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Abstract 1 

Background 2 

Many analytic decisions are made when analyzing an observational dataset, such as 3 

how to define an exposure or which covariates to include and how to configure them. 4 

Modelling the distribution of results for many analytic decisions may illuminate how 5 

instrumental decisions are on conclusions in nutrition epidemiology. 6 

Objective 7 

We explored how associations between self-reported dietary intake and a health 8 

outcome depend on different analytical decisions, using self-reported beef intake from a 9 

food frequency questionnaire and incident coronary heart disease as a case study. 10 

Design 11 

We used REasons for Geographic and Racial Differences in Stroke (REGARDS) data, 12 

and various selected covariates and their configurations from published literature to 13 

recapitulate common models used to assess associations between meat intake and 14 

health outcomes. We designed three model sets: in the first and second sets (self-15 

reported beef intake modeled as continuous and quintile-defined, respectively), we 16 

randomly sampled 1,000,000 model specifications informed by choices used in the 17 

published literature, all sharing a consistent covariate base set. The third model set 18 

directly emulated existing covariate combinations. 19 

Results 20 
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Few models (<1%) were statistically significant at p<0.05. More hazard ratio (HR) point 21 

estimates were >1 when beef was polychotomized via quintiles (95% of models) vs. 22 

continuous intake (79% of models). When covariates related to race or multivitamin use 23 

were included in models, HRs tended to be shifted towards the null with similar 24 

confidence interval widths compared to when they were not included. Models emulating 25 

existing published associations were all above HR of 1. 26 

Conclusions 27 

We quantitatively illustrated the impact that analytical decisions can have on HR 28 

distribution of nutrition-related exposure/outcome associations. For our case study, 29 

exposure configuration resulted in substantially different HR distributions, with inclusion 30 

or exclusion of some covariates being associated with higher or lower HRs. 31 

 32 

This project was registered at OSF: https://doi.org/10.17605/OSF.IO/UE457  33 

Keywords: analytic flexibility; multiverse; epidemiology; beef; coronary heart disease 34 

  35 
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Introduction 36 

‘Shaking the Ladder’ is a phrase borrowed 37 

from Sam Savage who wrote: “The last thing 38 

you do before climbing on a ladder to paint 39 

the side of your house is to give it a good 40 

shake. By bombarding it with random 41 

physical forces, you simulate how stable the 42 

ladder will be when you climb on it. You can 43 

then adjust it accordingly so as to minimize 44 

the risk that it falls down with you on it.” (2) 45 

Following Savage’s analogy, just as we 46 

would shake a ladder to test its stability 47 

before trusting it, we must rigorously evaluate 48 

how our analytical choices influence our 49 

conclusions in nutritional epidemiology. 50 

Investigating the associations of foods and 51 

nutrients with chronic disease endpoints is a 52 

challenging line of scientific inquiry. One of these challenges is the many reasonable 53 

decisions that investigators face when defining their exposure and outcome, and 54 

numerous analytical decisions such as how to configure the exposure, covariates, and 55 

model selections. For instance, covariates could be included or excluded, or defined as 56 

continuous, categorical, ordinal, or other ways (what we will refer to as covariate 57 

configuration). With each decision point, the combinations of defensible analytical 58 

Glossary of terms 

Covariate inclusion: Whether a 

covariate is included in a model.  

Covariate configuration: How 

covariates are defined in a model; for 

example, as continuous, categorical, 

original, etc. 

Model specification: All choices that 

go into a model, such as covariate 

inclusion, covariate configuration, and 

model type. 

Quantile: Cut points that divide a 

distribution into intervals with equal 

likelihood. 

Quintile: A quantile that divides a 

distribution into five intervals (i.e., 

there are four quintiles that make five 

intervals). 

Effect size: “a quantitative reflection 

of the magnitude of some 

phenomenon that is used for the 

purpose of addressing a question of 

interest.” (1) 
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decisions increase exponentially. Several studies demonstrated that if different sets of 59 

investigators were asked to analyze the same data set, their analysis approaches can 60 

vary substantially, sometimes resulting in vastly different conclusions (3-8). 61 

Flexibility in analytical choices has been described as a garden of forking paths (9), or 62 

investigator degrees of freedom (10), among other names. Different analysis 63 

approaches may be responsible for some inconsistency in results in nutritional 64 

epidemiology research, although this has not been explored as extensively as other 65 

fields. Given that a set of decisions represents one of many reasonable potential 66 

approaches to analyzing the data, one analysis may lead to a conclusion that is 67 

represented by a minority of those approaches. Many foods and nutrients have both 68 

positive and negative associations with disease outcomes in the published literature 69 

(11), thus it is paramount to explore the degree to which this may be explained by 70 

analysis strategies. 71 

One option to explore this phenomenon is to run many models with defensible analytic 72 

choices and report the distribution of results. This ‘multiverse’-style (12, 13) approach 73 

(similar to “specification curve analysis” (14), or “vibration of effects” (15)) can be used 74 

to explore the distribution of association estimates between an exposure and an 75 

outcome for many analytical paths, in turn allowing us to assess what influence the 76 

analytical decisions have on estimating the associations. The concept has been applied 77 

to several nutritional questions (15, 16) that focus on covariate inclusion and exclusion; 78 

however, additional choices such as the configuration of the nutritional exposure and 79 

covariates add additional flexibility. There is poor reporting in nutritional epidemiology 80 

for how covariate selection and configuration are decided (17), which raises questions 81 
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about whether these methods are being systematically employed or if the selection and 82 

configuration processes are somewhat arbitrary and other choices also defensible.  83 

Our objective was to evaluate to what degree associations between self-reported 84 

nutritional intake and health outcomes depend on different analytical decisions (e.g., 85 

exposure configuration, covariate inclusion and configuration, subject inclusion and 86 

exclusion criteria). Because covariate inclusion and configuration are not well reported 87 

in nutrition epidemiology, we aimed to evaluate the consequences of not carefully 88 

considering these. In contrast to previous approaches (e.g., specification curve, 89 

multiverse analysis), in which models are selected based on theory to explore the 90 

robustness of results for a particular research question, we randomly selected models 91 

based on existing published variable choices, and therefore the research questions 92 

represented by each model may change in subtle ways. We specifically use the case 93 

study of beef consumption and incident coronary heart disease (CHD). The beef-CHD 94 

relation is particularly appropriate for this approach because there is significant 95 

disagreement in the literature on the relationship between red meat intake and CHD 96 

(18-27); thus, analytical flexibility may be one explanation for this disagreement. Our 97 

analysis serves as a case study for how this approach can test the influence of 98 

analytical decisions on diet-outcome associations in nutrition specifically, and in 99 

observational association studies generally. 100 

 101 

Subjects and Methods 102 

Study Sample 103 
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 We used data from the REasons for Geographic and Racial Differences in Stroke 104 

(REGARDS) prospective cohort (28). REGARDS is a national, longitudinal cohort of 105 

30,239 Black and White women and men ages 45 and older, who were recruited from 106 

2003-2007. After excluding 56 participants with data anomalies, we utilized data from 107 

30,183 participants. Participants’ CHD status was last updated in 2018. Participants 108 

with a history of CHD or cancer at baseline were excluded from our analyses. Figure 1 109 

and Supplemental Table 2 describe additional participant exclusions, such as those 110 

based on self-reported energy intake cutoffs (varying methods to exclude 111 

extreme/implausible data). 112 

Exposure, Outcome, and Covariate Selection Process 113 

 Self-reported beef consumption was originally estimated via the Block 98 food 114 

frequency questionnaire (FFQ). We defined beef intake using gram weight estimates 115 

(using the variables ‘hamburger’, ‘beefroast’ ‘beeffattrimmed’, ‘beeffatnotrim’ based on 116 

the FFQ items “hamburgers, cheeseburgers, meat loaf, at home or in a restaurant” and 117 

