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Abstract 

Objective 
Functional MRI (fMRI) is sensitive to changes in the blood oxygen level-dependent (BOLD) signal, 

which originates from neurovascular coupling, the mechanism that links neuronal activity to changes 

in cerebral blood flow. Isolating the native spontaneous neuronal fluctuations from the BOLD signal 

of the resting-state is challenging, as the signal induced by neuronal activity represents only a small 

part of this signal. Furthermore, many other non-neuronal (systemic) oscillations contribute, such as 

from the cardiovascular and respiratory system with frequencies partly overlapping those of the 

spontaneous fluctuations. The objective of this study is to investigate to what extent various systemic 

physiological signals are associated with the measured BOLD signal, in particular the frequency 

interval pertaining to the spontaneous cerebral fluctuations (10-100 mHz). Additionally, we 

investigate whether these associations were independent of cardiometabolic risk factors. 

Methods 
Within the population-based Maastricht Study, 3T resting-state functional MRI and physiological 

measures, covering cardiac, respiratory, myogenic, neurogenic, and endothelial activity, were acquired 

(n=1,651, 48% woman, aged 59±8 years). As both neuronal and non-neuronal physiological signals 

contain frequencies that vary over time, a wavelet transformation (WT) was used. Time-series were 

decomposed into seven wavelet subbands, and for each subband, the energy of the BOLD signal was 

calculated. Multivariable linear regression analysis was used to investigate the association of the 

physiological measures, in particular cognitive function, with the wavelet energy per subband, 

independent of cardiometabolic risk factors.  

Results  
We found that physiological measures were associated with the energy of certain frequency subbands 

of the spectrum of the measured fMRI signal. Both cognitive performance and blood pressure 

variations, as measures of neurogenic and myogenic activity respectively, were associated with the 

energy of the frequency subband 3 (31.2-62.5 mHz). Furthermore, cardiac and respiratory activity 

were associated with the energy of the high frequency subband 1 (>125 mHz), and endothelial activity 

with the energy of low frequency subbands 6 and 7 (<10 mHz). Part of these associations were 

dependent on cardiometabolic risk factors. 

Conclusion 
We found an association between myogenic and neurogenic activity and the frequency specific BOLD 

signal. Our findings highlight the strong intertwining of neuronal, vascular, and cardiometabolic 

activity and emphasize the importance of a proper selection of the resting-state frequency range in 

fMRI studies on cognitive function.  
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Introduction 
Functional magnetic resonance imaging (fMRI) is sensitive to changes in the blood oxygen level-

dependent (BOLD) signal, which originates from the neurovascular coupling, the mechanism that 

links neuronal activity to changes in cerebral blood flow. In particular, fMRI of the brain’s resting-

state, which relies on the detection of spontaneous cerebral fluctuations, has found wide applications 

to study brain function in a large variety of brain conditions and disorders. Previous studies have 

demonstrated that the signal component of the spontaneous cerebral fluctuations, in the frequency 

range of 10-100 mHz, correlates with cognitive performance and thus reflects neuronal activity (1, 2). 

However, the dynamics of the BOLD response induced by neuronal activity is complex, not 

completely understood, and represents only a small part of the fMRI signal. In practice, the measured 

fMRI signal does not only contain the spontaneous neuronal fluctuations, but is mixed with 

oscillations of (non-neuronal) systemic origin and is rather noisy. Therefore, isolating the neuronal 

component from the BOLD signal is challenging, as there are many other non-neuronal contributions, 

with potentially overlapping frequency components,  and even becomes more complicated in case of 

vascular pathology.  

The primary frequencies of the cardiac (1 Hz) and respiratory (0.3 Hz) cycles contribute to the 

fMRI signal with higher frequencies than the frequency range pertaining to the spontaneous neuronal 

fluctuations, though they can appear as low-frequency fluctuations due to aliasing (3). Also systemic 

physiological processes such as the cerebral autoregulation, blood pressure variability, vasomotion, 

and the interaction between cardiac and respiratory cycles exhibit low-frequency oscillations in or 

close to the frequency interval of the spontaneous cerebral fluctuations (4, 5). To overcome 

contamination of non-neuronal signals, the raw fMRI signal is often corrected by removing correlates 

of cardiac and respiratory cycles (6, 7). However, to what extent the resting-state frequency 

component or other frequency components are associated with cardiac, respiratory, or other 

physiological processes remains largely unknown. In addition, changes in the vascular wall due to 

ageing and disease may affect the neurovascular coupling and thus also the desired neuronal signal 

component (8). Consequently, this complicates the interpretation of the fMRI signal and its alterations 

in individuals with cardiometabolic risk factors. Therefore, it is important to unravel how non-

neuronal signal variations, for instance cardiac, vascular and respiratory oscillations, may contribute 

to, and if and how cardiometabolic risk factors have influence on the measured BOLD signal. 

