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ABSTRACT  

Cancer research has long relied on non-silent mutations. Yet, it has become overwhelmingly 

clear that silent mutations can affect gene expression and cancer cell fitness. One fundamental 

mechanism that apparently silent mutations can severely disrupt is alternative splicing. Here we 

introduce Oncosplice, a tool that scores mutations based on models of proteomes generated using 

aberrant splicing predictions. Oncosplice leverages a highly accurate neural network that predicts 

splice sites within arbitrary mRNA sequences, a greedy transcript constructor that considers 

alternate arrangements of splicing blueprints, and an algorithm that grades the functional 

divergence between proteins based on evolutionary conservation. By applying this tool to 12M 

somatic mutations we identify 8K deleterious variants that are significantly depleted within the 

healthy population; we demonstrate the tool’s ability to identify clinically validated pathogenic 

variants with a positive predictive value of 94%; we show strong enrichment of predicted 

deleterious mutations across pan-cancer drivers. We also achieve improved patient survival 

estimation using a proposed set of novel cancer-involved genes. Ultimately, this pipeline enables 

accelerated insight-gathering of sequence-specific consequences for a class of understudied 

mutations and provides an efficient way of filtering through massive variant datasets – 

functionalities with immediate experimental and clinical applications.  
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INTRODUCTION 

Advancements in sequencing technology have made extensive collections of mutations and 

genomic information available1–4. These datasets include millions of novel mutations that cannot 

all be experimentally studied due to time and cost constraints. Thus, most investigations that 

characterize functional variants focus on non-silent, non-synonymous mutations5,6. This heuristic 

effectively narrows the search space yet neglects thousands of apparently silent mutations with 

measurable and potentially more severe consequences. Instead of directly altering coding 

nucleotides, silent and apparently silent mutations act on regulatory gene expression processes6–

10; they can exist within introns and untranslated regions, or within coding sequences (CDS)3–11, 

and they hold significant predictive power in cancer classification and prognosis11. Among the 

regulatory mechanisms that they can hijack is splicing9,12–25.  

mRNA splicing is a co-transcriptional modification step that transforms one pre-mRNA 

sequence into multiple transcripts through alternative splicing (AS). The most crucial cis-

elements needed for proper splicing are the intron’s 5′ (donor – GU motif) and 3′ (acceptor – AG 

motif) junctions. There are also hundreds if not thousands of sequence determinants far within 

and beyond the intron that are more difficult to characterize and play roles of varying importance 

in deciding which GU/AG dinucleotides serve as functioning splice sites26. Ultimately, this gives 

cancerous apparently silent mutations countless targets through which they can disrupt healthy 

gene expression.  

Numerous examples illustrate the impact of aberrant splicing in cancer15,27–29.  One estimate 

claims that between 15% and 50% of human disease mutations can result in splicing 
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dysregulation24. It was found that 68% of tumor samples contained at least one aberrant splicing-

derived neoepitope while only 30% contained neoepitopes derived from somatic single-

nucleotide variants30. Exons 4, 6, and 9 of TP53 contain functional hotspots for intron retention-

caused inactivation by SNVs, and mutations causing such effects are visible in lung squamous 

cell carcinoma31. The Warburg effect exercised by some tumors depends upon a shift in 

expression from adult-observed pyruvate kinase isoforms to embryonic-observed splicing 

patterns15,31–33. Even tumor drug resistance is linked to splicing, as shown with a vemurafenib-

resistant isoform of BRAF that is lacking exons 4-823,34.  

Due to the clear relevance of splicing in cancer and other disease phenotypes, several 

pathogenicity predictors related to splicing have been published. These include tools such as 

CADD35, MMSplice36, TraP37, IntSplice238, RegSNPs-Intron39, RegSNPs-Splicing40, and S-

CAP41; these models typically employ machine learning (ML), use training procedures to 

classify deleterious mutations based on a priori knowledge of pathogenicity, provide limited 

mechanistic insight, and are constrained to specific mutation types and regions. These tools can 

help identify likely pathogenic mutations but offer limited information related to the functional 

characteristics and splicing events that make their detected mutations deleterious.  

To computationally elucidate mutations’ effects through missplicing, we propose Oncosplice. 

This pipeline predicts aberrant splicing events, generates variant transcriptome annotations, 

constructs resultant proteomes, and provides a measure of pathogenicity based on estimated 

functional divergence measurements between reference and aberrant proteins. We demonstrate 

that the tool captures multiple meaningful signals in a large set of somatic, unannotated 

mutations obtained from The Cancer Genome Atlas (TCGA) Program, can outperform other 
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splicing-related pathogenicity predictors on ClinVar variants, and improves patient survival 

estimation. 
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RESULTS  

1. Approximately 1.3% of all somatic mutations in cancer patients may cause aberrant 

splicing  

We analyzed 12,250,236 unique somatic mutations across 9,874 genes from 8,362 patients with 

any of 19 cancer types accessed from and curated by TCGA. We found that 159,458 variants 

result in at least one predicted missplicing event. Specifically, these mutations induced 51,066 

missed acceptors, 43,924 missed donors, 40,844 discovered acceptors, and 26,463 unique 

discovered donors. 64,368 mutations resulted in two or more missplicing events. Moreover, 

8,179 missplicing mutations receive Oncosplice scores ≥ 2,000 (top 5th percentile), a threshold 

representing variants with especially deleterious changes to the proteome. We refer to these 

variants as predicted deleterious mutations. We estimate that at least 1.3% of somatic variants in 

tumors result in some missplicing.  

 

The most easily identifiable missplicing mutations are those that alter core splicing motifs, and, 

as can be seen in Figure 2A, splice site mutations account for 62,047 or 38.9% of all predicted 

missplicing mutations. Meanwhile, of all 65,171 splice site mutations analyzed, 3,124 were not 

detected to cause missplicing. They are likely missed since many splice sites are used 

alternatively; as non-constitutive junction usage is correlated with lower SpliceAI probabilities26, 

the deletion of such splice sites would be characterized by changes in SpliceAI probability that 

are smaller than the detection threshold used. We can see where splice site-deleting deleterious 

SNVs reside relative to their deleted junctions in Figure 2F, and among acceptor-deleting 

mutations, 55% exist at the splice site they delete. However, among donor-deleting variants, only 

33% reside at the splice site they delete, 26.8% are missense mutations one nucleotide into the 
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exon from the deleted donor, and 22.7% reside more than 7 nucleotides upstream of the site; 

while selection of splice site mutations as deleterious is significant (p value: 0.018, 0.006 for 

acceptors and donors respectively), there are several interesting mutations outside the focus of 

splice junctions. Therefore, understanding splice site mutations alone does not adequately 

represent the space of meaningful missplicing mutations. 

 

Splice region mutations (within 3-8 bases of the intron or within 1-3 bases of the exon) and non-

silent coding variants also account for 67,068 missplicing variants. Of those, 36,030 are missense 

mutations (16% of predicted missplicing mutations), as seen in Figure 2A, demonstrating how 

the most widely examined class of mutations may have secondary consequences related to 

splicing beyond their conspicuous and distracting amino acid exchanges. 8,556 nonsense 

mutations (5% of missplicing mutations), which generate early termination codons, also result in 

missplicing which possibly neutralizes their otherwise truncating effects via partial or full exon 

skipping and intron retention. For example, one identified insertion mutation induces an early 

stop codon but also contains a cryptic donor site within the context of the inserted sequence. The 

cryptic donor relegates the stop codon to a novel intronic region and preserves the rest of the 

protein while only deleting a segment of 2 amino acids. This mutation affects six patients with 

thyroid cancer and is not seen in the general population.   