“beef steaks”). Values in the hamburger variable were multiplied by a proportion of 0.59 118 

to refine the estimation of beef content. This proportion was determined from the Food 119 

and Nutrient Database for Dietary Studies 2017-2018 data (29). The outcome of 120 

incident CHD was defined as myocardial infarction event or acute CHD death. 121 

 Our inclusion of covariates and their configurations was informed by prior 122 

literature, allowing us to indirectly crowdsource expert choices in covariate inclusion and 123 

configuration that had also passed peer review. The prior analyses were identified from 124 

1) a previous systematic review of prospective cohort studies of red meat and CVD 125 

outcomes (30), 2) a selection of observational studies assessing red meat or beef and 126 
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CVD outcomes known to coauthors or identified through literature searching, and 3) 127 

previous analyses using the REGARDS dataset by a coauthor (JS). All references are 128 

listed in documents attached to our preregistration: 129 

https://doi.org/10.17605/OSF.IO/UE457. Covariates and their configurations identified 130 

from studies not using the REGARDS data were matched as closely as possible to 131 

REGARDS variables. History of chronic obstructive pulmonary disease and sleep 132 

outcomes in the literature sampling did not have a close match within the REGARDS 133 

dataset and were not included in models. Configurations included categorical, 134 

continuous, or ordinal via quintiles or sex-specific median. A complete list of included 135 

variables, their configurations, as well as their corresponding REGARDS variable 136 

names, and variables unable to be matched to REGARDS variables, is available in the 137 

following repository: https://doi.org/10.17605/OSF.IO/SY96K.  138 

 Three sets of models were developed. First, we created a random sample of 139 

1,000,000 model combinations, based on variables that appear in previous literature, 140 

where self-reported beef intake was defined as either continuous (model set 1) or in 141 

quintile defined categories (model set 2). Then, we emulated prior literature to try to 142 

reproduce existing variable choice combinations exactly as they have been previously 143 

published as specific, expert, pre-specified analytical examples in the REGARDS 144 

dataset (model set 3); these models were reproduced in the REGARDS set (i.e., they 145 

were not randomly sampled). In the first and second model set, age, sex, energy intake, 146 

size of census tract, and REGARDS region were included in all models, consistent with 147 

the prior literature; thus, we decided it would be unreasonable that expert analysts 148 

would define a model without them. For food- and nutrient-related variables, their 149 
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inclusion was randomly varied in models, but when included we used the same 150 

configuration for all such included variables because we did not believe analysts would 151 

consider models reasonable if configurations differed among these variables. For other 152 

variables, we randomly varied their inclusion and configuration. Direct comparisons 153 

between hazard ratios (HRs) derived from continuous versus quantile exposure 154 

definitions can be difficult; therefore, we decided to express continuous beef intake per 155 

50g unit increase, which was comparable to the difference in mean reported intakes in 156 

the highest 20% versus lowest 20% of participants (50.01g). Covariate inclusion and 157 

configurations for these models are described in the ’statistical analysis and 158 

visualization’ section. Table 1 summarizes which variables were kept constant in all 159 

models, and which were varied. 160 

Statistical Analysis and Visualization 161 

Cox proportional hazards regression models were used, with time from enrollment as 162 

the underlying time metric within each of the analyses, censoring date of CHD 163 

diagnosis, date of death, date of withdrawal, or date of last follow-up. Sample size was 164 

allowed to vary on a complete-case basis depending on which covariates were included 165 

in each model. Missing data were not imputed. This approach was consistent with the 166 

sampled prior literature. The proportion of missingness for any given covariate is shown 167 

in Supplemental Table 3. The total number of possible combinations of covariates and 168 

configurations was far beyond computational capabilities (see results); thus, model sets 169 

1 and 2 randomly sampled 1,000,000 variable combinations total (500,436 for beef as 170 

continuous and 499,564 for beef as quintiles). Covariates were first sampled for 171 

inclusion or exclusion; if the covariate was included, the configurations were equally 172 
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sampled. For example, in the case of a food variable such as dairy intake, it had a 50% 173 

chance of being included; if it was included, then each of the three configurations 174 

(continuous, sex-specific median or quintile) were sampled with equal probability (1 out 175 

of 3 conditional on being included). For model set 3, all models were computed as 176 

closely as possible to emulate the prior literature (see https://osf.io/sy96k for the 177 

models). 178 

Code to run the analysis was developed and tested on a small scale and later 179 

parallelized for the full 1,000,000 model runs. Briefly, code consisted of a ‘for loop’ 180 

iterating through model runs and saving the model output. After a loop dependency 181 

analysis, we found that the loop did not depend on any other “outside” data including 182 

dependencies between models, so we parallelized by modifying the code to run small 183 

subsets of the total models (500 models) and run this code multiple times so that these 184 

subsets were run in parallel. Lastly, all subsets of results were combined using a Linux 185 

shell script. Parallel code was run on Carbonate, which is Indiana University's large-186 

memory computer cluster, designed to support data-intensive computing (31).  187 

Model results were visualized and further analyzed in different ways. Distribution of 188 

HRs, z-scores and p-values were plotted in histograms. To visualize the impact of 189 

variable configuration on beef hazard ratios we created specification curve plots. In the 190 

first step, we did this for the beef variable itself, but then also for all other covariates 191 

included in the model. Specification curve plots show the distribution of the estimates of 192 

the association of interest and the impact of analytic decisions on those estimates by 193 

showing the distribution of estimates for each analytic decision. Bivariate scatterplots of 194 

the beef HRs and its 95% confidence interval (CI) widths were created to show possible 195 
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relationships of variable inclusion/exclusion on estimates and their precision. 196 

Additionally, to show data density, we plotted bivariate KDE curves. Model meta-197 

information such as sample size, number of covariates, and number of CHD events 198 

were plotted showing their density by significance of the beef HR. Descriptive statistics 199 

of the beef HR, its z-scores, its 95% CI, and its p-values were calculated overall and by 200 

beef configuration for model set 1 and 2 and the models from the literature. Impact of 201 

covariate configuration (including exclusion) on the beef HR was assessed in 202 

multivariate logistic regression models that adjusted for all included covariates and their 203 

configurations at the same time. Odds ratios and 95% CI are presented. Lastly, a series 204 

of two-sample Kolmogorov-Smirnov statistics (e.g., D statistics) were calculated to 205 

quantify the distance between the cumulative distributions of HR by inclusion/exclusion 206 

of covariates. Significance tests with p-values were not used for the K-S test because 207 

the samples are not independent and identically distributed. Cross-correlation 208 

coefficient and likeness measures between KDEs were calculated as defined in (32). 209 

Higher values for both indicate higher overlap between both KDEs. For all covariate 210 

specific plots, we show the results for four selected covariates in the main text; the 211 

remaining plots for all covariates can be found in supplemental materials. 212 

SAS [version 9.4] was used to prepare the dataset for analysis, R [version 4.1.1] was 213 

used on a x86 64-bit Linux cluster for the models, and R [version 4.2.3] and RStudio 214 

[version 2023.03.0] were used for analyses and to produce visualizations. 215 

Ethics 216 
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This study was approved by the Indiana University Institutional Review Board (#11227). 217 

The REGARDS study was previously approved by all associated institutional review 218 

boards (33). 219 

Power calculation 220 

We estimated that we would have sufficient power to detect most associations with HR 221 

> 1.1 with a sample size of 20,000 or lower (Supplemental Figure 1) using incident 222 

CVD from the lowest quartile of estimated red meat consumption from Zhong et al. (24) 223 

as the reference hazard. Thus, REGARDS provided a sufficiently large sample for small 224 

HRs. 225 

Inference Criteria 226 

We used p < 0.05 as a threshold of statistical significance within any given analysis, 227 

consistent with standard practice in the prior nutritional epidemiology literature. We did 228 

not correct for multiple comparisons, because each analysis represents one theoretical 229 

independent choice of many that an analyst could make. 230 

Changes after Preregistration 231 

Our project was preregistered at OSF: https://doi.org/10.17605/OSF.IO/UE457. We 232 

describe changes post-registration and our reasoning in Supplemental Table 1. 233 