A commonly applied method to identify characteristic frequency components in dynamic 

brain signals is the Fourier-transformation (FT). However, FT assumes continuously ongoing 

(stationary) components. As both the neuronal and (non-neuronal) systemic physiological signals 

contain frequencies that vary over time (9, 10), only capturing information in the frequency domain 

may be insufficient. Wavelet transformation (WT) can be used to separate time-series into different 

frequency subbands with different time resolutions, as it can better describe non-stationary 

components. 

The main objective of this study is to investigate to what extent the measured BOLD signal 

and, in particular, whether the frequency interval pertaining to the spontaneous cerebral fluctuations 

(10-100 mHz), is associated with various physiological influences of systemic (i.e., heart rate, 

autonomic function, blood pressure variability, and endothelial function) and neuronal (i.e. cognition) 

origin. Additionally, we investigate whether these associations were independent of cardiometabolic 

risk factors. The results will further improve our understanding of the interrelated neuronal and 

vascular contributions to the fMRI signal in the study of brain function in individuals with and without 

cardiometabolic risk factors. 
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Methods 

The Maastricht Study: population and design 
We used data from The Maastricht Study, an observational prospective population-based cohort study 

(11), which focuses on the etiology, pathophysiology, complications, and comorbidities of chronic 

diseases with extensive phenotyping. Participants were aged between 40 and 75 years, with an 

oversampling of individuals with type 2 diabetes. The present report includes cross-sectional data from 

the first 3451 participants, who completed the baseline survey between November 2010 and 

September 2013. MRI measurements were implemented from December 2013 onwards until February 

2017 and were available in 2318 out of 3451 participants. Of the 2318 participants with available MRI 

measurements, 2302 subjects had complete data without artifacts, of whom 1,651 participants had 

complete data on physiological measurements. The study has been approved by the institutional 

medical ethical committee (NL31329.068.10) and the Minister of Health, Welfare and Sports of the 

Netherlands (Permit 131088-105234-PG). All participants gave written informed consent.  

Magnetic Resonance Imaging 
Brain MRI was performed on a 3T system (Magnetom Prisma-fit Syngo MR D13D, Erlangen, 

Germany) by use of a 64-element head/neck coil for parallel imaging. The MRI protocol consisted of a 

3D T1-weighted magnetization prepared rapid acquisition gradient echo (MPRAGE) sequence 

(TR/TI/TE 2300/900/2.98 ms, 176 slices, 256×240 matrix size, 1.00 mm cubic voxel size). Resting-

state functional MRI (rs-fMRI) data were acquired using a task-free T2*-weighted blood oxygen level-

dependent (BOLD) sequence (TR/TE 2000/29 ms, flip angle 90°, 32 transverse 4.00 mm thick slices, 

104×104 matrix size, 2.00×2.00 mm pixel size, and 195 dynamic volumes). 

Contra-indications for MRI assessments were the presence of a cardiac pacemaker or 

implantable cardioverter-defibrillator, neurostimulator, non-detachable insulin pump, metallic vascular 

clips or stents in the head, cochlear implant, metal-containing intra-uterine device, metal splinters or 

shrapnel, dentures with magnetic clip, an inside bracket, pregnancy, epilepsy, and claustrophobia.  

Image processing 
First, affine registrations of the fMRI image to the T1 image and of the T1 image to T1 MNI-152 

standard space (12) were performed. These two transformations were combined and the inverse 

transformation matrix was applied to the AAL2 template. T1-weighted and FLAIR images were 

segmented by use of a certified (ISO13485:2012), automated method (which included visual 

inspection) (13, 14) into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF). Details 

of this method are described previously (15, 16). Pre-processing of the rs-fMRI data was performed 

using a combination of tools in FSL 5.0.10 (FMRIB Analysis Group, University of Oxford, Oxford, 

U.K.) and Statistical Parametric Mapping (SPM) 12 (The Wellcome Trust College London, London, 

U.K.), and included magnetization stabilization followed by correction for field inhomogeneities (17), 

slice-timing, and head motion (18). Next, rs-fMRI data were spatially filtered to increase signal-to-

noise ratio (SNR). Thereafter, the subject-specific WM and CSF masks were linearly co-registered to 

the rs-fMRI data using FSL’s FLIRT (19) to select only gray matter voxels for the atlas regions. 