 

Interestingly, 8,417 intronic mutations were found to delete at least one splice site, while 16,776 

intronic mutations were found to generate at least one cryptic splice site. Detection fidelity 

decays for deeper intronic variants when using whole exome sequencing (WES), and this class is 

likely underrepresented in this study. Still, intronic variants accounted for 13.54% of missplicing 
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variants and 673 (8.2%) of deleterious variants, further highlighting the functional value of 

understanding intronic mutations in disease. Finally, silent exonic variants, which are very easily 

overlooked, accounted for 5,479 missplicing mutations and 109 predicted deleterious variants.  

 

2. Predicted misspliced transcripts agree with isoforms causally linked to mutations in 

RNAseq-based studies 

Several computational investigations have estimated the causal relation between somatic SNVs 

and missplicing events such as cryptic splice junction creation, exon skipping, and intron 

retention. This can be done by isolating genes with single mutations and detecting aberrantly 

spliced reads via RNAseq. In these investigations, thousands of mutations were connected to 

specific splicing outcomes using allele-specific or ratio-based splicing analysis31,42 or junction 

allele fractions (JAF)43.  

 

First, we processed 1,152 mutations that were reported by MiSplice43 to induce novel intronic 

splice junctions. After lifting the novel splice sites to the hg38 genome build, we checked these 

cryptic splice junctions to those predicted computationally with Oncosplice. Out of 1,152 

variants, 109 mutations were not predicted to cause missplicing. The remaining 1,043 (90.54%) 

mutations were found to cause a cryptic splice site at a SpliceAI threshold of 0.25, and the 

MiSplice-identified position was always less than 3 nucleotides from the computationally 

predicted site. Of those, 723 variants caused a single cryptic acceptor while 313 caused a single 

cryptic donor, and 7 variants caused both a cryptic donor and acceptor together. Furthermore, 

each mutation had JAF describing the proportion of reads mapped to a relevant transcript region 

that expressed the cryptic splice junction. These splice junction JAFs significantly correlated 
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with computationally predicted probabilities, as can be seen in Figure 3A-B. This finding 

reinforces the utility of SpliceAI probabilities as proxies for splice site penetrance.  

 

Next, we compared the results of allele-specific splicing analysis on RNAseq data – which 

identified events including exon skipping (ES), intron retention (IR), partial exon skipping 

(PES), and partial intron retention (PIR) – to the transcript isoforms estimated and constructed by 

Oncosplice. Specifically, we analyzed 761 mutations identified through ratio-based splicing 

analysis31, 219 mutations identified through allele-specific association31, and 267 close intronic, 

459 splice site, 286 exonic, and 228 deep intronic variants identified using a combination of 

read-ratios and allele specificity42. Of these mutations processed, we retained for analysis those 

that were predicted to induce a missplicing event at a detection threshold of 0.25. Since 

Oncosplice predicts multiple isoforms, for each variant we recorded whether Oncosplice 

predicted the event detected in RNAseq. As summarized in Figure 3C, in 11 of 20 categories, 

Oncosplice identified more than 70% of the isoforms observed. Events induced by splice site 

mutations are most effectively reconstructed, in large part due to the increased prediction fidelity 

that SpliceAI provides closer to splice junctions. This is significant, considering Oncosplice 

produces these estimates fully computationally. Splice site usage and RNAseq data are highly 

dependent on factors such as source tissue type, making it likely that many other isoforms 

predicted with Oncosplice exist and were simply not visible in these RNAseq experiments.  

 

To understand the events detected by Oncosplice more tangibly, we explore two relevant and 

documented case studies. First, we consider MET, which encodes a receptor protein kinase and 

is a well-known cancer driver. MET is represented in the TCGA dataset by 2,062 unique 
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mutations. Of those, 34 mutations (1.65%) are predicted to result in missplicing, while only one 

is scored as pathogenic by Oncosplice: chr7:116739948A>T. This variant is predicted to destroy 

the canonical acceptor of the 10th intron and partially destroy the canonical donor of the 11th 

intron in MET’s primary transcript. Oncosplice’s predicted outcome of this event is exon 11 

skipping, which otherwise preserves the protein but deletes 73 amino acids that map to a TIG 

functional domain. Interestingly, this mutation affects 11 patients, 10 of whom belong to the 

GBM (glioblastoma multiforme) cohort. This variant is classified as likely benign in ClinVar and 

COSMIC, and is associated with renal cell carcinoma, but we found no experimental data or 

functional evidence describing this mutation’s effects, indicating it has likely not yet been 

studied. Another set of 14 unique mutations in the vicinity of MET’s 14th intron (a known 

hotspot for exon skipping variants) is predicted to delete the nearby donor site and ultimately 

result in full or partial exon skipping leading to a loss-of-function event. These mutations did not 

meet the established Oncosplice threshold for pathogenicity. Out of 15 patients affected by these 

mutations, 10 belong to the LUAD (lung adenocarcinoma) cohort, a pathology that is well-linked 

to MET exon 14 skipping44. We also processed a KRAS variant known to be involved in 

Osimertinib-resistant lung cancer: chr12:25227343G>T. This mutation causes an amino acid 

substitution with gain-of-function effects through activation of ERK1/2 activation and RAS-

GTP44. Yet, this same mutation was experimentally found to induce a cryptic splice site which 

causes a frameshift and protein truncation wherein the c terminus of the resulting proteins was 

minimally detectable using antibodies44. This event is captured quickly and effectively by 

Oncosplice. The cryptic splice donor is highly penetrant (SpliceAI Delta: +0.744) and the protein 

truncating event is constructed and predicted as the primary isoform with a score of 1,154. 
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Similarly, Oncosplice detected 33 missplicing mutations out of 202 unique variants surrounding 

exon 4 of TP53 – another known hotspot – that resulted in partial or full exon skipping.   

 

3. Predicted deleterious missplicing mutations are significantly depleted within the 

general population 

We used VEP to annotate all SNVs and deletions with combined population allele frequency 

(AF) data from the 1000 Genome Project3 and gnomAD45. Frequencies associated with these 

TCGA mutations vary significantly; some are de novo (they are not previously studied or seen in 

either of these auxiliary sets), while 2.49% of somatic SNVs are observed as the primary allele in 

the general population (somatic variants are alleles that differ in tumor samples relative to 

healthy cells from a single cancer patient so, while rare, a patient’s alternate allele can be 

predominant in the general population). We expect that some mutations found within the general 

population can be deleterious46 and that a vast proportion of variants found in cancer patients are 

passengers rather than drivers, though typically deleterious and benign variants have lower and 

higher AFs, respectively. Among all somatic mutations studied, 2.69M variants are found at non-

zero AFs in gnomAD. These variants are diverse across all descriptors.  

 

First, we tested the depletion of variants occurring in the healthy population within the 

missplicing and predicted deleterious subsets of variants, a concept illustrated in Figure 3D. Of 

the 144,652 missplicing variants with AFs, only 8,402 are seen in the healthy population 

(permutation test mean: 33,440, permutation p-value: < 0.001, hypergeometric p-value: < 2.3E-

308, Chi-square p-value: < 2.3E-308) indicating that missplicing mutations are more frequent in 

pathologies than in the healthy population. Of the 7,223 deleterious missplicing mutations with 
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AFs, only 271 are seen in the general population (permutation test mean: 420, permutation p-

value: < 0.001, hypergeometric p-value: 2.57E-16, Chi-square p-value: 6.37E-14), a strong 

depletion calculated against the missplicing mutation set which implies that Oncosplice scores 

contribute significant additional information past predicting the occurrence of aberrant splicing. 