Results 234 

Calculation of Model Possibilities 235 

For model sets 1 and 2, with 2 beef configurations, 7 exclusion criteria configurations 236 

based on self-reported energy intake cutoffs (Supplemental Table 2), and 34 237 
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covariates with 117 configurations, we calculated over 4.16 quadrillion total possible 238 

model combinations. Running all possible combinations would not have been feasible 239 

even with the use of parallel high-performance computing resources available to the 240 

study team. Additionally, storing, analyzing, and presenting model results would have 241 

been challenging if not impossible.  242 

Comparing results (e.g., distribution of HRs and covariate associations) from an initial 243 

test run using 10,000 models and the results shown herein of 1,000,000 models, we are 244 

not convinced that more insights will be gleaned from an even greater number of 245 

samples.  246 

Model Summaries 247 

Supplemental Table 3 shows covariates and their configurations as defined using 248 

REGARDS data, along with the number of missing values for each. Table 2 shows the 249 

mean, median, 5th to 95th percentile range, and min and max values for HRs, p-values 250 

and z-scores in model sets 1 and 2. Figure 2 shows distributions of HRs, significant 251 

HRs (with p<0.05), z-scores, and p-values by beef configuration.  252 

As shown in Figure 2 (top panel) and Table 2, the proportion of models with HR greater 253 

than 1.0 was much higher when beef intake was expressed in quintile defined 254 

categories (right, 95.2%) compared to expressed as a continuous variable (per 50g 255 

intake; left, 78.6%). Of the 9556 significant beef HRs, only 38.7% (3695) came from 256 

models using beef as a continuous variable while the other 61.3% (5861) came from the 257 

quintile models. This is further illustrated in the specification curve (Figure 3) in which 258 

HRs are ranked from lowest to highest; the vertical dashed line (in top plot) shows that 259 
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131,205 of 1,000,000 models were less than an HR of 1. The bottom plot of Figure 3 260 

shows 1) the distributions of the ranked HR with the associated exposure 261 

configurations: continuous or quintile beef intake, and 2) that the statistically significant 262 

(p < 0.05) HRs appear lower along the ranking for continuous beef intake compared to 263 

beef intake in quintile defined categories. Despite these differences, overall, very few 264 

models produced statistically significant associations in either approach (9556/1000000 265 

models=0.96% of all models), and these significant associations were associated with 266 

higher HRs (all were above 1.0). 267 

Influence of Covariates on HRs and Precision 268 

We used the same HRs that were plotted in Figures 2 and 3 to generate additional plots 269 

to highlight the influence of the covariate selection and configuration. Figure 4 shows 270 

the ranked HRs for continuous beef (left) and beef in quintile defined categories (right) 271 

by four selected covariates (race, income, education, and multivitamin use). We 272 

selected these variables as examples to highlight because their inclusion/exclusion and 273 

configuration showed a range of strong to weak influences on HRs. HRs that came from 274 

model specifications that adjusted for race or years of multivitamin use tended towards 275 

smaller HRs while HRs from models not adjusting for race tended towards higher HRs. 276 

Note that these shifts reflect the impact on the beef coefficient with inclusion or 277 

configuration of the covariate, not the coefficient for the covariate itself (e.g., the 278 

influence of a specific race or multivitamin use on the HR). For income, we observed 279 

that either not adjusting for income or adjusting for income using four categories 280 

appears to have not much impact on the size of the HR but adjusting for income as a 281 

continuous measure tended towards higher HRs at the right tail. Lastly, the covariate 282 
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education is an example where the distributions of beef HRs do not appear to differ 283 

much when adjusting or not adjusting in the analysis.  284 

We explored the results for these four covariates further in Figure 5 by plotting HRs 285 

across the x-axis and the 95% confidence interval width of the HRs across the y-axis, 286 

the latter representing precision of the estimate, for the same set of covariates. When 287 

multivitamin use (bottom right) was excluded from the beef as continuous models, HRs 288 

and confidence interval width tended to be shifted above 1 compared to inclusion, but 289 

with similar precision, whereas inclusion (i.e., adjusting for years of multivitamin use) 290 

tended to be centered around 1. The trends were similar in the quintile approach, 291 

though inclusion or exclusion models remained with densities higher than an HR of 1 292 

and less precision (i.e., wider confidence intervals) as compared to the continuous beef 293 

models. For race (top left), the results are much more diffuse for inclusion and exclusion 294 

for both continuous and quintile beef models. For income (top right), the density curves 295 

for exclusion and categorical income adjustment (labeled ‘Income_4cat’) are almost 296 

identical and on top of each other, while the curve for continuous income adjustment 297 

(labeled ‘Income’) is shifted away from the null with less precision. Lastly, for education, 298 

the density curves for inclusion vs exclusion do not show visual differences. The plots 299 

for all 34 covariates are shown in Supplemental File 1. In order to analytically assess 300 

differences in the distributions of HRs by inclusion/exclusion of covariates, we ran a 301 

series of Kolmogorov-Smirnov tests (Table 4). With the high number of different models 302 

we ran, we had large sample sizes, so these tests had high power to detect even minor 303 

differences. All beef hazard ratio distributions were significantly different when including 304 

a covariate compared to excluding a covariate. When using a Bonferroni-corrected p-305 
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value of 0.0017 (0.05/29 tests), inclusion vs exclusion of two covariates (“grains” and 306 

“monofat”) was no longer significantly associated with the HR distributions in the 307 

continuous beef configuration, while all other tests remained significant. Visually 308 

inspecting the distributions of beef HRs by configurations of covariates, we observed 309 

the largest shifts for the following covariates in the beef as quintile models: race, 310 

income, multivitamin use, history of diabetes, history of stroke, physical activity, fiber, 311 

and fruit intake (Supplemental File 3).  312 

Although overall only about 1% of the models resulted in statistically significant HRs, we 313 

tested the influence that inclusion and configuration of covariates had on the statistical 314 

significance of the HRs using separate multivariable logistic models for the two beef 315 

configurations. Supplemental Table 4 displays the results showing the proportion of 316 

significant HRs for each configuration, an odds ratio (OR) for significant HRs using one 317 

of the configurations as the reference group (in most cases: covariate exclusion), and 318 

the p-value for the OR. We observed significant associations for all covariates except 319 

education (type 3 p-value = 0.061) and history of PAD (p = 0.129), indicating that all 320 

other covariates had some influence whether the association between self-reported 321 

beef and CHD was statistically significant. Notably high ORs were found for the 322 

continuous configuration of income (OR=85.42 (95% CI: 73.05, 99.88) for continuous 323 

beef, OR=28.91 (95% CI: 26.04, 32.09) for quintile beef intake), meaning that when 324 

continuous income was included in models, there were higher odds of a significant HR 325 

for the beef-CHD association. In contrast, including the years of multivitamin use in the 326 

model resulted in far fewer significant HRs for beef (OR<0.01 (95% CI: <0.01, <0.01) for 327 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 8, 2023. ; https://doi.org/10.1101/2023.12.05.23299578doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.05.23299578
http://creativecommons.org/licenses/by/4.0/


17 
 

continuous beef, OR=0.02 (95% CI: 0.02, 0.03) for quintile beef) compared to excluding 328 

multivitamin use.  329 

Figure 6 shows pairwise density plots for the number of CHD events and sample size 330 

depending on the number of covariates in the model. Models with significant beef HR 331 

(p<0.05) show density curves in red and those not significant (p>=0.05) in black. There 332 

was a tendency that as more covariates were included in the model, the sample size 333 

was smaller. Given that we let the sample size vary depending on the complete case of 334 

the model specification, this result is expected. With higher sample sizes, the number of 335 