Subsequently, time-series were extracted for all gray matter voxels and these time-series were 

standardized by subtraction of the mean signal and dividing by the standard deviation. Finally, from 

each time-series, the first 128 time-points were selected. This ensures that the wavelet transformation 

is applied to an input signal with length 2n. 
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Wavelet transformation 
The basic idea of the stationary wavelet transform (WT) is the repeated application of high and low 

pass filters to a time-series, in order to obtain a multi-level representation in which each value is 

associated both with an interval of time and a frequency (sub)band. Each time-series was decomposed 

into seven wavelet subbands (Figure 1), with the Daubechies-4 wavelet chosen as the mother wavelet 

function (20). We applied the stationary WT, in which no subsampling is performed, hence the length 

of the output of each filter is equal to the length of its input. To determine to which extent the signal is 

structured, the relative energy per subband WEj was calculated with the following formulas:  

The mean wavelet energy 𝐸𝑗 for subband 𝑗 is calculated by: 𝐸𝑗 = ∑𝑆𝑗(𝑘)2, 𝑘=time-point.The total 

energy over all the subband is: 𝐸𝑇 = ∑𝐸𝑗. After normalization, the relative wavelet energy WE for 

subband 𝑗 is: WE𝑗 =
𝐸𝑗

𝐸𝑇
. 

 

 
Figure 1: Wavelet transformation. A) Filters applied to the standardized fMRI signal. LP = low pass 

filter. HP = high pass filter. aj and dj are the scale and wavelet coefficients for subband j, respectively. 

B) The upper bar represents the full-standardized fMRI signal ordered by frequency. The other bars 

represent in gray the low frequency components and in red the high frequency components. In the 

remainder of the text, the HP filtered parts, i.e., the red bars, are referred to as subbands. Note that for 

the fMRI measurements the value of fmax= 1/(2·TR) = 250 mHz. 

In figure 2, the frequency ranges of the wavelet subbands are schematically illustrated together with 

the typical frequency ranges of the physiological signals: cardiac activity (0.6-2.0 Hz), respiration 

(0.145-0.6 Hz), myogenic activity (0.052-0.145 Hz), neurogenic activity (0.021-0.052 Hz), and 

endothelial activity (0.0095-0.021 Hz) (21, 22). Note that in practice these frequency ranges overlap 

and are not fully adjacent or separated. 
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Figure 2: Frequency characteristics of the wavelet energy. W1-W7 indicate the frequency ranges of 

the wavelet subbands. On the horizontal-axis, the frequency scale is depicted. The colors indicate the 

subbands of the physiological signals. The gray box indicates the frequency range (10-100 mHz) for 

the spontaneous neuronal fluctuations; fs indicates the highest frequency in the BOLD signal spectrum 

and is equal to half the fMRI sampling frequency. 

Physiological measures 
In order to investigate the impact of physiological processes, we selected for each of the typical 

frequency ranges a physiological measure from the large Maastricht Study dataset. Table 1 

summarizes physiological measures, their corresponding frequency ranges of the underlying 

physiological signal, and the overlapping wavelet subbands. The lowest physiological frequency 

subband, endothelial activity, captures the constant and oscillatory components of skin microvascular 

blood flow, which can be measured with laser-Doppler flowmetry (LDF). In the LDF data, different 

frequencies can be recognized, including an endothelial component. Previous studies found that the 

amplitude of the fluctuations in the endothelial frequency component could detect early endothelial 

dysfunction (23, 24). For the neurogenic subband, we used the information processing speed scores 

derived from cognitive tests, which is one of the main characteristic features of human cognition (25). 

Previous studies have already demonstrated that the resting-state frequency interval correlates with 

cognitive performance (1, 2). Blood pressure (BP) shows beat-to-beat oscillations due to the interplay 

of several cardiovascular systems, i.e., oscillations at very low (<70 mHz), low (~100 mHz), and high 

(>150 mHz) frequencies, originating from myogenic vascular function, the sympathetic nervous 

system (Mayer waves), and endothelial-derived nitric oxide, respectively (26, 27). According to the 

literature, low frequency (LF) bands of blood pressure variability correlate well with measures of both 

sympathetic and parasympathetic activity and high frequency (HF) bands with measures of 

parasympathetic activity (28). As blood pressure contains information about multiple frequencies, we 

use blood pressure average real variability (BPV), and additionally, the LF band as a proxy for 

myogenic activity and the HF band for respiration (28). For the cardiac subband, we use the heart rate. 

At rest, the basic heart frequency is around 1 Hz, but this measure can be lower in more athletic 

persons, and higher (up to 1.6 Hz) in subjects with cardiovascular problems (29).   
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Table 1: Overview of the physiological measures, type of measurement, the corresponding frequency 

ranges and how the defined wavelet subbands overlap with the physiological frequency subbands.  

Physiological measure Measurement 
Physiological 

frequency subband 

Wavelet  

subband 

Endothelial component (EC)  
Skin microvascular flow 

motion 

Endothelial 

9.5-21 mHz 
5 

Information processing speed (IPS)  Cognitive test battery 
Neurogenic 

21-52 mHz 
3 & 4 

• Low frequency component 

Diastolic blood pressure 

(DiaLF)  

• Autonomic function test 
Myogenic 

52-145 mHz 
2 & 3 

• Systolic blood pressure average 

real variability (BPV) 

• 24h ambulatory blood 

pressure measurement 

High frequency component 

Diastolic blood pressure (DiaHF)* 
Autonomic function test 

Respiratory 

145-600 mHz 
1 

Average heart rate (HR)* 
24h ambulatory blood pressure 

measurement 

Cardiac 

600-2000 mHz 
1 

*Note that the physiological signals with frequency components higher than half the sampling frequency (i.e. 250 mHz) 

become attenuated due to the low-pass signal filtering nature of the brain, but may still fold back to lower frequencies. 