Missplicing variants not seen in the general population receive more pathogenic scores than 

healthy-observed missplicing mutations (difference: 132, permutation random mean: -0.002, p-

value: < .0001, Wilcoxon Rank Sum: 8.66E-83). As seen in Figure 3E, there is also a significant 

negative correlation between gnomAD AFs and mean Oncosplice scores. Since we expect that 

missplicing mutations in the healthy population would generally have less severe disease-related 

effects, this further suggests that Oncosplice scores accurately convey the nature of a variant’s 

functional consequences.  

 

4. Oncosplice outperforms alternative splicing-related pathogenicity predictors and 

provides actionable insights 

Our next aims are to measure the predictive value that Oncosplice’s functional divergence 

algorithm provides in terms of capturing deleterious changes to proteins, benchmark Oncosplice 

scores using other pathogenicity predictors, and establish a threshold that can be used to define 

deleterious mutations from Oncosplice scores. To this end, we download 1,475,305 mutations 

from the ClinVar dataset to analyze the significance of Oncosplice’s pathogenicity predictions 

against clinically validated pathogenicity associations47–49. Of those, 398,489 mutations 

overlapped our processed TCGA variants. We graded all these variants using Oncosplice’s 

functional divergence algorithm, including those that do not result in predicted missplicing. As 

can be seen in Figure 4B, 8.81% of these variants are labeled as pathogenic or likely pathogenic 
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while approximately 48.5% are benign or likely benign. The rest have conflicting interpretations 

of pathogenicity or lack sufficient clinical evidence to assign a label. 10,833 ClinVar mutations 

result in predicted missplicing. 54.0% of this pool has evidence of pathogenicity while 6.64% are 

benign (permutation p-value: < 0.001); predicted missplicing variants obtain a positive predictive 

value (PPV) for pathogenicity of 89%.  

 

Many other splicing-related pathogenicity predictors have been published. These tools typically 

leverage machine learning strategies, train directly on pathogenicity classifications (often from 

ClinVar, information Oncosplice infers without training) to predict consequences based on a priori 

knowledge of pathogenicity, provide limited to no mechanistic insight, and are often constrained 

to specific mutation types (synonymous SNVs, missense SNVs) and regions (intronic, splice site, 

splice region)35–41. A tabular description of these tools is available in Figure 4E. We compare the 

results from Oncosplice as an end-to-end pathogenicity predictor to results obtained from 

RegSNPs-Splicing, Reg-SNPs-Intron, S-CAP, TraP, MMSplice, and IntSplice2. We also compare 

against CADD even though it is not a splicing-specific model that uses hundreds of other features 

relating to motifs, conservation estimates, and evolutionary mechanisms; it also uses features 

generated with SpliceAI and MMSplice. We scored or obtained pre-computed sets of mutations 

from all alternate models. We find CADD and Oncosplice scores share the greatest correlation, yet 

several models are not highly correlated to each other, as shown in Figure 4A, indicating some 

orthogonality in splicing-related predictions.  

 

First, we calculated PPVs for each tool at incremented percentiles to understand prediction 

quality at different scores. As seen in Figure 4C, only MMSplice, TraP, and CADD reach levels 
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as high as Oncosplice. We show results for Oncosplice scores when masking out variants that 

aren’t predicted to cause missplicing (isolating predictions for missplicing variants) as well as for 

all mutations together (to understand the scoring algorithm’s capture of functional changes). It is 

interesting to note that the functional divergence score outperforms most tools and even provides 

a larger search space with an equally high PPV as CADD at weaker percentiles. For a clear view 

of these predictions, we show the clinical significance labels associated with the variants in the 

top-scoring 95th percentiles for each model. As shown in Figure 4B, no other predictor identifies 

pathogenic mutations at ratios as high as with Oncosplice both for missplicing mutations and all 

mutations. We also compare the performance of all tools using receiver operating characteristic 

(ROC) curves, despite their being a less suitable metric for the task of splicing-related 

pathogenicity identification due to the expectedly large quantity of falsely labeled benign 

mutations (which are simply mutations that are pathogenic through mechanisms unrelated to 

splicing); this is done to test the significance of Oncosplice’s scoring algorithm and its 

independence of splicing. It is a fair measure as all other predictors used supervised machine 

learning algorithms to directly predict ClinVar classifications and, therefore, have seen the data 

we measure performance against. In Figure 4D, the ROC performance of Oncosplice’s protein 

comparison algorithm approaches that of CADD, a state-of-the-art tool in pathogenicity 

prediction. Notably, Oncosplice and CADD can achieve top predictive performance without 

training on pathogenicity at all. 

 

Because we do not use a training scheme in constructing Oncosplice, we can also guarantee that 

its performance is not affected by data circularity that may affect ML-leveraging models38. 

Additionally, Oncosplice provides insight into missplicing mutations that are ORF-bound and 
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non-synonymous, which no other model handles. These mutations may have distracting and 

direct effects on the amino acid composition but may have secondary effects on splicing. 

Similarly, recent investigations point to UTR variants' role in missplicing. Several of the 

mutations Oncosplice identifies as deleterious reside in the 5’UTR region, and because 

Oncosplice provides estimated transcriptomic and proteomic libraries we can use this tool to 

study their effects further. Pathogenicity prediction is well established, and most methods offer 

high prediction performance, yet methodology now becomes increasingly important as we try to 

computationally understand the mechanisms through which variants are harmful; Oncosplice is 

the only model considered that offers so much in this regard. Ultimately, we show Oncosplice 

performs competitively in the task of pathogenicity prediction without the central reliance on ML 

as a score generator, without prior knowledge of pathogenicity, without the need for a training or 

optimization scheme, and without variant constraints, all as a secondary task to proteome 

estimation.  

 

When looking at the set of variants that meet an Oncosplice threshold of 690, or in the top 95th 

percentile for missplicing variants, we find 542 missplicing variants, 65.5% of which are 

pathogenic and 4.5% of which are benign (PPV value: 93.17%, permutation p-value: < 0.001). 

Therefore, we establish the top 5% of missplicing variants by Oncosplice score among arbitrary 

sets of analyzed mutations as those most likely to be pathogenic. Among the phenotypes 

associated with the pathogenic mutations identified with Oncosplice are several cancer-related 

terms, including hereditary cancer predisposition syndrome, familial cancer of breasts, breast-

ovarian cancer, gastric cancer, and colorectal cancer.  
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5. Genes overrepresented with deleterious mutations are enriched with known cancer 

drivers and reveal novel biomarkers that improve patient survival estimates 

There are several published lists of classical cancer drivers50–58. These lists are often based on 

non-silent mutations, can be developed either through computational or experimental 

investigations, and ultimately enable targeting for treatment development. If Oncosplice 

functions properly, it can be reasoned that many of those genes overrepresented with deleterious 

missplicing mutation are known cancer drivers due to direct selection within a cancer cohort. To 

this end, we search for deleterious mutation-overrepresented genes using hypergeometric 

probability.  