CHD events tended to be higher (Figure 6b), and models with significant HRs appear to 336 

have a higher number of CHD events (Figure 6b). Finally, models with significant HRs 337 

tended to have a lower number of covariates (Figure 6c). Specification curves showing 338 

the distribution of HRs are shown for all 32 covariates in Supplemental File 3 (beef as 339 

continuous) and Supplemental File 4 (beef as quintiles). 340 

Emulating existing literature 341 

To benchmark our agnostic, random sampling approach against expert-chosen models, 342 

we reproduced 20 models from the literature (see references in the preregistration). 343 

Figure 7 shows that the frequency of HRs for these models were all greater than 1.0, 344 

and, from visual inspection, tended to have higher HRs and lower precision when beef 345 

was expressed as quintiles of intake. Two of 20 models were statistically significant; 346 

both of them when beef was expressed as quintiles of intake (Table 3). Figure 8 shows 347 

the cumulative distributions of the HR from the 1,000,000 models from model sets 1 and 348 

2 combined, and the 20 models that we emulated as they appear in the existing 349 

literature. We see that the empirical cumulative distribution function (ECDF) for the 350 
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existing literature is below the one for model sets 1 and 2, which suggests that the 351 

results from the existing literature are shifted towards higher HRs overall. The strongest 352 

divergence between the two distributions (D=0.438) can be observed for HRs below the 353 

median (ECDF=0.50), with a higher concentration of HR between 1.05 and 1.10 for the 354 

results from existing literature. 355 

Discussion 356 

Many analytic choices are needed when analyzing data from observational cohort 357 

studies. Historically, it was only feasible to analyze and report a handful of models, 358 

which represent only a small fraction of possible combinations. Indeed, by identifying 359 

covariates that have been used in the literature, we calculated over four quadrillion 360 

models that could be run to test the association between self-reported beef intake and 361 

incident CHD using the REGARDS dataset. Random sampling from these showed that 362 

HRs varied around the null of 1, and few models were statistically significant. 363 

The results from our approach pose challenges to interpretation. Overall, the point 364 

estimates of the HRs were disproportionately above the null (87.9% overall; Table 2); 365 

however, a sizeable proportion of HRs remained less than the null (12.1%). 366 

Furthermore, less than 1% of individual models reached classical statistical significance 367 

thresholds of p<0.05, which is less than expected if results were derived by random 368 

chance. Yet, those that did were all in the deleterious to health direction. Also, all of the 369 

models are dependent (that is, they are based on the same underlying data), and thus 370 

benchmarking the number of statistically significant findings against traditional type I 371 

error metrics may be inappropriate. Therefore, the approach overall leaves some 372 
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ambiguity regarding the association (let alone the causal relation) between beef and 373 

CHD from these data. 374 

A qualitative inspection of our figures suggested that two variables had the greatest 375 

influence on results: years of multivitamin use and race. When each was excluded from 376 

models, HRs tended to be higher and model standard errors smaller. Multivitamin use is 377 

considered among health-related behaviors (34), and race is often considered with 378 

socioeconomic status (SES) (35). Not adjusting for these particular covariates, which 379 

indirectly capture concepts related to health consciousness and socioeconomic status, 380 

may produce more extreme results because of confounding. This raises the possibility 381 

that, even if one has an appropriate data generating process for selecting covariates to 382 

include based on a causal structure, covariate concepts may or may not be measured 383 

among different cohorts, or may be operationalized differently. For instance, SES is 384 

difficult to measure, so correlated indirect measures like race, income, and education 385 

may be used, but are still subject to unmeasured confounding. None of those measures 386 

alone fully capture SES, while adjusting for all of them results in multicollinearity; yet, 387 

choosing only one leads to measurement error and potentially high residual 388 

confounding. Thus, results may differ among models not because of any nefarious 389 

action by an epidemiologist, but because of which variables are available in a dataset 390 

and how they are operationalized or measured. 391 

Given the inherent limitations of observational study designs (36, 37), the choice of 392 

covariates significantly influences the derived results. Notably, when we emulated 393 

models from published literature on meat-heart disease associations, all HRs were 394 

above 1, suggesting that those particular covariate choices tend to produce larger HRs 395 
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than if one takes our agnostic approach. This discordance between our approach and 396 

the replications of other investigators’ models may or may not indicate the presence of 397 

publication or selection bias (38, 39) that drives the observation of published models 398 

exhibiting high effect sizes. Another possibility is that the effect size distribution from the 399 

replicated research better represents the underlying relation between beef and CHD. 400 

Without knowledge of the data-generating process, it is impossible to discern between 401 

these two scenarios or others. 402 

Hypothesized data-generating processes (and thus any hypothesized causal structure) 403 

are rarely explicitly articulated in the choice of exposures, outcomes, and covariates in 404 

published literature. This leads to a crucial oversight in causal inference. The generation 405 

of a model should ideally be based on a robust mechanistic theory that justifies why a 406 

particular variable is a confounder, mediator, or collider (13). In this context, biases like 407 

collider bias, among others, are of significant concern, particularly when adjusting for 408 

measures such as energy intake (40). The practice of adhering to norms, such as 409 

including covariates for adjustment without a well-founded theoretical basis, might not 410 

be sufficient to account for these biases. We chose our approach because we generally 411 

do not observe that published articles on food- or nutrient-disease associations explicitly 412 

include a causal model with their analysis, and thus we wanted to evaluate the potential 413 

consequences of model selection in a way that emulates the current state of the 414 

literature. Indeed, a sample of 150 nutritional epidemiology studies found that 94% did 415 

not report a priori covariate selection, and only 20% reported the selection criteria for all 416 

covariates (17). Simulations have shown that flexibility in covariate selection can 417 

increase the chance of achieving statistical significance (10, 41-44). Together, the lack 418 
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of a theoretical framework for any of our varied models raises the question of where on 419 

the HR distribution a true causal association may reside.  420 

Including more covariates tended to decrease HRs in our models; this is consistent with 421 

accounting for more confounding. Yet, adding more covariates risks misspecification 422 

that could potentially bias results toward the null; however, such misspecification could 423 

also induce spuriously inflated associations, and we intuitively (though without empirical 424 

claim) find it unlikely that additional covariates would systematically bias toward versus 425 

away from the null in our permuted models. Thus, accounting for more covariates 426 

seems to weaken the argument for a causal association between beef and CHD in 427 

these models. Regardless, our approach does not necessarily resolve unmeasured 428 

confounders that systematically bias associations in either direction. For example, in 429 

cohorts from the U.S., higher self-reported consumers of red meat are more likely to 430 

self-report being less physically active, smoking, drinking alcohol, having higher body 431 

weight, and poorer diet quality compared to those who self-report lower red meat 432 

consumption (45-47). 433 

Other studies have observed substantial variability in conclusions when different 434 

analysis strategies are used, such as asking different research teams to analyze the 435 

same data set (3, 4, 7, 8). Other methods have approached analysis strategy variability 436 

more systematically to evaluate the robustness of statistical findings to changes in 437 

model specification (specification curve analysis (14), multiverse analysis (12, 13), or 438 

vibration of effects (15)). The latter concept has been applied to nutritional questions to 439 

explore how including and excluding covariates influence the association between 440 
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alpha-tocopherol and mortality, calcium and femur density, carrots and eyesight, and 441 

vitamin D level and COVID-19 (15, 16). 442 

Our analysis is distinct from these approaches in that we varied both covariate inclusion 443 

and exclusion and covariate configuration, as well as exposure configuration. 444 