 

Skin microvascular flow motion  

Cutaneous blood perfusion was measured by means of a laser-Doppler system (Periflux 5000; 

Perimed, Järfälla, Sweden), equipped with a thermostatic laser-Doppler probe (PF 457; Perimed) at the 

dorsal side of the wrist of the left hand as previously described (30). The LDF output was recorded for 

25 min with a sample rate of 32 Hz, which gives a semi-quantitative assessment of skin microvascular 

blood perfusion expressed in an arbitrary perfusion unit (i.e. proportional to the product of velocity 

and concentration of moving red blood cells (31)). LDF skin measurements reflect perfusion in 

predominantly arterioles and venules (32). To quantify LDF power density Fast-Fourier 

transformation was performed by means of Perisoft dedicated software (PSW version 2.50; Perimed). 

The absolute endothelial skin microvascular flow motion component, 10– 20 mHz, was selected from 

the full frequency spectrum (0.01-1.6 Hz) (33). 

Neurocognitive assessment 

Cognitive performance was assessed by a concise neuropsychological test battery (11). A detailed 

description of neuropsychological tests and methods used to calculate domain scores is provided in the 

online supplementary material. Information processing speed served as the key cognitive performance 

measure, as its decrements are known for the current population and it involves a large part of the 

cerebrum. Briefly, information processing speed was derived as the average of the z-scores of the 

Stroop Color-Word Test Part I and II (34), the Concept Shifting Test Part A and B (35), and the 

Letter-Digit Substitution Test. Some of the individual test scores were log-transformed to fulfill the 

normality assumption and/or inverted (Stroop Color-Word Test and Concept Shifting Test) so that 

higher scores indicated better cognitive performance (higher information processing speed).  

Cardiovascular autonomic function 

Cardiovascular autonomic function was expressed in spectral properties of continuously measured 

diastolic BP. A three‐lead electrocardiogram was recorded simultaneously with blood pressure using 
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an inflatable cuff of optimal size placed around the left index finger with the Nexfin HD Monitor 

(BMEYE, Amsterdam, The Netherlands) (36, 37). Measurements were performed in standing position 

and arm position was secured using a shoulder sling to maintain blood pressure recordings at the level 

of the heart. In special purpose developed software, the originally recorded signals (in standing 

position minimally 300 beats) were converted to a format that blood pressure and electrocardiogram 

artifacts could be corrected for both automatically and by visual inspection. Finally, to enable spectral 

Fast Fourier Transform (FFT) power computations, blood pressure data files were equidistantly 

resampled with a 5.12 Hz frequency. Thereupon, low frequency components (<0.04 Hz) were filtered 

out using the smoothness prior approach (38). Finally, statistical and spectral properties of all variables 

were computed using Matlab routines. Spectra were computed using a 50% overlap Welch transform 

on data epochs of 100 seconds, allowing for a spectral resolution of 0.01 Hz. The absolute and relative 

power of diastolic BP in the low frequency (LF; 0.04‐0.14 Hz) and the high frequency (HF; 0.15‐0.4 

Hz) band were quantified by spectral analysis. 

Ambulatory 24-h blood pressure 

Ambulatory 24-h blood pressure and heart rate were measured at the non-dominant arm using an 

ambulatory device that was programmed to take blood pressure readings every 15 minutes from 8 a.m. 

to 11 p.m. and every 30 minutes from 11 p.m. to 8 a.m. (Watch BP O3, Microlife, Switzerland). 24‐

hour BP variability was calculated as the average real variability of blood pressure readings, during 24 

hours. 24-h systolic and diastolic blood pressure and heart rate were calculated as the mean of hourly 

averages during wake time (9 a.m. to 9 p.m.) 

Other phenotypical measures 

Educational level (low, intermediate, high), smoking status (never, current, former) and history of 

cardiovascular disease (CVD) were assessed by questionnaires (11). Medication use was assessed in 

an interview where generic name, dose, and frequency were registered. We measured weight, height, 

BMI, waist circumference, office blood pressure ([Omron 705IT, Japan), HbA1c, and plasma lipid 

profile (11). Participants were considered to have type 2 diabetes (T2DM) if they had a fasting blood 

glucose ≥7.0 mmol/l, or a 2-h post-load blood glucose ≥11.1 mmol/l or used oral glucose-lowering 

medication or insulin, and prediabetes if they had a FBG ≥6.1 mmol/l and/or a 2-h post-load blood 

glucose ≥7.8 mmol/l. Furthermore, participants were regarded as obese if they have BMI≥30 kg/m2; 

hypertension if their office systolic blood pressure was ≥140 mmHg and office diastolic blood 

pressure ≥80 mmHg or they use blood pressure lowering medication; and dyslipidemia if their total-

cholesterol-to-HDL ratio was > 5 or they use lipid-modifying medication (39). 