 

To identify significant genes while controlling for selection bias related to total mutation volume, 

we group genes into 5 distinct bins within each of which selected genes and background genes 

have insignificantly different mutation volumes, and then rank genes in each bin by the ratio of 

deleterious missplicing mutations to all unique mutations. We then scan through the top 

percentiles across all bins and assess the identification of drivers. More details on this procedure 

are available in the Methods. As can be seen in Figure 5A, there is a strong enrichment of pan-

cancer driver genes, which reportedly play underlying roles in multiple pathologies. We also test 

for the enrichment of known TSGs and oncogenes separately using the same procedure and role-

specific gene sets. It is seen in Figure 5A that TSGs are enriched more strongly than oncogenes, 

indicating either that missplicing is a more typical precursor in TSG inactivation than in 

oncogene gain-of-function, or that the scoring strategy implemented better captures behaviors 

typical of TSG knockout. Quantifying novel protein functionalities that cause an upregulation of 

activity or change of functionality is a much more difficult task. We also perform enrichment of 
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pan-cancer drivers in sets of genes that are overrepresented in cancer-specific variant subsets. 

Moreover, we compare the enrichment of these identified drivers against drivers identified while 

checking for overrepresentation in the missplicing subset. As can be seen in Figure 5B, cancer 

drivers are much more strongly enriched among genes overrepresented by deleterious mutations 

compared to genes overrepresented by missplicing mutations, reinforcing the added value of 

Oncosplice on top of SpliceAI.  

 

Future cancer treatments and research will be directed toward genes with strong evidence of a 

potential role in pathogenic mechanisms. Since it has been shown that Oncosplice can capture 

the enrichment of mutations within canonical cancer drivers and TSGs, we can also use this 

approach to suggest novel cancer genes by looking at those with the highest enrichment of 

deleterious missplicing events. Therefore, we propose a novel set of potential cancer drivers. 

This list includes 490 terms included in the top 5% of overrepresented genes among deleterious 

missplicing mutations. Out of these proposed genes, 49 are canonical pan-cancer drivers. Figure 

6 describes the enrichment of the proposed genes. In essence, these genes can be considered 

vulnerable to damaging forms of missplicing events and have a role in cancer mechanisms. As 

seen in Figure 7A, the proposed cancer drivers come from the same distribution of all genes in 

terms of the number of mutations they contain, ensuring selection was not dependent on trivial 

factors. Many relevant cancer-related molecular functions defined by gene ontology gene sets are 

strongly enriched within this gene set, including GTPase activity (adjusted hypergeometric p-

value: 6.6E-13), G-protein activity (adjusted hypergeometric p-value: 7.4E-6), and helicase 

activity (adjusted hypergeometric p-value: 1.9E-3)59. An unabridged compilation of GO-enriched 

terms is available in the Supplementary Table 5.  
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To understand the immediate clinical utility of Oncosplice predictions and the proposed cancer 

drivers, we analyzed survival estimates by identifying patients with deleterious mutations across 

any of 375 known cancer genes against patients without missplicing mutations in those same 

cancer genes. We ran similar trials where the known cancer genes were replaced with equally 

sized sets of genes pulled from the novel 490 proposed genes. As can be seen in Figure 7C-D, 

the segmentation of Kaplan Meier survival estimates for patients using the modified gene list is 

significantly stronger. This indicates that the novel genes may provide immediate clinical 

prognostic value. Moreover, we conducted trials to control for the mutation volume across 

patients by segmenting cases into two groups: those with at least one gene affected by a 

deleterious mutation and those with no genes affected by deleterious mutations. We then 

compare the survival probabilities for groups of patients such that there is no significant 

difference between the mutation volume distributions for the affected and unaffected patients in 

the subset. In many instances, there was no meaningful difference in survival, though when a 

significant difference was observed, it was the patients afflicted by deleterious mutations that had 

more pessimistic outcomes. Figure 7E shows the survival probabilities for 546 patients with 

between 3,667 and 4,116 total mutations. Patients with deleterious mutations have significantly 

worse survival odds than those without. Moreover, Figure 7F shows that the patient groups do 

not have significantly different mutation volumes and that the segmentation is not reliant on 

trivial factors. In general, data related to survival is troublesome to work with due to missing 

values and worsening longitudinal record consistency. Regardless, these results indicate that 

Oncosplice identifies mutations with relation to patient outcomes. Several other analyses in 
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which deleterious missplicing mutations indicate poor survival are available in Supplementary 

Figure 1.  

 

DISCUSSION 

In this work, we have evaluated the signals captured by Oncosplice, a novel pipeline with a 

highlighted utility in characterizing cancerous apparently silent missplicing mutations. We have 

found that the model identifies many promising patterns in the underlying data across millions of 

mutations, not the least of which is competitive pathogenicity prediction based solely on 

estimated aberrant proteomes. Pathogenicity prediction is well-established, and most methods 

offer high prediction performance, yet the methodology now becomes increasingly important as 

we try to computationally understand the mechanisms through which variants are deleterious; 

Oncosplice is the only model considered that offers so much in this regard. We have also shown 

that while SpliceAI is an important submodule of the tool, the novelties of our approach add 

significant predictive power. While Oncosplice offers a simple way of identifying mutations 

based on a measurement of the difference between healthy and aberrant proteomes, we make 

minimal assumptions about these scores’ precise biological significance. Despite the unclear 

downstream impact of these grades, there is strong evidence suggesting a large portion of 

missplicing events result in early termination codons and truncated proteins due to frameshifts 

introduced by intron retention, exon skipping, or alternative splice site usage; extreme cases of 

this profile are clearly involved in oncogenesis or disease progression.  

  

When studying cancer at the genomic level, we must remember that data is generally noisy and 

biased. Annotations to reference transcripts and proteins are hardly conclusive and are frequently 
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updated. New splice sites are also regularly discovered. The inherent tendency of WES to cover 

CDSs while limiting the availability of untranslated regions or deep intronic sequences also 

means we are missing many mutations60. 98% of the genome is technically invisible through 

WES, though practically, this is complicated by unpredictable off-target effects. Ultimately, the 

more true mutations available across all gene regions, the better we can characterize possible 

splicing aberrations. To improve the analysis enabled by Oncosplice, an emphasis must be 

placed on sequencing non-exonic regions, and increased attention must be given to genes beyond 

those marked as cancer drivers, which typically have disproportionately larger quantities of 

verified mutations due to the knowledge of their importance. Still, the statistical power provided 

by the massive number of mutations analyzed allows generalized insight into aberrant splicing in 

cancer. Moreover, the splicing-modified gene annotations Oncosplice provides allow for rapid 

analysis of focused case studies. 

 

Oncosplice’s ability to predict and reconstruct splicing events that are observed in RNAseq is 

valuable since this data is expensive and time-consuming to develop. It is hardly trivial to 

estimate transcriptomes computationally and while there is much room for improvement in terms 

of predicting true transcripts, those Oncosplice generates clearly have biological significance. 

Further comparison between predicted aberrant transcripts and those observed in RNAseq will 

allow for fine-tuning of the model and may lead to isoform likelihood estimates that describe the 

actual usage of noncanonical splice sites more accurately.  

