 0.739 Not 
reported 

Not 
reported 

Not 
report
ed 

SVM 0.804 0.826 Not 
reported 

Not 
reported 

Not 
report
ed 

Regressio
n 

0.739 0.807 Not 
reported 

Not 
reported 

Not 
report
ed 

NB 0.739 0.802 Not 
reported 

Not 
reported 

Not 
report
ed 

Lotsch et 
al., 2022 
[53] 

RF 0.58 0.58 0.65 0.50 Not 
report
ed 

Cross-
Validatio
n 

Not 
Reported  

Kumar et 
al., 2023 
[34] 

GLM 
 

Not 
reported 

Not 
report
ed 

Not 
reported 

Not 
reported 

0.130 10-fold 
cross-
validatio
n 

Not 
Reported  

SVM 
 

Not 
reported 

Not 
report
ed 

Not 
reported 

Not 
reported 

0.127 

RF Not 
reported 

Not 
report
ed 

Not 
reported 

Not 
reported 

0.129 

NN Not 
reported 

Not 
report
ed 

Not 
reported 

Not 
reported 

0.132 

Facciorus
so et al., 
2019 [51] 

ANN Not 
reported 

0.94 Not 
reported 

Not 
reported 

0.057 10-fold 
Cross-
Validatio
n 

Not 
Reported 

LR Not 
reported 

0.85 Not 
reported 

Not 
reported 

0.147 

Dolendo 
et al., 
2022 [45] 

LR 
 

Not 
reported 

0.763 Not 
reported 

Not 
reported 

Not 
report
ed 

10-Fold 
Cross-

Not 
Reported  
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Ridge 
Regressio
n 
 

Not 
reported 

0.775 Not 
reported 

Not 
reported 

Not 
report
ed 

Validatio
n 

Lasso Not 
reported 

0.799 
 

Not 
reported 

Not 
reported 

Not 
report
ed 

Elastic 
Net 
Regressio
n 

Not 
reported 

0.801 Not 
reported 

Not 
reported 

Not 
report
ed 

 

 

 

 

 

 

 

 

Adherence to TRIPOD Guidelines  

The overall compliance with the TRIPOD guidelines reporting checklist was 70.7%, 

revealing that 7 out of 31 domains fell below a 60% adherence rate. While reporting 

adherence surpassed 80% for components such as Study Design, Eligibility Criteria and 

Statistical Methods, it plummeted below 50% for crucial elements like blinding of 

outcomes/predictors, handling of missing data, model development, and identification of 

risk groups. Specifically, 75.4% of studies adequately specified their study population 
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Figure 5: a. Median area under the receiver operating curve (AUC) across all included studies by 

subgroups. b. Median area under the receiver operating curve (AUC) across all included studies 

by AI/ML model. 

a. b. 

0.0 0.2 0.4 0.6 0.8 1.0

Lasso

NB

DT

GBM

SVM

RF

NN

LR

Median AUC with the range of AI/ML models
 in cancer pain

Median AUC

M
o

d
e

l

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted December 8, 2023. ; https://doi.org/10.1101/2023.12.06.23299610doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.06.23299610


concerning inclusion/exclusion criteria and baseline characteristics. Lastly, 95.5% of 

abstracts provided adequate information on study methodology, and approximately 70% 

of studies disclosed funding sources (Figure 6).  

  

 

 

 

 

Figure 6: Frequency of adherence on included studies to reporting checklist of Transparent Reporting of a 

multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD) guidelines. 
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Discussion: 

This comprehensive review delves into 44 studies that were identified through database 

searches, each utilizing distinct AI/ML methodologies within the field of cancer pain 

research published between 2006 and 2023. Most studies used prospective uni-institutial 

cohorts of cancer patients. In comparison to conventional statistical methods, AI/ML 

techniques have demonstrated superior performance, particularly in cancer pain 

prediction and pain management according to Sun et al. (2023) [32] and Juwara et al. 

(2020) [33]. The utilization of ML models, trained on big data sets of multiple features, 

has exhibited impressive mapping to select categories, classify patients and guide pain 

management decisions. 

The results in this systematic review highlighted the substantial benefits of implementing 

AI/ML in cancer pain research, particularly in the context of predicting pain in cancer 

patients who have undergone cancer treatments. Out of the 44 studies, 19 focused on 

post-cancer treatment pain prediction, and 18 studies aimed at enhancing pain prediction 

and identifying high-risk factors associated with pain in cancer patients. Furthermore, our 

review pinpointed 7 studies that applied AI/ML for predicting cancer pain management 

and aiding in decisions regarding pain management (e.g., opioids usage). 