Importantly, our data generating process to select covariates was done agnostically, at 445 

random, which is not the intention of multiverse-style approaches that should carefully 446 

consider the causal structure of the research question to examine the robustness of the 447 

question to analytic decisions (13). We adapted some visualization methods developed 448 

for specification curve and vibration of effects analyses. Because we allowed our 449 

sample size to vary among models (consistent with a common complete-case approach 450 

in nutritional epidemiology), and our research question was not strictly held constant by 451 

nature of allowing model choice to vary, we chose not to compute an average p-value of 452 

all models (12), nor use a bootstrap technique (14). Future work is needed to improve 453 

quantitative interpretations when exploring many models and tease out analytic 454 

decisions that have a higher relative influence on associations.  455 

There are limitations to our work that may be resolved in future research using these 456 

methods. For one, not all variables that we identified or their configurations in the 457 

literature could be exactly matched to REGARDS variables. Additional publications 458 

identified using different search strategies may identify additional variables or 459 

configurations to include in the analyses. Likewise, not all our modeling choices can be 460 

translated to different datasets to look at the same question. Many variables, including 461 

beef as our exposure of interest, were self-reported, and it is not clear how accurately 462 

intake is captured (36). In addition, we could not identify sufficient existing literature on 463 
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beef per se and cardiovascular outcomes, so we used those on red meat more broadly, 464 

with the assumption that modeling choices would not differ. Further, two covariates 465 

used in previous literature, history of chronic obstructive pulmonary disease and sleep 466 

outcomes, did not closely match a variable in the REGARDS dataset, and therefore 467 

were missing in the distributions of results. Other modeling choices may be made by 468 

other analysts that may expand the decision tree even further and are not reflected in 469 

our analyses, such as excluding participants with a history of cancer at baseline (our 470 

rationale being that stronger associations may have been observed due to cardiotoxicity 471 

and cardiovascular deterioration in individuals with cancer); or using the ‘energy 472 

adjustment’ method (48) instead of including energy as a covariate. A particular 473 

challenge was to identify a dataset that permitted reasonable assessment of beef 474 

consumption specifically, rather than confounding the exposure of interest with other red 475 

or processed meats. Our estimation of self-reported beef from the FFQ used by 476 

REGARDS, using a proportion derived from 2017-2018 data from the Food and Nutrient 477 

Database for Dietary Studies was yet another point where various calculations may be 478 

considered reasonable and add additional model combinations, as well as the various 479 

ways to define beef such as total, unprocessed, processed, etc. (49). Although we used 480 

published literature to inform our covariable selection process, this does not necessarily 481 

mean that these covariates are those that all epidemiologists would deem as 482 

reasonable to include in models. In addition, some model combinations as randomly 483 

sampled may be less likely to be selected by epidemiologists than others, and thus our 484 

model distributions do not reflect models that would be weighted as more reasonable 485 

than others. Yet, because we included a subset of covariates in all of our models that 486 
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are commonly included in observational studies, we believe that our models are all 487 

within the possibility of what qualified analysts might use. Our permutation approach 488 

currently has limitations in how many models can be evaluated because of 489 

computational limitations. Indeed, we discovered that only a fraction of the total possible 490 

models (quadrillions) can be feasibly run with current resources. We therefore leave 491 

open future investigations to run more or targeted sampling to refine the distributions or 492 

further investigate features of the HR distribution space. Even then, we could have 493 

varied more choices in our model and increased the model space exponentially, such 494 

as using additional covariates based on different sets of literature, how beef is defined, 495 

whether certain variables should be recoded or not, whether each covariate’s chance of 496 

being excluded is the same percentage as each included configuration, and so on. 497 

Finally, each way to express a model changes the research question in subtle ways, 498 

and thus we wish to emphasize that our approach does not necessarily assess the 499 

robustness of a particular question, but rather how it may vary when expressed in 500 

different ways (13, 40). 501 

When there are not strong theory-based reasons to utilize specific statistical models for 502 

nutrition epidemiology questions, the approach we present herein may be useful to 503 

increase transparency and assess the distribution of results across many possible 504 

models. This approach may be facilitated by incorporating into standard workflows, and 505 

improving the availability of datasets used for nutrition epidemiology research questions 506 

(36). 507 
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Tables 

 

Table 1. Model sets 

 Model sets 

Variable choices Model set 1 Model set 2 Model set 3 

Outcome CHD 

Exclusion criteria History of CHD or cancer 

Base model 1 'Basic' 

Measure of association HR 

Exposure definition Beef intake 2 

Exposure configuration Continuous  Quintiles Quintiles and 
Continuous 

Energy cutoff Vary cutoffs per Supplemental 
Table 2 

According to 
published papers 3 

Covariates Inclusion/Exclusion and 
configuration when included 

According to 
published papers 3 

Grey = Consistent across model sets; White = Varies across model sets for the exposure 

configuration; Blue = Varies within each model set. 1 ‘Base model’ covariates that were always 

included were: age (3 different configurations, one at a time), gender, calorie intake (3 different 

configurations, one at a time), size of census tract, and REGARDS region. 2 Beef was defined 

using gram weight estimates (using the following variables: ‘hamburger’, ‘beefroast’ 

‘beeffattrimmed’, ‘beeffatnotrim’; based on the FFQ items “hamburgers, cheeseburgers, meat 

loaf, at home or in a restaurant” and “beef steaks”); values in the hamburger variable were 

multiplied by a proportion of 0.59 to refine the estimation of beef content. This proportion was 

determined from the Food and Nutrient Database for Dietary Studies 2017-2018 data (29). 3 We 

used the energy cutoff that aligned closest to one of our 7 different configurations for energy 

cutoffs. 3 We used covariate configurations that aligned closest with one of our covariate 

configurations. 
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Table 2. Descriptive statistics for model sets 1 and 2. 

 Overall  
(n=1,000,000) 

Beef as Continuous1 
(n=499,564,  
Model Set 1) 

Beef as Quintiles2 
(n=500,436,  
Model Set 2) 

Hazard ratios (HR) for beef    

• Mean HR 1.09 1.04 1.13 

• Median HR 1.08 1.04 1.13 

• 5th, 95th percentile HR3 0.97, 1.23 0.96, 1.13 1.00, 1.26 

• Min, max HR 0.85, 1.49 0.85, 1.25 0.85, 1.49 

• N (%) of HR > 1.004 868,796 (87.9%) 392,426 (78.6%) 476370 (95.2%) 

• N (%) of significant HR (p<0.05) 
5 

9,556 (0.96%) 3,695 (0.74%) 5,861 (1.17%) 

• N (%) of significant HR > 1.00  9,556 (0.96%) 3,695 (0.74%) 5,861 (1.17%) 

95% Confidence interval width 
for beef HR 

   

• Mean width 0.49 0.35 0.64 

• Median width 0.51 0.34 0.63 

• 5th, 95th percentile of width 0.32, 0.71 0.32, 0.38 0.56, 0.73 

• Min, max width 0.29, 0.95 0.29, 0.44 0.46, 0.95 

Significance    

• Mean p-value 0.50 0.56 0.44 

• Median p-value 0.48 0.57 0.40 

• 5th, 95th percentile p-value 0.11, 0.94 0.13, 0.96 0.10, 0.91 

• Min, max p-value 0.00, 1.00 0.00, 1.00 0.00, 1.00 

z-score    

• Mean z-score 0.68 0.52 0.84 

• Median z-score 0.70 0.52 0.84 

• 5th, 95th percentile z-score -0.31, 1.61 -0.47, 1.53 0.01, 1.66 

• Min, max z-score -1.67, 2.97 -1.67, 2.97 -1.08, 2.92 
1 Per 50g self-reported, estimated intake. 2 Hazard ratio of highest versus lowest. 3 5% and 95% represent 

the actual 5th percent and 95th percent of the ranked distribution of HRs from the models fit, not a 

confidence interval around the HR. 4 comparing the number of positive associations by beef configuration: 

Chi-Square test: χ2(1)=60707, p<0.001. 5 significant at p<0.05, comparing number of significant results by 

beef configuration: Chi-Square test: χ2(1)=492, p<0.001. 
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Table 3: Descriptive statistics for models emulating existing literature. 