 

In evaluating this proof of concept, we were also forced to control the testing environment and 

focus the scope of the investigation on mutations in isolation. Considering the relative success, 
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one highly relevant future direction is to model genes with all simultaneously observed 

mutations together, as their cumulative effects may change splicing patterns further. This is a 

task no splicing-related pathogenicity predictor is capable of. Additionally, this tool is not 

limited to cancer and can be applied to any disease or phenotype cohort, including those 

representing rare or neurodegenerative diseases. Since Oncosplice is unrestricted to any genomic 

region, we can also explore mutations that no other splicing-related pathogenicity predictor is yet 

able to address – UTR mutations and nonsilent variants with dual effects. Ultimately, the 

proposed pipeline serves as a convincing proof of concept showcasing the utility that modeling 

splicing (and other gene expression mechanisms in general) can have in studying a new 

dimension of cancer. Splicing is only one of several critical gene expression processes highly 

impacted by known and unknown apparently silent mutations. Expanding our understanding of 

how cancer initiates and progresses will require a pivot in attention toward this class of variants 

that have thus far eluded aggressive research.   

 

MATERIALS & METHODS 

Identifying missplicing mutations with SpliceAI 

First, per-nucleotide splicing probabilities are predicted using SpliceAI, a deep residual neural 

network that confidently predicts splice site probabilities for each residue in a sequence based on 

10,000 nucleotides of flanking context26. The model is capable of splice-site identification with 

95% top-k accuracy on arbitrary pre-mRNAs26. SpliceAI is used within Oncosplice to identify 

changes to splice site usage. Whether a mutation causes aberrant splicing can be estimated using 

SpliceAI in tandem with reference genome annotations by tracking the changes in SpliceAI 

probabilities that nucleotides and splicing junctions near a mutation experience. The four 
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primary events Oncosplice detects are missed and discovered acceptors and donor sites. For a 

mutation of interest, if the donor or acceptor probability of a nearby site decreases by 0.5 or more 

and that nucleotide is an annotated splice site, Oncosplice interprets a missed splice site. If the 

donor or acceptor probability of a site increases by more than 0.5 and the nucleotide is not an 

annotated splice site, Oncosplice interprets a cryptic or discovered splice site. While it is possible 

for SpliceAI to detect splice sites that have not been formally annotated, they are not considered 

as there would be no way to assess the quality of these predictions. Higher-order events – 

including skipped exons and retained intron – are inferred from predicted transcripts. 

  

We look for changes in splicing within a segment 2,500 nucleotides upstream to 2,500 

nucleotides downstream of each mutation site. Each mutation is analyzed in isolation, regardless 

of other mutations that may be concurrently observed in a gene for a given patient. We use 0.5 as 

a threshold for missplicing detection, a parameter that was validated based on RNAseq data and 

is the recommended SpliceAI parameter26.  We justify using SpliceAI over alternatives such as 

MaxEntScan in the Supplementary Discussion.   

 

Modeling Variant Transcriptomes and Proteomes 

Each mutated gene considered by Oncosplice has reference genome annotations describing the 

blueprints for constructing its mature mRNA transcripts and proteins. This data is freely 

accessible from the Ensembl annotation database. Because SpliceAI does not consider the 

schema of all transcripts and donor-acceptor configurations that are biologically observed in each 

gene, it is not obvious how splicing events can be incorporated into transcripts. Consider, for 

instance, the simple case of two adjacent cryptic donors. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 7, 2023. ; https://doi.org/10.1101/2023.12.05.23299582doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.05.23299582
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 
 
 

 

 

We use a greedy algorithm that operates on minimal assumptions to handle these situations. This 

method takes as input a pool of splice sites – reference and predicted alike – that reside within a 

pre-mRNA transcript’s boundaries. The algorithm follows four rules: 

 

1. Introduce and connect adjected nodes sequentially from 5’ to 3’.  

2. Splice sites of the same type cannot be connected. 

3. Adjacent splice sites of the same type are equal but exclusive options for connection 

continuation.  

4. Generated splice paths must start with a donor and end with an acceptor. 

 

These guidelines provide an effective construction strategy that is not dependent on unavailable 

experimental knowledge. The algorithm is not forced to create a single speculative isoform but 

can generate multiple possible mRNA transcript options, as illustrated in Figure 1A. In fact, due 

to the dynamic and stochastic nature of splice site usage, multiple variant transcripts may be 

produced, albeit at varying levels. This algorithm handles splice sites at the transcript level and 

does not require information regarding mutually exclusive exons, cassette exons, or documented 

alternative boundary usage. Once a mature mRNA transcript is defined, translation is modeled 

computationally. We consider additional influences from mRNA decay mechanisms61,62 and 

alternative translation initiation site (TIS) usage63.  Depending on the placement of a discovered 

site, the span of the transcript may be increased several times over, creating a very long, 

nonsensical exon. The biological likelihood of such an event occurring is quite low, and even in 

the case that it was generated by the splicing process, there would likely be some decay 
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mechanisms that would suppress the lifespan of such abnormal transcripts. Transcript isoforms 

with novel exons longer than 2,000 nucleotides are discarded to account for this. This threshold 

was selected based on the knowledge that less than 1% of reference human-observed exons 

exceed 2,000 nucleotides in length.  

 

After obtaining variant mature transcripts, the last major gene expression step is translation. Each 

transcript in the dataset contains one canonical translation initiation site (TIS) and one canonical 

translation termination site (TTS). Translating predicted mRNAs may seem trivial. However, 

untranslated region (UTR) boundaries available in reference transcript annotations may not be 

usable in variant transcripts. If a reference TIS is disturbed, then a new site is predicted using 

TITER63, a deep learning model that predicts optimal TISs based on sequence context, as well as 

Kozak context score and RNA folding energy. In the case that the reference termination codon is 

interrupted, or an upstream frameshift renders it unusable, a new TTS is defined by finding the 

first in-frame canonical termination codon.  

 

Quantifying the functional divergence of aberrant proteins 

Global pairwise alignment provides a good proxy for measuring the similarity between a healthy 

and predicted variant protein, such as those predicted by Oncosplice. In the context of this 

investigation, a proper alignment must be selected carefully. In aberrant splicing, blocks of 

nucleotides are apparently inserted or deleted. We consider this by increasing the cost of opening 

gaps in the pairwise alignment while minimizing the cost of extending gaps. Biopython’s 

pairwise alignment functions are used; we assign one point to aligned amino acids, deduct one 

point from mismatched amino acids, deduct three points upon gap opening, and deduct no points 
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when extending gaps64. Moreover, gaps aligned to the end of the reference protein are not 

penalized so that truncating events are more visible to the algorithm. These parameters prevent 

ad-hoc alignments with multiple illogical gaps and mismatches that serve only to maximize the 

alignment score.  

 

While effective, pairwise alignment is naïve since different amino acids in a protein are of 

varying importance. Certain residues play crucial roles in protein structure or function, and 

others are involved in neither. One way to ascertain the important domains in a protein is via 

evolutionary conservation. Such an approach uses the entropy observed for each amino acid 

residue in aligned homologous proteins to estimate variability and infer functionality. We use 

Rate4Site – a probabilistic evolutionary conservation score calculator that uses Bayesian 

estimation to obtain relative mutation rates for each position in a multiple sequence alignment 

(MSA) of homologous proteins based on phylogenic trees65. We used Rate4Site to process amino 

acid MSA files for 100 organisms aligned to reference human proteins obtained from UCSC’s 

database66, resulting in a database of per-amino acid evolutionary rates for 109,951 human 

proteins.  