Statistical analysis 
In this explorative study, multivariable linear regression analysis was used to investigate the 

association of the physiological measures with the wavelet energy per subband. In these analyses, each 

physiological measure from Table 2 was separately included as independent variable, and the energy 

per subband was used as dependent variable. We discerned wavelet subbands with frequencies 

corresponding to the spontaneous neuronal fluctuations (10-100 mHz, i.e. subbands 2 to 5) from those 

beyond this range. Analyses were adjusted for age, sex, MR scanner software patch, and MRI lag time 

(time between physiological measures and MRI scan). Furthermore, multivariable linear regression 

analysis was used to investigate whether associations were independent of the four important, well-

characterized cardiometabolic risk factors, highly prevalent in this population, namely T2DM (0=no, 

1=yes), BMI (continuous), hypertension (0=no, 1=yes), and dyslipidemia (continuous variable total-

to-HDL-cholesterol-ratio, adjusted for lipid-modifying medication) with the wavelet energy per 

subband. P-values < 0.05 were considered significant. 
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Results 

General Characteristics of the Study Population 
Table 2 shows the general characteristics of the study population according to presence of 

cardiometabolic risk factors. Mean age was 59±8 years (mean±SD), and 48% were women. 

Participants with cardiometabolic risk factors were older, more often male, and more often had a lower 

education level. Furthermore, they had higher BMI, waist circumference, blood pressure, and HbA1c, 

and were cognitively slower in the information processing speed domain. 

 

Table 2: General characteristics of participants according to presence of cardiometabolic risk factors 

Characteristic  Total  

N=1,651 

No 

cardiometabolic 

risk factors 

N=535 

≥1 

cardiometabolic 

risk factors 

N=1116 

P 

Demographics     

Age (years) 59.0±8.1 56.2±7.9 60.4±7.8 <0.001 

Sex, female (%) 48.1 66.5 39.3 <0.001 

Education level (%), Low/Middle/High 28.5/30.0/41.5 21.9/30.1/48.0 31.7/29.9/38.4 <0.001 

MRI lag time (years)     

Cardiometabolic risk factors 

T2DM, yes (%) 21.3 0 31.5  

Obesity, yes (%) 18.3 0 27.0  

Hypertension, yes (%) 51.3 0 75.9  

Dyslipidemia, yes (%) 41.9 0 61.9  

Additional cardiometabolic measures 

BMI (kg/m2) 26.5±4.1 24.2±2.6 27.6±4.2 <0.001 

Waist circumference (cm) 94.2±12.6 86.3±9.2 97.9±12.3 <0.001 

Office Systolic blood pressure (mmHg) 133.8±17.0 121.6±10.8 139.6±16.3 <0.001 

Office Diastolic blood pressure (mmHg) 75.9±9.7 70.8±7.8 78.3±9.6 <0.001 

24h Systolic blood pressure, during wake 

time (mmHg) 

124.0±12.3 117.7±9.3 127.1±12.4 <0.001 

24h Diastolic blood pressure, during wake 

time (mmHg) 

79.1±10.1 76.9±6.5 80.1±7.8 <0.001 

Ratio of total to HDL cholesterol (-) 3.7±1.2 3.3±0.8 3.9±1.3 0.001 

Serum total cholesterol (mmol/L) 5.3±1.1 5.6±1.0 5.2±1.2 <0.001 

Alcohol consumption (%), none/low/high 16.7/56.1/27.3 11.8/57.2/31.0 19.0/55.6/25.4 <0.001 

Smoking status (%), never/former/current 37.7/50.7/11.6 43.4/46.9/9.7 35.0/52.6/12.5 0.146 

HbA1c (%) 5.78±0.77 5.41±0.36 5.95±0.85 <0.001 

HbA1c (mmol/mol) 39.6±8.4 35.6±3.9 41.6±9.2 <0.001 

MMSE total score (-) 29.1±1.1 29.3±1.0 28.9±1.2 <0.001 

Physiological measures     

Heart rate, during wake time (bpm) 74.0±10.1 73.8±9.4 74.0±10.4 0.539 

Systolic BP average variability (mmHg)  9.9±2.4 9.2±2.1 10.4±2.5 <0.001 

Low frequency component diastolic BP (-) 0.79±0.13 0.82±0.11 0.78±0.14 <0.001 

High frequency component diastolic BP (-) 0.19±0.13 0.16±0.11 0.20±0.14 <0.001 

Information processing speed (SD) 0.11 [-0.40, 0.56] 0.33 [-0.16, 0.70] 0.00 [-0.49, 0.47] <0.001 