 Overall  
(n=20) 

Beef as Continuous1 
(n=6) 

Beef as Quintiles2 
(n=14) 

Hazard ratios (HR) for beef    

• Mean HR 1.12 1.07 1.15 

• Median HR 1.09 1.08 1.13 

• 5th, 95th percentile HR3 1.05, 1.27 1.02, 1.09 1.08, 1.27 

• Min, max HR 1.02, 1.27 1.02, 1.09 1.08, 1.27 

• N (%) of HR > 1.004 20 (100%) 6 (100%) 14 (100%) 

• N (%) of significant HR (p<0.05) 5 2 (10%) 0 (0%) 2 (14%) 

• N (%) of significant HR > 1.00  2 (10%) 0 (0%) 2 (14%) 

95% Confidence Interval width for 
beef HR 

   

• Mean width 0.48 0.31 0.55 

• Median width 0.55 0.30 0.58 

• 5th, 95th percentile of width 0.29, 0.62 0.29, 0.32 0.37, 0.63 

• Min, max width 0.29, 0.63 0.29, 0.32 0.37, 0.63 

Significance    

• Mean p-value 0.33 0.37 0.31 

• Median p-value 0.30 0.30 0.31 

• 5th, 95th percentile p-value 0.04, 0.71 0.23, 0.81 0.04, 0.60 

• Min, max p-value 0.04, 0.81 0.23, 0.81 0.04, 0.60 

z-score    

• Mean z-score 1.07 0.93 1.13 

• Median z-score 1.04 1.04 1.02 

• 5th, 95th percentile z-score 0.38, 2.08 0.24, 1.21 0.52, 2.10 

• Min, max z-score 0.24, 2.10 0.24, 1.21 0.52, 2.10 
1 Per 50g self-reported, estimated intake. 2 Hazard ratio of highest versus lowest. 3 5% and 95% represent 

the actual 5th percent and 95th percent of the ranked distribution of HRs from the models fit, not a 

confidence interval around the HR. 4 comparing the number of positive associations by beef configuration: 

Chi-Square test: χ2(1)=60707, p<0.001. 5 significant at p<0.05, comparing number of significant results by 

beef configuration: Chi-Square test: χ2(1)=492, p<0.001. 
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Table 4: Results from Kolmogorov-Smirnov test comparing the distributions of HR for beef when including and excluding 

specific covariate. 

 Beef as Continuous Beef as Quintiles 

Covariate D statistica p value Likeness Cross-
correlation 

D statistica p value Likeness Cross-
correlation 

race 0.1815 <0.001 0.88 0.98 0.3190 <0.001 0.89 0.98 

education 0.0297 <0.001 0.90 0.98 0.0058 <0.001 0.92 0.99 

income 0.1329 <0.001 0.82 0.97 0.1419 <0.001 0.86 0.99 

relationship 0.0290 <0.001 0.93 0.99 0.0502 <0.001 0.95 1.00 

smoking 0.0166 <0.001 0.87 0.97 0.0696 <0.001 0.89 0.98 

alcohol 0.0204 <0.001 0.87 0.97 0.1163 <0.001 0.73 0.88 

physact 0.1027 <0.001 0.92 0.99 0.1611 <0.001 0.77 0.91 

sedent 0.0177 <0.001 0.90 0.98 0.0596 <0.001 0.91 0.99 

multivit 0.6308 <0.001 0.71 0.87 0.1910 <0.001 0.83 0.96 

subjhealth 0.0394 <0.001 0.96 1.00 0.0236 <0.001 0.80 0.93 

pain 0.0368 <0.001 0.94 0.99 0.0459 <0.001 0.89 0.98 

hypertension 0.0079 <0.001 0.91 0.99 0.0417 <0.001 0.86 0.97 

histhyperlip 0.0175 <0.001 0.91 0.98 0.0649 <0.001 0.83 0.95 

histdiab 0.1374 <0.001 0.93 0.99 0.1828 <0.001 0.73 0.88 

histafib 0.0244 <0.001 0.95 1.00 0.0234 <0.001 0.91 0.98 

histpad 0.0348 <0.001 0.96 1.00 0.0090 <0.001 0.95 1.00 

histcvd 0.0102 <0.001 0.88 0.98 0.0073 <0.001 0.97 1.00 

stroke 0.1459 <0.001 0.88 0.97 0.1072 <0.001 0.58 0.71 

weight 0.0863 <0.001 0.94 1.00 0.1711 <0.001 0.85 0.96 

HEI 0.0656 <0.001 0.92 0.99 0.0190 <0.001 0.90 0.98 

fiber 0.0424 <0.001 0.93 0.99 0.0906 <0.001 0.84 0.96 

satfat 0.0349 <0.001 0.96 1.00 0.0224 <0.001 0.85 0.96 

monofat 0.0053 0.002 0.88 0.97 0.0260 <0.001 0.93 0.99 

polyfat 0.0106 <0.001 0.92 0.99 0.0092 <0.001 0.87 0.97 

wholegrains 0.0078 <0.001 0.89 0.98 0.0347 <0.001 0.87 0.97 

grains 0.0045 0.014 0.88 0.98 0.0096 <0.001 0.97 1.00 
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fruit 0.1391 <0.001 0.91 0.98 0.2397 <0.001 0.92 0.99 

veggies 0.1290 <0.001 0.92 0.99 0.1180 <0.001 0.83 0.95 

dairy 0.0530 <0.001 0.93 0.99 0.0630 <0.001 0.94 0.99 

a) Critical value for D: 0.0038
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Figures 

 

 

Figure 1. Sample size flow chart. 

The number of participants in the full sample, number after participant exclusions and 

before energy intake exclusions, and reasons for exclusion.  
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Figure 2. Frequency of Hazard ratios all model results (row A), Hazard ratios from 

significant model results (p<0.05, row B), z scores from all model results (row C), and p-

values from all model results (row D) for coefficient for beef intake for model set 1 when 

beef is expressed as continuous (left; per 50g), and model set 2 when beef is expressed 

as quintiles (right; highest vs. lowest). y-axis shows the number of models, the scale in 

the rows B and D is smaller to better show the distribution for significant hazard ratios 
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and p-values. Vertical dashed lines represent z=|1.96|, values outside the ±1.96 range 

are considered significant at p<0.05 (row C), p=0.05 (row D). 
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Figure 3. Specification curve that shows the distribution of HRs for the association 

between self-reported beef consumption and CHD for model sets 1 and 2. Each of the 

1,000,000 model combinations is represented by a thin vertical bar in either gray color 

(if p=>0.05) or red (if p<0.05). Curves in the bottom plot show distribution of HR by beef 

intake configuration, with the same gray or red thin vertical bars as above. A bar in the 

top plot can be traced down to the bottom plot. Color represents the density in models 

along the HR distribution (yellow=more models, dark blue=fewer models). 
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Figure 4. Specification curves that show the distribution of HRs for the association between self-reported beef 

consumption and CHD, when beef is expressed as a continuous variable (left), and as quintiles of intake (right). Each 

combination of covariates is represented if a vertical line were traced from any point on the curve on top down through 

each variable underneath. Red lines represent models that were p < 0.05. Variables: race (White; Black); income 

(‘Income_4cat’: <$20K, $20K-$35K, $35K-75K, $75K+, Refused; ‘Income’: 1 (<5K), 2 (5-10K), 3 (10-15K), 4 (15-20K), 5 

(20-25K), 6 (25-35K), 7 (35-50K), 8 (50-75K), 9 (75-150K), 10 (>150K)); education (‘ED_Cat’: <HS, HS, Some College, 

College+); multivitamins (‘YrsMult’: Years took multivitamins (0=No vitamins taken in past year, 1=Less than 1 year, 2=1 
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Year, 3=2 Years, 4=3-4 Years, 5=5-9 Years, 6=10+ Years)). Color represents the density in models along the HR 

distribution (yellow=more models, dark blue=fewer models). 
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Figure 5. Plots that show the distribution of HRs vs. 95% CI width for four selected covariates (top left: race; top right: 

income, bottom left: education, bottom right: years of multivitamin use) when inclusion/exclusion and configuration is 
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varied, when self-reported beef consumption is expressed as continuous and as quintiles of intake. Lines are contour lines 

from a kernel density estimation using a normal distribution kernel; kernel smoothing was done over 200 grid points. 