 

As seen in Figure 1C, using pairwise alignment, we can determine the exact positions that are 

deleted, inserted, and mismatched between the reference and variant protein. Using conservation 

scores, we can more accurately weigh each position's importance in the reference sequence. In 

calculating the magnitude of the functional divergence between two proteins, we consider 𝑊 as a 

typical protein domain length. This value was obtained by taking the median of all functional 

domains across available proteins accessible through InterPro67 – 75 amino acids. 𝐷𝑤 is defined 
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as the length of a detected deletion and 𝐼𝑤 is defined as the length of a detected insertion. 

𝐶(𝑖, 𝑊) is the mean conservation score of a window of length 𝑊 surrounding a position 𝑖 in the 

protein. 

  

𝐶(𝑖, 𝑊) =
1

𝑊
⋅ ∑ 𝐶(𝑗)

𝑖+
𝑊
2

𝑖−
𝑊
2

 

( 1 ) 

𝐶∗(𝑊) denotes the maximal mean conservation score of a window of length 𝑊 in the analyzed 

protein. We let 𝑐(𝑖, 𝑊) denote 
𝐶(𝑖,𝑊)

𝐶∗(𝑊)
  , the normalized and smoothed conservation vector. 

 

𝐶∗(𝑊) = 𝑚𝑎𝑥
𝑖

(𝐶(𝑖, 𝑊)) 

 

𝑐(𝑖, 𝑊) =
𝐶(𝑖, 𝑊)

𝐶∗(𝑊)
 

( 2 ) 

Next, we calculate the value of the deletion-derived functional loss for the deletion of 𝐷𝑤 at 

position 𝑖 as: 

 

𝑆𝑑𝑒𝑙(𝑖) = 𝑚𝑎𝑥 (1,
𝐷𝑤

𝑊
) ⋅ 𝑐(𝑖, 𝑊) 

( 3 ) 

Then we obtain the insertion-derived functional change for the deletion of 𝑖𝑊 at position 𝑖 as: 
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𝑆𝑖𝑛𝑠(𝑖) = 𝑚𝑎𝑥 (1,
𝐼𝑤

𝑊
) ⋅ 𝑐(𝑖, 𝑊) 

( 4 ) 

The total penalty for all the deletions and insertions observed in a particular protein is computed 

using a sliding window of size 𝑊 conflating across deletion and insertion penalties as follows: 

 

𝑆(𝑖) = ∑ 𝑆𝑑𝑒𝑙(𝑗) + 

𝑖+
𝑊
2

𝑖−
𝑊
2

𝑆𝑖𝑛𝑠(𝑗) 

( 5 ) 

The final score for the respective protein comparison is taken as the maximum value of the 

penalty vector.  

𝑆𝑝𝑎𝑡ℎ𝑜𝑔𝑒𝑛𝑖𝑐𝑖𝑡𝑦 =  max
𝑖

𝑆(𝑖) 

( 6 ) 

This algorithm is applied to each transcript isoform for a mutated gene. To aggregate these 

scores into one concise variant descriptor, we implement a weakest-link strategy that obtains the 

average score for each transcript of a mutated gene across all its predicted isoforms and then 

assigns the highest score across those transcripts to the mutation. This strategy, shown in Figure 

1D, describes a mutation by the most dysfunctional protein it generates.   

 

Benchmarking Oncosplice using allele frequencies 

To quantify the significance of the overlap between the missplicing mutation dataset and the null 

dataset, we first find the overlap, or the number of mutations in the missplicing subset that also 

occur in the null mutation set: 𝑁𝑚𝑖𝑠𝑠𝑝𝑙𝑖𝑐𝑖𝑛𝑔
𝑛𝑢𝑙𝑙 . The total number of true missplicing mutations in our 
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variant dataset is denoted as 𝑁𝑚𝑖𝑠𝑠𝑝𝑙𝑖𝑐𝑖𝑛𝑔. The pool of all unique mutations observed in the full 

variant dataset is 𝑆𝑢𝑛𝑖𝑞𝑢𝑒. For permutation testing, we perform 1,000 iterations of the following 

procedure: 

 

1. Create a randomized subset of mutations by selecting 𝑁𝑚𝑖𝑠𝑠𝑝𝑙𝑖𝑐𝑖𝑛𝑔 mutations at 

random from 𝑆𝑢𝑛𝑖𝑞𝑢𝑒. This is our fake, randomized subset of missplicing mutations.  

2. For iteration i, 𝑁𝑚𝑖𝑠𝑠𝑝𝑙𝑖𝑐𝑖𝑛𝑔
𝑓𝑎𝑘𝑒 (𝑖) is the quantity of mutations in the randomized 

missplicing mutation set that also occur in the null dataset. 

 

The number of missplicing mutations we expect to occur in the null dataset by chance is the 

mean of all 𝑁𝑚𝑖𝑠𝑠𝑝𝑙𝑖𝑐𝑖𝑛𝑔
𝑓𝑎𝑘𝑒

 values. The p value of the true 𝑁𝑚𝑖𝑠𝑠𝑝𝑙𝑖𝑐𝑖𝑛𝑔
𝑛𝑢𝑙𝑙  quantity is the number of 

iterations for which 𝑁𝑚𝑖𝑠𝑠𝑝𝑙𝑖𝑐𝑖𝑛𝑔
𝑓𝑎𝑘𝑒

 is equal or smaller than 𝑁𝑚𝑖𝑠𝑠𝑝𝑙𝑖𝑐𝑖𝑛𝑔
𝑛𝑢𝑙𝑙 , divided by the number of 

conducted iterations. 

 

The hypergeometric probability of obtaining an equal or smaller overlap in null observed 

mutations within the missplicing subset is computed using the following equation: 

 

𝑃ℎ𝑦𝑝𝑒𝑟𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 =  ∑
(𝑁𝑛𝑢𝑙𝑙

𝑖
) ⋅ (

𝑁𝑢𝑛𝑖𝑞𝑢𝑒−𝑁𝑛𝑢𝑙𝑙

𝑁𝑢𝑛𝑖𝑞𝑢𝑒−𝑁𝑛𝑢𝑙𝑙−𝑖
)

( 𝑁𝑢𝑛𝑖𝑞𝑢𝑒

𝑁𝑚𝑖𝑠𝑠𝑝𝑙𝑖𝑐𝑖𝑛𝑔
)

𝑁𝑚𝑖𝑠𝑠𝑝𝑙𝑖𝑐𝑖𝑛𝑔
𝑛𝑢𝑙𝑙

𝑖=0

 

 ( 7 ) 

 

𝑁𝑚𝑖𝑠𝑠𝑝𝑙𝑖𝑐𝑖𝑛𝑔
𝑛𝑢𝑙𝑙 = number of mutations that are mis-splicing and in null set 
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𝑁𝑛𝑢𝑙𝑙 = number of null occurring mutations 

𝑁𝑢𝑛𝑖𝑞𝑢𝑒 = number of unique mutations in whole dataset 

𝑁𝑚𝑖𝑠𝑠𝑝𝑙𝑖𝑐𝑖𝑛𝑔 = number of mis-splicing mutation 

 

We perform similar permutation and hypergeometric tests when gauging the significance of null 

depletion in the deleterious missplicing subset, only differing in the set from which we sample 

our random mutations (we test the depletion relative to the missplicing subset in order to isolate 

the novel components without SpliceAI). Similar procedures are conducted several times across 

this investigation. 