Endothelial component (-) 0.83 [ 0.47, 1.43] 0.83 [0.48, 1.40] 0.83 [0.47, 1.43] 0.218 

Data are presented as means ± standard deviation, median and interquartile range, or percentage, and stratified for having 

cardiometabolic risk score 0 versus ≥1. NGM indicates normal glucose metabolism; T2DM, type 2 diabetes; HbA1c, 

hemoglobin A1c; BMI, body mass index; HDL, high density lipoprotein; CVA, cerebrovascular accident; MMSE, Mini-Mental 

State Examination; BP, blood pressure; bpm, beats per minute. 
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Association between physiological measures and wavelet energy 
The energy in the wavelet subbands decreases exponentially from lower to higher frequencies, and 

also decreases with increasing age (p<0.05) (Fig. 3). We observed significant associations between 

physiological measures and the subband wavelet energies in frequency ranges for which the 

physiological signals and the defined wavelet subbands overlap (blue cells) and do not overlap (white 

cells) (Table 3).  

 

 
Figure 3: Wavelet energy of frequency subbands of the wavelet transform. Bar heights indicate mean 

values and error bars the standard deviations. 

 

More specifically, in the high frequency range outside the resting-state interval (>100 mHz), all 

physiologic measures, except EC, were associated with the energy of subband 1 (125-250 mHz). After 

adjustment for the individual cardiometabolic risk factors, the association of BPV with energy of 

subband 1 disappeared. The association of IPS with energy of subband 1 attenuated after adjustments 

for hypertension and dyslipidemia, but remained significant (Supplementary Tables 1-4).  

 

Considering the frequencies in the resting-state interval 10-100 mHz, which are commonly used for 

cognitive brain imaging,  only the wavelet energy of subband 3 (31.262.5 mHz) was associated with 

IPS.  (Table 1). The wavelet energies in the other subbands (2, 4 and 5) overlapping with the 10-100 

mHz frequency range  did not show any significant association with IPS. Also the BPV was associated 

with the wavelet energy for this subband 3. The observed associations were independent of having 

T2DM, hypertension, and dyslipidemia (Table 4 and Supplementary Table 1, 2, and 4). After 

adjustment for BMI the association of IPS with energy of subband 3 became stronger, and the 

association of BPV with energy of subband 3 weakened, but still remained significant (Table 4 and 

Supplementary Table 3). No significant associations with other subbands in the resting-state frequency 

range were found.  
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Table 3: Standardized β’s for linear regression analysis of physiological measures with wavelet 

subband energy. 

  Physiological measure 

  Endothelial Neurogenic Myogenic  Respiratory Cardiac 

Subband 

energy 
Frequency (mHz) EC IPS BPV DiaLF DiaHF HR 

WE7 2-3.9 -0.104 -0.053 -0.050 0.000 -0.003 -0.018 

WE6 3.9-7.8 -0.066 -0.030 -0.070** 0.003 -0.004 -0.035 

WE5 7.8-15.6 0.027 0.047 -0.034 0.022 -0.017 -0.049 

WE4 15.6-31.2 0.101^ 0.038 0.030 0.033 -0.036 -0.009 

WE3 31.2-62.5 0.082 0.067* 0.117** 0.023 -0.028 0.046 

WE2 62.5-125 0.037 0.028 0.041 0.048 -0.034 0.008 

WE1 125-250 0.015 -0.077** 0.051* -0.183** 0.182** 0.133** 

Model: WEi = 𝛼 + 𝛽1 ∙ (neuro)physiological signal + 𝛽2 ∙ Age + 𝛽3 ∙ Sex + 𝛽4 ∙ ScanPatch + 𝛽5 ∙ MRIlagtime;  

with i = subband 1 … 7. WEi indicates wavelet energy of subband i; HR, heart rate; DiaHF, high frequency  

component diastolic blood pressure; DiaLF, low frequency component diastolic blood pressure; BPV,  

blood pressure variability; IPS, information processing speed; EC, endothelial component.  
‡N=344 with EC data available. Numbers indicate standardized β’s; Blue cells indicate correspondence in   

frequency range between physiological signals and defined wavelet subbands; significant associations: **p<0.01; *p<0.05; ^, trend 

(p<0.1). 

 

In the frequencies lower than the resting-state interval (<10 mHz), the BPV was associated with the 

energy of subband 6 (3.9-7.8 mHz). Additional adjustment for cardiometabolic risk factors did not 

materially change the associations of the energy of subband 2, and 4-7.  

 

Table 4: Standardized β’s for linear regression analysis of physiological measures with wavelet 

energy of subband 3 additionally adjusted for cardiometabolic risk factors. 