Kernel density estimates were made using the MASS package with the kde2d function, as described (50). 
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Figure 6: Pairwise density plots of number of CHD events (A, B), sample size (B, C), 

and number of covariates in the model (A, C). Density curves in red color represent 

models with significant coefficients for beef (p<0.05). 
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Figure 7. Scatterplot of HRs vs. 95% CI width for when self-reported beef consumption 

is expressed as continuous (left), and as quintiles of intake (right) for models emulating 

existing literature. Different symbols represent statistical significance at p<0.05 (filled 

triangle) versus non-significance (p≥0.05, circles) 
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Figure 8. Comparison of the cumulative distribution between HRs from model sets 1 

and 2 (combined) with HRs from models emulating existing literature. K-S statistic: 

Kolmogorov-Smirnov statistic. 
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Supplemental File Descriptions 

Supplemental Tables and Figures. Supplemental tables and figures referenced within 

the text. 

Supplemental File 1. Plots that show the distribution of HRs vs. SE for each covariate 

when inclusion/exclusion is varied, when self-reported beef consumption is expressed 

as continuous (left) and as quintiles of intake (right). Lines are percentile contours from 

a kernel density estimation using a normal distribution kernel. 

Supplemental File 2. Plots that show the distribution of HRs vs. SE for each covariate 

when configuration is varied, when self-reported beef consumption is expressed as 

continuous (left) and as quintiles of intake (right). Lines are percentile contours from a 

kernel density estimation using a normal distribution kernel. 

Supplemental File 3. Specification curves that show the distribution of HRs for the 

association between self-reported beef consumption and CHD, when beef is expressed 

as a continuous variable. Each combination of covariates is represented if a vertical line 

were traced from any point on the curve on top down through each variable underneath. 

Supplemental File 4. Specification curves that show the distribution of HRs for the 

association between self-reported beef consumption and CHD, when beef is expressed 

as quintiles of intake. Each combination of covariates is represented if a vertical line 

were traced from any point on the curve on top down through each variable underneath. 

  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 8, 2023. ; https://doi.org/10.1101/2023.12.05.23299578doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.05.23299578
http://creativecommons.org/licenses/by/4.0/


45 
 

References 

1. Kelley K, Preacher KJ. On effect size. Psychological methods. 
2012;17(2):137. 

2. Savage SL, Danziger J. The flaw of averages : why we 
underestimate risk in the face of uncertainty. 1st edition ed. 
Hoboken, New Jersey: John Wiley & Sons, 2009. 

3. Silberzahn R, Uhlmann EL, Martin DP, Anselmi P, Aust F, Awtrey E, 
et al. Many Analysts, One Data Set: Making Transparent How 
Variations in Analytic Choices Affect Results. Advances in Methods 
and Practices in Psychological Science. 2018;1(3):337-56. doi: 
10.1177/2515245917747646. 

4. Breznau N, Rinke EM, Wuttke A, Nguyen HH, Adem M, Adriaans J, 
Alvarez-Benjumea A, Andersen HK, Auer D, Azevedo F. Observing 
many researchers using the same data and hypothesis reveals a 
hidden universe of uncertainty. Proceedings of the National 
Academy of Sciences. 2022;119(44):e2203150119. 

5. Dutilh G, Annis J, Brown SD, Cassey P, Evans NJ, Grasman RP, 
Hawkins GE, Heathcote A, Holmes WR, Krypotos A-M. The quality 
of response time data inference: A blinded, collaborative 
assessment of the validity of cognitive models. Psychonomic 
bulletin & review. 2019;26:1051-69. 

6. Bastiaansen JA, Kunkels YK, Blaauw FJ, Boker SM, Ceulemans E, 
Chen M, Chow S-M, de Jonge P, Emerencia AC, Epskamp S. Time to 
get personal? The impact of researchers choices on the selection 
of treatment targets using the experience sampling methodology. 
Journal of psychosomatic research. 2020;137:110211. 

7. Botvinik-Nezer R, Holzmeister F, Camerer CF, Dreber A, Huber J, 
Johannesson M, Kirchler M, Iwanir R, Mumford JA, Adcock RA. 
Variability in the analysis of a single neuroimaging dataset by many 
teams. Nature. 2020;582(7810):84-8. 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 8, 2023. ; https://doi.org/10.1101/2023.12.05.23299578doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.05.23299578
http://creativecommons.org/licenses/by/4.0/


46 
 

8. Menkveld AJ, Dreber A, Holzmeister F, Huber J, Johannesson M, 
Kirchler M, Neusüss S, Razen M, Weitzel U. Non-standard errors. 
2021. 

9. Gelman A, Loken E. The garden of forking paths: Why multiple 
comparisons can be a problem, even when there is no “fishing 
expedition” or “p-hacking” and the research hypothesis was 
posited ahead of time. . Department of Statistics, Columbia 
University. 2013. 

10. Simmons JP, Nelson LD, Simonsohn U. False-positive psychology: 
undisclosed flexibility in data collection and analysis allows 
presenting anything as significant. Psychol Sci. 2011;22(11):1359-
66. doi: 10.1177/0956797611417632. 

11. Schoenfeld JD, Ioannidis JP. Is everything we eat associated with 
cancer? A systematic cookbook review. The American journal of 
clinical nutrition. 2013;97(1):127-34. 

12. Steegen S, Tuerlinckx F, Gelman A, Vanpaemel W. Increasing 
transparency through a multiverse analysis. Perspectives on 
Psychological Science. 2016;11(5):702-12. 

13. Del Giudice M, Gangestad SW. A traveler’s guide to the multiverse: 
Promises, pitfalls, and a framework for the evaluation of analytic 
decisions. Advances in Methods and Practices in Psychological 
Science. 2021;4(1):2515245920954925. 

14. Simonsohn U, Simmons JP, Nelson LD. Specification curve: 
Descriptive and inferential statistics on all reasonable 
specifications. Available at SSRN 2694998. 2015. 

15. Patel CJ, Burford B, Ioannidis JP. Assessment of vibration of effects 
due to model specification can demonstrate the instability of 
observational associations. Journal of clinical epidemiology. 
2015;68(9):1046-58. 

16. Tierney BT, Anderson E, Tan Y, Claypool K, Tangirala S, Kostic AD, 
Manrai AK, Patel CJ. Leveraging vibration of effects analysis for 
robust discovery in observational biomedical data science. PLoS 
biology. 2021;19(9):e3001398. 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 8, 2023. ; https://doi.org/10.1101/2023.12.05.23299578doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.05.23299578
http://creativecommons.org/licenses/by/4.0/


47 
 

17. Zeraatkar D, Cheung K, Milio K, Zworth M, Gupta A, Bhasin A, 
Bartoszko JJ, Kiflen M, Morassut RE, Noor ST. Methods for the 
selection of covariates in nutritional epidemiology studies: a meta-
epidemiological review. Current developments in nutrition. 
2019;3(10):nzz104. 

18. Klurfeld DM. Research gaps in evaluating the relationship of meat 
and health. Meat Sci. 2015;109:86-95. doi: 
10.1016/j.meatsci.2015.05.022. 

19. O'Connor LE, Kim JE, Campbell WW. Total red meat intake of 
>/=0.5 servings/d does not negatively influence cardiovascular 
disease risk factors: a systemically searched meta-analysis of 
randomized controlled trials. Am J Clin Nutr. 2017;105(1):57-69. 
doi: 10.3945/ajcn.116.142521. 

20. Satija A, Malik VS, Willett WC, Hu FB. Meta-analysis of red meat 
intake and cardiovascular risk factors: methodologic limitations. 
Am J Clin Nutr. 2017;105(6):1567-8. doi: 10.3945/ajcn.117.153692. 

21. O'Connor LE, Kim JE, Campbell WW. Reply to A Satija et al. Am J 
Clin Nutr. 2017;105(6):1568-9. doi: 10.3945/ajcn.117.154625. 

22. Gifford CL, O'Connor LE, Campbell WW, Woerner DR, Belk KE. 
Broad and Inconsistent Muscle Food Classification Is Problematic 
for Dietary Guidance in the U.S. Nutrients. 2017;9(9). doi: 
10.3390/nu9091027. 