Our comprehensive review illuminated the diverse array of AI/ML models deployed in the 

field of cancer pain research. Most of these models took the form of supervised 

classification or regression algorithms, including DT, RF, GBM, and LR. In addition, 

unsupervised clustering algorithms were applied to classify subgroups of pain patients 

and to identify key pain-related parameters. For making informed pain management 

decisions, advanced NNs were utilized and validated. AI-based decision support systems 

emerged as promising tools in guiding pain management choices. Most studies 

investigated multiple models (each model was tested separately) (55%), where RF and 

LR were the most common models used in these multiple models’ studies (n=15 studies 

for each). RF models demonstrated the highest performance across all studies (median 

AUC  81%), and Lasso models demonstrated the highest sensitivity (100%) while the 

lowest specificity (0%). 

The expansion of clinical, genetic, and healthcare-related data has created an impetus 

for leveraging cutting-edge AI/ML techniques to harness this wealth of big data for the 

betterment of healthcare outcomes, especially for cancer patients contending with both 

the disease and its treatments. In our review, studies collectively demonstrated the 

potential of AI/ML models in predicting, assessing, and understanding pain among cancer 

patients, utilizing various inputs such as patient characteristics, imaging, video analysis, 

and clinical variables to improve pain management and remote consultations. While most 

studies used demographic and clinical data as input variables, only 4 studies included 

genetic data as inputs, Olesen et al., and Reinbolt et al., used single nucleotide 

polymorphisms (SNPs) data as inputs for the models [47, 50]. More novel approaches 

were observed with studies including image data (pathology, radiological, dosiomic data) 

as model inputs related to cancer pain (Akshayaa et al.[57],  and Chao et al., [24]). Our 
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systematic review did not provide specific details on the evaluation process of these 

features or how they were selected for model input. Deep learning offers the potential of 

analyzing high dimensional data (e.g., images) in combination with non-image data. This 

is an opportunity that future studies should take towards more comprehensive models in 

cancer pain prediction. Five studies used video recording, machine signals or tests results 

as input data of the models [23, 34, 40, 52, 54]. Text mining and NLP open the 

opportunities for future studies in cancer pain using texts and different non-structured 

data, 

Numerous studies have explored the power of AI and ML to predict pain in various 

medical diseases. For instance, Matsangidou et al., (2021) conducted a comprehensive 

investigation into the utilization of AI and ML techniques for pain prediction, showcasing 

the potential of these advanced technologies to enhance the accuracy and effectiveness 

of pain prediction and prognosis [65]. Such research exemplifies the growing significance 

of AI and ML in improving patient care and healthcare outcomes, However, studies 

specifically addressing cancer-related pain are limited, and there is a lack of data 

regarding the calibration of models and adherence to TRIPOD guidelines. To our 

knowledge, this is the first study to do a comprehensive investigation and analysis of all 

up-to-date studies focused on applying AI/ML models in cancer pain medicine and in 

cancer pain management decisions. We analyzed the different models applied in these 

studies and the median model performance. We categorized the studies according to the 

use of the models into three subgroups: cancer pain research, cancer treatment related 

pain, and cancer treatment (e.g., opioids) decisions. Our data analysis demonstrated an 

increase in the trend of AI/ML studies in cancer pain in the last few years, and that AI/ML 

models showed high performance in cancer pain prediction, classification and 

management decisions. 

In our review, we extracted and analyzed data regarding the adherence to The 

Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or 

Diagnosis (TRIPOD) guidelines, models calibration, external validation, and clinical 

application of the AI/ML models. Interestingly, our results revealed 70.7% overall 

compliance with the TRIPOD reporting checklist. However, few studies tested models’ 

calibration (5%), performed external validation of internally tested models (n=6, 14%) or 

discussed the clinical application of the validated models (23%). According to Van Calster 

et. al (2019) [66], the performance assessment of AI/ML models that estimate disease 

risks or predict health outcomes for clinical decision-making should involve evaluating 

model discrimination (e.g., calculating ROC-AUC) and model calibration as essential 

elements in the evaluation process [66]. While most studies on AI/ML models focus on 

discrimination and classification performance, calibration of models is often overlooked. 

Poor calibration of predictive algorithms can be misleading, leading to incorrect and 

potentially harmful clinical decisions [66]. Furthermore, adhering to the TRIPOD 

guidelines is essential in the context of AI/ML models, these guidelines provide a 

structured framework for transparent and comprehensive reporting, ensuring the 

reliability and reproducibility of predictive models [17, 18]. Equally crucial is the process 
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of external validation, where models are rigorously tested in diverse and independent 

datasets to assess their generalizability and reliability beyond the initial training data. This 

step is vital in affirming the robustness of the models and their applicability to real-world 

scenarios [67]. Additionally, recurrent local validation should be considered in addition to 

external validation to test models’ reliability, safety and generalizability for clinical 

application, and Youssef et al., (2023) proposed the Machine Learning Operations-

inspired paradigm for recurrent local validation of AI/ML models to maintain the validity of 

the models [68]. Furthermore, the clinical application of established ML models is of 

utmost importance to bridge the gap between research and practical healthcare settings. 