                             Physiological measure 

 Neurogenic Myogenic 

Multivariable regression model IPS BPV 

1 0.067 0.117 

2a: 1 + T2DM 0.072 0.112 

2b: 1 + HT 0.066 0.112 

2c: 1 + BMI 0.080* 0.090* 

2d: 1 + Dyslipidaemia 0.070 0.107 

Model 1: WE3 = 𝛼 + 𝛽1 ∙ (neuro)physiological signal + 𝛽2 ∙ Age + 𝛽3 ∙ Sex + 𝛽4 ∙ ScanPatch + 𝛽5 ∙ MRIlagtime.  

Model 2a: Model 1 + 𝛽6 ∙ T2DM.  

Model 2b: Model 1 + 𝛽6 ∙ HT.   

Model 2c: Model 1 + 𝛽6 ∙ BMI.  

Model 2d: Model 1 + 𝛽6 ∙ Cholesterol ratio + 𝛽7 ∙ LP .  

WE3 indicates wavelet energy of subband 3 (31.2-62.5 mHz); BPV, blood pressure variability; IPS, information processing 

speed; T2DM, Type 2 Diabetes Mellitus; HT, hypertension; BMI, Body Mass Index; LP, dyslipidaemia. Numbers indicate 

standardized β’s; significant associations: bold; *more than 10% change compared to Model 1. 

   

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted December 8, 2023. ; https://doi.org/10.1101/2023.12.06.23299117doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.06.23299117


Discussion 

Current findings 
We set out to find different physiological signal components in the measured resting-state fMRI signal 

in a large population with variations in cardiometabolic risk factors. In this study, we observed that 

physiological measures are associated with certain frequency subbands of the dynamic BOLD signal. 

Most importantly, cognitive performance was associated with the energy of frequency subband 3 

(31.2-62.5 mHz), reflecting the level of neurogenic activity. However, blood pressure variability, 

reflecting systemic myogenic activity, was also associated with the energy of the same frequency 

subband. Also other physiological measures were associated with specific frequency subbands, i.e., 

cardiac and respiratory activity with high frequencies (>125 mHz), and endothelial and metabolic 

activity with low frequencies (<10 mHz).  

Furthermore, we investigated whether these associations were independent of cardiometabolic 

risk factors. We found some associations were dependent on cardiometabolic risk factors and caution 

should be made when studying the resting-state fMRI signal in populations with cardiometabolic risk 

factors.  

Neurogenic associations  
We found the only association of cognitive performance, i.e. neurogenic activity, with the energy of 

subband 3 (31.2-62.5 mHz). A previous study on wavelet correlation analysis observed significant 

associations between wavelet coefficients of the subband representing the (overlapping) 10–120 mHz 

frequency range and structural connectivity measures (global efficiency) (41). Another study, in which 

a Hilbert-Huang Transform was used, found that the corresponding frequency band 45-87 mHz was 

associated with cognitive function in a large aging cohort (42). Previous studies also showed that low 

frequency oscillations of the arterial pressure, also called Mayer waves, are positively correlated with 

low frequency oscillations (~100 mHz) in the resting-state signal (4, 43).  

We also found an association between the oscillations related to the (average real systolic) 

blood pressure variability and the energy of the neurogenic subband (wavelet subband 3, 31.2-62.5 

mHz). This observation may be due to the influence of systemic blood pressure variations on the 

brain’s vascular system, but in part may also reflect the myogenic aspect of the neurovascular 

coupling, i.e. the activity of smooth muscle cells for the vasoconstriction and vasodilation of the brain 

vascular system to alter the local blood flow in response to neuronal activity. These cardiometabolic 

risk factors affect the cerebral vasculature, leading to abnormal patterns of vasodilation and 

vasoconstriction to facilitate the required blood flow, and also impairs the neurovascular coupling (8, 

44, 45, 46). Similarly, the contribution of myogenic response is often altered due to impairment of 

vascular reactivity and arterial stiffness in participants with cardiometabolic risk factors (47, 48). The 

association of IPS with energy of subband 3 became stronger, and the association of BPV with energy 

of subband 3 weakened, but both still remained significant, after adjustment for BMI. 

High frequency associations 
As cardiac cycles have a relatively high frequency (600-2000 mHz) compared to the low frequency (< 

100 mHz) BOLD fluctuations, one would initially expect that these could be distinguished easily from 

the resting-state signal. However, due to the long repetition time (i.e., low sampling frequency, 250 

mHz), cardiac modulations at the primary frequency (600-2000 mHz) are aliased into low frequency 

subbands (5, 49). A recent study observed that physiological low frequency oscillations (systemic 

signals without clear origin that travel with the blood), instead of aliased cardiac and respiratory 
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signals, are most influential in the resting-state signal (50). In the present study, we also found strong 

associations of cardiac and respiratory signals with energy in the high frequency subband 125-250 

mHz. However, we did not obtain strong associations of these signals in the lower frequency 

subbands, indicating that these were possibly less intertwined with the resting-state signal as expected, 

or highly attenuated due to the low-pass filter nature of the hemodynamic process. The association of 

BPV with energy of subband 1 disappeared after adjustment for all individual cardiometabolic risk 

factors. The association of IPS with energy of subband 1 attenuated, but remained significant after 

adjustment for hypertension and dyslipidemia, but disappeared when adjusted for T2DM or BMI  (51). 