 

Benchmarking Oncosplice using clinical pathogenicity  

ClinVar data are parsed and binned into a set containing variant-identifying features 

(chromosome, mutation position, reference allele, and variant allele) along with their clinical 

significance and associated disease ontology terms. Clinical significance terms can take on 

several values though we retain only those with the following tags: “pathogenic”, “likely 

pathogenic”, “pathogenic/likely pathogenic”, “benign”, “likely benign”, “benign/likely benign”, 

“uncertain significance”, and “conflicting interpretations”. For simplicity, all values are grouped 

into “pathogenic” (terms 1-3), “benign” (terms 4-6), or “ambiguous” (terms 7-8) categories.  

 

A joining operation is conducted between our unique cancer mutations and the ClinVar data on 

the variant-identifying features. We now have available three distinct ClinVar associated variant 

sets: unique mutations, missplicing mutations, and deleterious missplicing mutations. For each 

subset we determine the number of benign, ambiguous, and pathogenic variants. We also 
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calculate the ratio of pathogenic to benign mutations. We measure the success of each subset by 

the magnitude of this metric.  

 

The significance associated with the pathogenic-to-benign ratio in the missplicing subset is 

defined by permutation testing; we randomize equally sized subsets of variants by sampling from 

all unique ClinVar-overlapping mutations and check how many randomizations result in a 

pathogenic-to-benign ratio that is equal or greater. The statistical significance associated with the 

deleterious missplicing subset is calculated similarly by sampling from the missplicing subset in 

order to isolate the power of Onco-splice novelties from SpliceAI’s predictive power.  

 

Comparing Oncosplice to other pathogenicity predictors 

We compare the performance of Onco-splice against seven alternative pathogenicity predictors, 

six of which are splicing-specific. To this end, we obtained pre-computed sets of mutations for 

CADD, S-CAP, TraP, and IntSplice2. MMSplice, RegSNPs-Intron, and RegSNPs-Splicing did 

not have sets of pre-computed mutations available, so inference was performed on relevant 

subsets of the ClinVar dataset. The ROC for each tool was obtained using Python’s sklearn 

library. The positive predictive value (PPV) for sets of mutations was obtained by taking all the 

true pathogenic variants among deleterious classifications and dividing that value by the size of 

the set of deleterious classifications.  Correlations between any two tools were obtained by 

taking the subset of intersecting variants between those tools and finding the Pearson correlation 

between the scores of those variants. For tools that grade orthogonal variants, we see that there is 

no correlation value. For example, RegSNPs-Intron and RegSNPs-Splicing cannot grade the 

same variants; hence, no correlation is obtained.  
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Measuring driver gene enrichment 

To first obtain a baseline estimate as to whether cancer genes contain higher ratios of deleterious 

mutations compared to other genes, we calculate the significance of the average ratio of 

deleterious mutations to unique mutations across cancer genes and compared that value to non-

cancer gene ratios.  

 

We employ permutation testing by performing the following procedure 10,000 times: 

1. For each gene 𝑔, calculate the rate of deleterious mutations as 𝑅𝑔
𝑑𝑒𝑙 =

𝑁𝑔
𝑑𝑒𝑙

𝑁𝑔
𝑡𝑜𝑡 where 𝑁𝑔

𝑑𝑒𝑙is 

the number of deleterious mutations in 𝑔 and 𝑁𝑔
𝑡𝑜𝑡 is the number of total mutations in 𝑔. 

2. Obtain the mean of all 𝑅𝑔
𝑑𝑒𝑙for known cancer genes and call this 𝑅𝑐𝑎𝑛𝑐𝑒𝑟

𝑑𝑒𝑙  

3. Randomize a group of genes of size 𝑁𝑐𝑎𝑛𝑐𝑒𝑟 where 𝑁𝑐𝑎𝑛𝑐𝑒𝑟 is the number of known 

cancer genes used in Step 2.  

4. Obtain the mean of the randomized gene group’s 𝑅𝑔
𝑑𝑒𝑙 in iteration 𝑖, called 𝑅𝑟𝑎𝑛𝑑𝑜𝑚

𝑑𝑒𝑙 (𝑖).  

 

After performing these steps, determine how often these randomizations result in 𝑅𝑟𝑎𝑛𝑑𝑜𝑚
𝑑𝑒𝑙  that is 

greater than or equal to 𝑅𝑐𝑎𝑛𝑐𝑒𝑟
𝑑𝑒𝑙  by calculating: 

 

𝑝 𝑣𝑎𝑙 =
(∑ 𝑅𝑟𝑎𝑛𝑑𝑜𝑚

𝑑𝑒𝑙 (𝑖) ≥ 𝑅𝑐𝑎𝑛𝑐𝑒𝑟
𝑑𝑒𝑙𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

𝑖 )

𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
 

( 8 ) 

Our objective is to validate Onco-splice’s ability to identify cancer-driving mutations by showing 

that genes disproportionately overrepresented among deleterious missplicing mutations are 
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enriched with known cancer genes. Yet, known cancer genes have more mutations than non-

cancer genes and this bias must be addressed. Therefore, to find genes that are overrepresented 

by deleterious mutations while mitigating mutation volume bias, we design the following 

procedure which operates on any arbitrary pool of mutations.  

 

1. We determine the number of unique mutations for each gene – 𝑁𝑢𝑛𝑖𝑞𝑢𝑒. Based on this 

count, we divide genes into 5 quantile groups having similar mutation volumes.  

2. For each gene, we determine the count of missplicing (𝑁𝑚𝑖𝑠) and deleterious missplicing 

(𝑁𝑑𝑒𝑙) mutations and further develop these values into missplicing and deleterious 

missplicing mutation ratios as: 

𝑅𝑚𝑖𝑠 =
𝑁𝑚𝑖𝑠

𝑁𝑢𝑛𝑖𝑞𝑢𝑒
      𝑅𝑑𝑒𝑙 =

𝑁𝑑𝑒𝑙

𝑁𝑢𝑛𝑖𝑞𝑢𝑒
 

 ( 9 ) 

3. Within each quantile group, we sort genes based on one of the target ratios. To study, say, 

the top 5% of all overrepresented genes in the deleterious subset (as is done to identify 

the proposed set of novel cancer drivers), we select the top 5% of genes from each 

quantile based on 𝑅𝑑𝑒𝑙.  

 

Once a set of overrepresented genes is obtained, the level of cancer gene enrichment can be 

obtained using permutation and hypergeometric testing as described previously. We follow a 

similar strategy when finding cancer-specific enrichment by performing this procedure on the 

sets of mutations found in each cancer type. We track the genes that are overrepresented in 

cancer type and then count the total projects that each gene is found to be overrepresented in.  
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Estimating patient survival 

To show the clinical value of the proposed cancer genes and Onco-splice we generate two sets of 

patients: one defined as the affected case set and one as the unaffected case set. In one survival 

analysis, the affected case set is determined by finding all the patients in the cohort who have one 

deleterious mutation in a defined set of cancer genes. The unaffected case set is determined by 

finding all the patients in the cohort who have no missplicing mutations in the same defined set 

of cancer genes. The set of cancer genes in the control experiment is defined as 375 known pan-

cancer genes. The set of cancer genes in the variable experiment is defined as a random set of 

375 genes from the proposed cancer gene set (we sample 375 genes randomly to ensure that 

there is no bias related to the size of the gene set. For each experiment (or set of affected and 

unaffected patients), we calculate the survival rates and the significance of their differences for 

10- or 12-year survival using Kaplan Meier survival estimation. This analysis is robust to 

changes in the size of the gene set and the length of survival time. The significance of the test set 

is always stronger than the control set, regardless of the subset of 375 proposed cancer genes 

selected.  