23. Guasch-Ferre M, Satija A, Blondin SA, Janiszewski M, Emlen E, 
O'Connor LE, Campbell WW, Hu FB, Willett WC, Stampfer MJ. 
Meta-Analysis of Randomized Controlled Trials of Red Meat 
Consumption in Comparison With Various Comparison Diets on 
Cardiovascular Risk Factors. Circulation. 2019;139(15):1828-45. 
doi: 10.1161/CIRCULATIONAHA.118.035225. 

24. Zhong VW, Van Horn L, Greenland P, Carnethon MR, Ning H, 
Wilkins JT, Lloyd-Jones DM, Allen NB. Associations of processed 
meat, unprocessed red meat, poultry, or fish intake with incident 
cardiovascular disease and all-cause mortality. JAMA internal 
medicine. 2020;180(4):503-12. 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 8, 2023. ; https://doi.org/10.1101/2023.12.05.23299578doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.05.23299578
http://creativecommons.org/licenses/by/4.0/


48 
 

25. Neuhouser ML. Red and processed meat: more with less? Am J Clin 
Nutr. 2020;111(2):252-5. doi: 10.1093/ajcn/nqz294. 

26. Johnston BC, Guyatt GH. Causal inference, interpreting and 
communicating results on red and processed meat. Am J Clin Nutr. 
2020;111(5):1107-8. doi: 10.1093/ajcn/nqaa043. 

27. Neuhouser ML. Reply to BC Johnston and GH Guyatt. Am J Clin 
Nutr. 2020;111(5):1108-9. doi: 10.1093/ajcn/nqaa038. 

28. REGARDS - REasons for Geographic and Racial Differences in Stroke 
[Internet]. Available from: 
https://www.uab.edu/soph/regardsstudy/. 

29. U.S. Department of Agriculture ARS. Food and Nutrient Database 
for Dietary Studies (FNDDS) [Internet]. Available from: 
https://data.nal.usda.gov/dataset/food-and-nutrient-database-
dietary-studies-fndds. 

30. Wang X, Lin X, Ouyang YY, Liu J, Zhao G, Pan A, Hu FB. Red and 
processed meat consumption and mortality: dose–response meta-
analysis of prospective cohort studies. Public health nutrition. 
2016;19(5):893-905. 

31. About Carbonate at Indiana University [Internet]. Available from: 
https://kb.iu.edu/d/aolp. 

32. Sundell K, Saylor J. Two‐dimensional quantitative comparison of 
density distributions in detrital geochronology and geochemistry. 
Geochemistry, Geophysics, Geosystems. 
2021;22(4):e2020GC009559. 

33. Howard VJ, Cushman M, Pulley L, Gomez CR, Go RC, Prineas RJ, 
Graham A, Moy CS, Howard G. The reasons for geographic and 
racial differences in stroke study: objectives and design. 
Neuroepidemiology. 2005;25(3):135-43. doi: 10.1159/000086678. 

34. Touvier M, Kesse E, Volatier J-L, Clavel-Chapelon F, Boutron-Ruault 
M-C. Dietary and cancer–related behaviors of vitamin/mineral 
dietary supplement users in a large cohort of French women. 
European journal of nutrition. 2006;45:205-14. 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 8, 2023. ; https://doi.org/10.1101/2023.12.05.23299578doi: medRxiv preprint 

https://www.uab.edu/soph/regardsstudy/
https://data.nal.usda.gov/dataset/food-and-nutrient-database-dietary-studies-fndds
https://data.nal.usda.gov/dataset/food-and-nutrient-database-dietary-studies-fndds
https://kb.iu.edu/d/aolp
https://doi.org/10.1101/2023.12.05.23299578
http://creativecommons.org/licenses/by/4.0/


49 
 

35. Williams DR, Mohammed SA, Leavell J, Collins C. Race, 
socioeconomic status, and health: complexities, ongoing 
challenges, and research opportunities. Annals of the new York 
Academy of Sciences. 2010;1186(1):69-101. 

36. Brown AW, Aslibekyan S, Bier D, Ferreira da Silva R, Hoover A, 
Klurfeld DM, Loken E, Mayo-Wilson E, Menachemi N, Pavela G. 
Toward more rigorous and informative nutritional epidemiology: 
The rational space between dismissal and defense of the status 
quo. Critical Reviews in Food Science and Nutrition. 2021:1-18. 

37. Maki KC, Slavin JL, Rains TM, Kris-Etherton PM. Limitations of 
observational evidence: implications for evidence-based dietary 
recommendations. Advances in nutrition. 2014;5(1):7-15. 

38. Song F, Hooper L, Loke YK. Publication bias: what is it? How do we 
measure it? How do we avoid it? Open Access Journal of Clinical 
Trials. 2013:71-81. 

39. Steiner PM, Cook TD, Shadish WR, Clark MH. The importance of 
covariate selection in controlling for selection bias in observational 
studies. Psychological methods. 2010;15(3):250. 

40. Tomova GD, Arnold KF, Gilthorpe MS, Tennant PW. Adjustment for 
energy intake in nutritional research: a causal inference 
perspective. The American journal of clinical nutrition. 
2022;115(1):189-98. 

41. Stefan A, Schönbrodt F. Big little lies: A compendium and 
simulation of p-hacking strategies. 2022. 

42. Sturman MC, Sturman A, Sturman CJ. Uncontrolled control 
variables: The extent that a researcher’s degrees of freedom with 
control variables increases various types of statistical errors. 
Journal of Applied Psychology. 2021. 

43. Christensen JD, Orquin JL, Perkovic S, Lagerkvist CJ. Preregistration 
is important, but not enough: Many statistical analyses can inflate 
the risk of false-positives. 2021. 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 8, 2023. ; https://doi.org/10.1101/2023.12.05.23299578doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.05.23299578
http://creativecommons.org/licenses/by/4.0/


50 
 

44. Austin PC, Brunner LJ. Inflation of the type I error rate when a 
continuous confounding variable is categorized in logistic 
regression analyses. Statistics in medicine. 2004;23(7):1159-78. 

45. Ley SH, Sun Q, Willett WC, Eliassen AH, Wu K, Pan A, Grodstein F, 
Hu FB. Associations between red meat intake and biomarkers of 
inflammation and glucose metabolism in women. The American 
journal of clinical nutrition. 2014;99(2):352-60. 

46. Al-Shaar L, Satija A, Wang DD, Rimm EB, Smith-Warner SA, 
Stampfer MJ, Hu FB, Willett WC. Red meat intake and risk of 
coronary heart disease among US men: prospective cohort study. 
bmj. 2020;371. 

47. Etemadi A, Sinha R, Ward MH, Graubard BI, Inoue-Choi M, Dawsey 
SM, Abnet CC. Mortality from different causes associated with 
meat, heme iron, nitrates, and nitrites in the NIH-AARP Diet and 
Health Study: population based cohort study. bmj. 2017;357. 

48. National Cancer Institute. Learn More about Energy Adjustment 
[Internet]. Available from: 
https://www.dietassessmentprimer.cancer.gov/learn/adjustment.
html. 

49. O'Connor LE, Gifford CL, Woerner DR, Sharp JL, Belk KE, Campbell 
WW. Dietary meat categories and descriptions in chronic disease 
research are substantively different within and between 
experimental and observational studies: a systematic review and 
landscape analysis. Advances in Nutrition. 2020;11(1):41-51. 

50. Venables WR, Ripley B. BD (2002). Modern Applied Statistics with 
S. Edtion ed. New York: Springer Science & Business Media, 
2002:130. 

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 8, 2023. ; https://doi.org/10.1101/2023.12.05.23299578doi: medRxiv preprint 

https://www.dietassessmentprimer.cancer.gov/learn/adjustment.html
https://www.dietassessmentprimer.cancer.gov/learn/adjustment.html
https://doi.org/10.1101/2023.12.05.23299578
http://creativecommons.org/licenses/by/4.0/