Understanding how these models perform in clinical practice enhances their utility and 

ensures informed decision-making. Several studies investigate robust AI/ML models in 

healthcare, however, few of these models have been clinically applied due to several 

limitations to translate AI/ML into clinical practices [69]. By prioritizing adherence to 

TRIPOD guidelines, conducting thorough repetitive local validations, external validations, 

and emphasizing the clinical application of ML models, the healthcare community can 

foster trust in AI-based tools, ultimately leading to improved patient outcomes and more 

effective healthcare interventions. 

While deep reinforcement learning (RL) has exhibited remarkable efficacy in making 

morphine dosage decisions and optimizing pain management within the intensive care 

unit (ICU), as demonstrated by Lopez-Martinez et al. (2019) [70], our review, 

unfortunately, did not uncover any studies that had leveraged RL for the optimization of 

cancer pain management. This observation underscores a potential avenue for future 

research and development in the field, highlighting the need for exploring the application 

of RL techniques to enhance the management of pain in cancer patients. 

Studies included in our review collectively demonstrate diverse applications of AI/ML 

models in cancer pain research, illuminating their potential in predicting, understanding 

patient satisfaction, identifying pain-related attributes, and managing pain in cancer 

patients across different age groups and healthcare settings. The identification of high-

risk cancer pain patients and their associated risk factors is instrumental in stratifying 

patients according to their pain risk, which, in turn, informs the development of 

personalized pain management strategies. The integration of AI and ML in cancer pain 

prediction and patient risk stratification streamlines the analysis of complex big data with 

minimal human intervention, offering a promising path to improved outcomes and 

enhanced QOL for cancer patients suffering with pain. Furthermore, AI/ML techniques 

have proven effective in not only predicting but also diagnosing, categorizing, and 

recommending treatments for cancer pain. Although the clinical importance of applying 

these AI/ML models, several studies included in our review provided very limited details 

on the clinical validation of their AI/ML models in real healthcare settings, which is a 

crucial step in ensuring the applicability and reliability of these models in clinical practice. 

Clinical validation, in larger and more diverse cohorts, is vital to establish the predictive 

value of identified features and optimize pain treatment for cancer patients, enhancing 

the model's real-world applicability, generalizability and effectiveness in clinical settings. 
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Limitations: 

While our diligent effort involved an extensive comprehensive exploration of the 

implementation of AI and ML in the domain of cancer pain medicine, it is important to 

have some caution in interpreting the results due to the limitations in the design of our 

study. Notably, we encountered substantial heterogeneity among the identified studies, 

encompassing variations in the models employed, diverse AI/ML performance metrics, 

and disparities in the outputs associated with pain. Additionally, there is a lack of some 

AI/ML performance metrics which may affect the overall models’ performance. 

Furthermore, it's essential to acknowledge that our search strategies did not explore other 

symptoms or cancer therapy toxicities that may have relevance to pain, such as 

mucositis, dysphagia, pneumonitis, and more. Our primary focus predominantly centered 

on patient-reported pain phenotypes, a deliberate choice that should be considered when 

evaluating the scope and implications of our findings. Very few data were available on the 

model calibration, external validation, and clinical application of the tested models in 

included articles which adds limitation of interpretation of the degree of biases, 

robustness, and clinical reliability of the applied models.  

Future Directions: 

Generalizability of the performance of the identified models that demonstrated high 

performance is required with external validation. Assessment of the robustness, clinical 

application of these models is needed to be conducted in the future for clinical use in real-

world healthcare settings. The use of DL and RL models in the inclusion of imaging data 

for cancer pain medicine should be further explored. 

Conclusion: 

Recent advancements in AI and ML techniques have ushered in a new era of cancer pain 

research, with applications including cancer pain prediction, the anticipation of pain 

induced by cancer treatments, and aiding in pain management decisions. AI/ML models, 

showed high performance in predicting cancer pain, risk stratification, and enabling 

personalized pain management, with a median AUC 0.77 across all models and all 

studies. Although the adherence to TRIPOD guidelines was 70.7%, testing models’ 

calibration was 5%, the models’ external validation was 14% and the clinical application 

was 23%. There is an ongoing need for AL/ML models to be rigorously tested for 

calibration and externally clinically validated before their implementation in the real-world 

healthcare setting. 
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