 

In a second survival analysis, we aim to validate identified deleterious mutations while 

controlling for bias related to mutation volume in the selection of patients for each group. To this 

end, we generate two sets of patients: those who contain at least one gene affected by a 

deleterious mutation and those who are not affected by a deleterious mutation. These two sets of 

groups have a very strong difference in the distribution of mutation volumes, with the affected 

patients containing many more mutations than the unaffected case group. To understand if the 
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signal persists when eliminating the mutation volume bias, we look at subsets of patients that 

contain no significant difference in their distributions of mutation volumes by binning based on 

percentiles.   

 

Identifying Gene Ontology (GO) terms 

Gene enrichment analysis was performed using g:Profiler59, a web tool that performs 

hypergeometric enrichment analysis for a target gene set against a background gene set using a 

database of GO terms and their associated sets of terms. The primary list of genes was defined as 

the set of proposed novel cancer drivers. The background set is defined as all the genes with 

mutations that were studied. After running the analysis, g:Profiler provides adjusted p values for 

each identified term. This tool is updated with the latest GO terms and sets.  
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Figure Legends 

 

 
Figure 1 Description of the Oncosplice pipeline. A. A diagram illustrating the greedy approach 

to constructing transcript isoforms given only a pool of splice sites with predicted missplicing 

such as missed or cryptic junctions. B. Overview of the steps taken in the pipeline to obtain a 

concise quantitative description of the functional loss that a mutation induces through predicted 

missplicing, and the transcriptome annotations; general run-time per mutation consumes 7.73 

seconds when running on an Intel Xeon Platinum 9294 CPU, with 40% of the time spent running 

SpliceAI inference and 60% spent predicting, generating, and grading variant transcriptomes. C. 

Comparing two proteins using conservation scores per amino acid using an algorithm that 

captures the loss due to insertions and deletions. D. Mature mRNA sequences are translated by 

selecting TISs with more optimal context based on TITER, Kozak context, and folding in the 
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case that TISs are interrupted by mutations or by splicing.  E. A view of the collected data for 

each transcript’s isoforms, and the aggregation of functional loss scores at the transcript and gene 

level.  
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Figure 2 Reference dataset statistics.  A. The proportion of all mutations per variant 

classification that are retained in the missplicing and deleterious missplicing subsets reveals that 

predicted deleterious mutations come from all regions, and more significantly from splice sites. 

B. A plot describing the distribution of variants per gene per patient shows that typically genes 

have between 1 and 2 mutations. C. A breakdown of the cancer types analyzed and how many 

patients each project includes, with BRCA being the largest in terms of cohort size; the number 

of cancer-specific deleterious mutations in each cancer type is also displayed (cancer-specific 

mutations are variants found only among patients with one cancer type). D. General dataset 

statistics across multiple variant descriptors show that the data processed with Oncosplice is 

highly diverse. E. The proportion of all unique mutations in each variant type category in the 

TCGA set available and in the predicted deleterious subset indicates that most somatic mutations 

analyzed are SNVs, while insertions seem to proportionally induce more splice site alterations as 

is indicated by their higher composition among deleterious variants. F. Most of the deleterious 

mutations that induce a missed acceptor fall on or around the splice site motif, as do most of the 

mutations that induce a missed donor, though there are several variants that disrupt both 

junctions from hundreds of nucleotides away.  
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Figure 3 Benchmarking Oncosplice predictions using RNAseq and allele frequencies. A-B. 

Plotting the junction allele fraction for cryptic splice sites induced by variants against their 

SpliceAI probability reveals a significant correlation between the latter and discovered splice 

junction penetrance (as measured using RNAseq and MiSplice); we used a SpliceAI detection 

threshold of 0.25 and any site with a change in penetrance below this is not detected. Moreover, 

we only observed the positions for which the lifted hg38 coordinate of the MiSplice-identified 

cryptic splice site was within 3 nucleotides of the SpliceAI-identified cryptic splice site. C. We 
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calculate the discovery ratio as the proportion of splicing events identified in two separate 

RNAseq-based computational investigations that were properly predicted by Oncosplice. D. A 

depletion of variants occurring in the general population among predicted deleterious mutations 

indicates the added insight Oncosplice generates on top of simply identifying missplicing 

mutations with SpliceAI. E. We analyzed the mean Oncosplice score of variants binned based on 

gnomAD MAF into similarly sized sets (~1.4E4 mutations per bin) and reveal a significant 

correlation. F. The mean gnomAD MAF is significantly lower among predicted deleterious 

variants than among missplicing variants, and significantly lower among missplicing variants 

than among non-missplicing variants. G. A splice site mutation in MET’s 10th intron results in a 

skipped exon and deletes a large part of the protein’s functional domain. 
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Figure 4 Comparing pathogenicity predictor performances in splicing. A. A heatmap of each 

tool’s Spearman correlation to all other predictors; tools such as CADD exhibit high correlation 

to several tools – especially Oncosplice – while others such as S-CAP and Oncosplice are less 

correlated indicating they may capture orthogonal information.  B. Ratio of pathogenic, benign, 

and ambiguous variants found in ClinVar for subsets of top 5% of predicted deleterious 
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mutations using eight pathogenicity predictors’ scores. C. The positive predictive values for 

incremental percentiles for each of 8 tools’ scores indicate that Oncosplice functional divergence 

can generate meaningful and narrowed search spaces on parr to TraP and MMSplice. D. ROC 

analysis of all the tools indicates that on the task of pathogenicity performance, the scoring 

algorithm employed by Oncosplice is effective, with CADD being the only model to outperform 

in terms of AUC.  E. A tabular description of each alternative pathogenicity predictor, along with 

any notable constraints and training scheme employed. F. Confusion matrices for showing the 

predictions using binary thresholds based on Oncosplice scores for all mutations and missplicing 

mutations, as well as the prediction quality for considering missplicing mutations as pathogenic 

alone. 

 

 
Figure 5 Assessing pan-cancer driver enrichment among deleterious mutations. A. The 

hypergeometric p-value of the enrichment of known pan-cancer, TSG, and oncogene drivers 

across the top ranks of overrepresented genes shows that pan-cancer genes are better captured by 

Oncosplice scores. B. The hypergeometric p-value of the enrichment of known pan-cancer across 

genes that are overrepresented in missplicing and deleterious missplicing mutations across 

varying numbers of cancer types.  

 
Figure 6 Characteristics of proposed cancer drivers. The list of proposed cancer-related drivers 

is enriched for known cancer genes. 
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Figure 7 Clinical utility of deleterious missplicing mutations. A. The distributions of mutations 

per gene for the sets of all genes analyzed, canonical cancer drivers, and the proposed cancer 

genes show that the proposed genes come from the same distribution as the background gene set 

rather than having been selected based on trivial characteristics such as mutation volume. B. 

While the mutation volume for the proposed cancer drivers is not significantly different from all 

genes analyzed, the pathogenicity of the mutations found in these genes is significantly higher. 

C. Kaplan Meier survival probabilities for groups of patients defined using mutations within 

proposed cancer genes. D. Kaplan Meier survival probabilities for groups of patients defined 

using mutations within canonical cancer genes. E. Kaplan Meier survival probabilities for two 
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groups of patients with similar mutation volumes segmented based on having or not having 

deleterious mutations. F. Distribution of mutation volumes for patients in groups identified in E 

shows that the patients do not have significantly different numbers of mutations.  
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