Low frequency associations 
For frequencies lower than those corresponding to the resting-state interval (10-100 mHz), blood 

pressure variability (BPV) was associated with the energy of the low frequency subband 3.9-7.8 mHz, 

which likely reflects endothelial activity, originating from endothelial-derived nitric oxide (26, 27). 

T2DM and obesity were associated with the energy of the low frequency subband 5 and 6 (3.9-15.6 

mHz), and dyslipidemia only with the energy of subband 5 (7.8-15.6 mHz). Previous studies also 

found differences in the amplitude of the BOLD signal in the time course of the hemodynamic 

response function, and disturbed neurovascular coupling in apparently normal brains of subjects with 

T2DM (52, 53). This is not surprising, because the regional cerebral blood flow, on which the BOLD 

response depends, increases in proportion to glucose consumption (54). Similar changes were also 

found in studies on participants with cerebrovascular disease (55, 56).  

Implications for clinical studies  
A purer neurogenic signal for resting-state fMRI analysis, less influenced by non-neuronal 

physiological signals, could be obtained using only the frequency band 31.2-62.5 mHz. In addition, for 

the selection of the resting-state range one should also keep in mind the characteristics of the study 

population. The association of physiologic measures with the measured BOLD signal was found to be 

partly dependent on cardiometabolic risk factors. Given the fact that systemic variation in blood 

pressure and dilatation/constriction of blood vessels are altered in individuals with cardiometabolic 

risk factors, it is important to be cautious in the interpretation of changes in the measured neurogenic 

BOLD signal. These changes may either be due to systemic circulatory or cerebrovascular effects, the 

coupling between the vascular and neuronal activity or a combination of systemic and cerebral effects. 

The current study suggests that in order to obtain a more native signal of the spontaneous neuronal 

fluctuations  (extracranial) blood pressure variations could be taken into account. Lastly, the direct 

influences of cardiac and respiratory motion are mainly recognizable in the higher frequencies (>100 

mHz), and therefore possibly less influential for the resting-state interval. 

Strengths and limitations 
Strengths of this study are the large sample size, the population-based design, and the extensive 

phenotyping, which gave us the oppurtunity to investigate a variety of systemic physiological signals 

relevant for the selected frequency subbands. In this way, we could show that the association between 

cognitive performance and the wavelet energy of subband 3 (31.2-62.5 mHz) was independent of 

cardiometabolic risk factors. Furthermore, the large number of rs-fMRI scans were semi-automatically 

processed blinded to participant characteristics, which ensures an objective analysis. There are also 

some limitations. First, the rs-fMRI scan protocol used in this study was designed for the large 

population-based Maastricht Study, and not for this very specific type of analysis. Therefore, a 
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commonly used repetition time of 2,000 ms was chosen. However, ideally, to filter out cardiac and 

respiratory signals, scans with a shorter repetition time (and thus higher sampling frequency) would 

have been optimal. Furthermore, we did not acquire the physiological signals simultaneously with the 

fMRI acquisition. Finally, the reported associations between the fMRI signal components, 

physiological measures, and the cardiometabolic risk factors should not be interpreted in terms of 

formal causal relations of biological processes. 

Conclusion  
We found that both neuronal and systemic non-neuronal physiological measures are associated with 

frequency specific subbands of the measured dynamic fMRI signal. Most importantly, the subband 

analysis showed an association of cognitive performance as well as blood pressure variations with the 

signal of the subband 3 with the frequency range 31.2-62.5 mHz, which is usually thought to reflect 

the signal of spontaneous neuronal fluctuations. These observations can be explained on the one hand 

by the intrinsic coupling between neuronal activity and the required vasoconstrictive/vasodilatory 

actions for the alterations in blood flow, and on the other hand by the influence of systemic blood 

pressure variations that also occur in the cerebral circulation. Though strong associations of primary 

cardiac and respiratory measures with the energy of high frequency subbands (>125 mHz) were 

obtained, they did not influence the energy of subbands in the interval (10-100 mHz) relevant for 

neuronal processes. Finally, not all associations between physiological signals and subband energies 

were independent of cardiometabolic risk factors, consistent with what was expected. Our findings 

highlight the strong intertwining of neuronal and cardiometabolic activity, and emphasize the 

importance of a proper selection of the resting-state frequency range. Therefore, cautiousness is 

advised for the interpretation fMRI signal changes as pure neuronal signals, especially in the presence 

of cardiometabolic risk factors. 
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