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Abstract 

Background: The statistical analysis of composite outcomes is challenging. The 

Clinical Outcomes, HEalthcare REsource utilizatioN, and relaTed costs (COHERENT) 

model was developed to describe and compare all components (incidence, timing and 

duration) of composite outcomes, but its statistical analysis remained unsolved. The aim 

of the study is to assess a multi-State Markov model as one statistical solution for the 

COHERENT model. 

Methods: A cohort of 3280 patients admitted to the emergency department or hospital 

for heart failure during year 2018 were followed during one year. The state of the 

patient was registered at the end of each day during 365 days as: home, emergency 

department (ED), hospital, re-hospital, re-ED, and death. Outcomes of patients with or 

without severe renal disease (sRD) were compared as an example. A Multi-State 

Markov model was developed to explain transitions to and from these states during 

follow-up. 

Results: A Multi-State Markov model showed, adjusted for age and sex, a significantly 

lower likelihood of patients with sRD to return home regardless of the state in which 

they were (ED → HOME (HR, 0.72; 95%CI, 0.54-0.95), RE-ED → HOME (HR, 0.83; 

95%CI, 0.75-0.93), HOSPITAL → HOME (HR, 0.77; 95%CI, 0.69-0.86), RE-

HOSPITAL → HOME (HR, 0.82; 95%CI, 0.74-0.92) and a higher mortality risk, in 

particular at the hospital and at home (HOME → Death [HR, 1.54; 95%CI, 1.01-2.37] 

and HOSPITAL → Death [HR, 1.71; 95%CI, 1.30-2.24]. 

Conclusion: Multi-state Markov models offer a statistical solution for the 

comprehensive analysis of composite outcomes assessed as transitions from different 

clinical states. 
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Clinical Perspective  

 What is new?  

o An integrated analysis of all components of composite endpoints 

including its incidence and duration is possible using the COHERENT 

model with analysis of transition risks. 

o A statistical approach based on Markov chain models is a new potential 

statistical solution for the multivariate estimation of the risk of 

transitions in mutually exclusive composite endpoints. 

 What are the clinical implications?  

o The use of the COHERENT model and Markov models is an opportunity 

to analyze composite endpoints and understand better the relationships 

between its components and, potentially, to improve the performance of 

statistical analysis in randomized controlled trials. 

o The utilization of the COHERENT model and Markov models in 

randomized controlled trials should be validated in future observational 

studies and in randomized controlled trials. 

 

Key Words 

Heart Failure, Composite endpoints. Statistical analysis. Markov model. COHERENT 

model. 

 

Non-standard Abbreviations and Acronyms 

HF: Heart failure 
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COHERENT: Clinical Outcomes, HEalthcare REsource utilizatioN, and relaTed costs  

CI: Confidence Interval  

ED: Emergency department 

sRD: Severe renal disease 
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Introduction 

Heart failure (HF) is a good scenario for the use of composite outcomes
1–5

, where 

mortality and readmissions have been frequently used as a composite for evaluating 

efficacy in clinical randomized trials. The relevance of outcome analysis in HF is 

obvious given that it is a major health problem with most patients with HF having at 

least one hospitalization during their lives, and several having subsequent readmissions, 

causing a huge burden on health systems and economies. We recently developed the 

Clinical Outcomes, HEalthcare REsource utilizatioN, and relaTed costs (COHERENT) 

model, a new approach for presenting and analysing mutually exclusive endpoints, 

including clinical endpoints, resource utilization and costs over time in a visual way
6,7

. 

However, the statistical approach for such complex amount of information has not been 

solved so far
6,7

 

Clinical outcomes may be understood as states within the evolution of the disease. For 

instance, hospitalization, discharge or readmission, being death the final outcome. 

These states may or may not be visited by the patients during their clinical journey. 

Some authors have proposed to explain the clinical course of chronic diseases as a multi 

state model where outcomes can be understood as transient or intermediate events with 

a final outcome. HF may be explained as a multistate model
8
 which is a Markov process 

under the assumption that the chance of entering a new state at the start of each cycle 

does not depend on the path taken by the individual to reach the current state but on 

exposure factors and the risk of transition from one state to another. A number of 

authors have extended the concepts of multi-state Markov models to longitudinal data, 

where the time spent in each state was incorporated, generating the multi-state semi-

Markov model
9,10

, or incorporating time-dependent explanatory variables
11
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We present here a simple statistical solution using the multi-state Markov model for 

longitudinal data for the statistical analysis of multiple clinical endpoints over time to be 

used with the COHERENT model
6
. 

 

Methods 

Population 

The description of the population used for this study has been presented elsewhere
7
.
 
In 

brief, 3280 patients with HF who were seen in the emergency department (ED) and/or 

were hospitalized in a tertiary hospital with a primary or secondary diagnosis of HF 

during one calendar year (2018) were included. Patients were then followed up for one 

year. 

Multi-state model of longitudinal data 

The process of clinical care for patients with HF was conceptualized using the first visit 

to the ED as the initial state, and from then the other clinical outcomes were defined and 

classified as intermediate events (home, re-ED, hospitalization, re-hospitalization) and 

the final state (death). This is described though a multi-state model of longitudinal data 

based on the Markov model on longitudinal data
8,12,13

. The Markov process refers to the 

assumption that the chance of entering a new state at the start of each cycle does not 

depend on the path the individual took to their current state (although the chance may 

depend on the cycle and other risk factors). The death state is considered as an 

absorbing state, that is, the individual cannot move out from this state.  

The state of the patient was registered at the end of each day during the follow-up 

period (one year in this case) with the exception of ED stays, which accounted for a 
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minimum of one full day if the patient was discharged home on the same day regardless 

of the time staying in the ED on that particular day, meaning that information of the 

state between days was not available. Therefore, one patient could stay in more than one 

state in the same day. Transitions were defined as illustrated in Figure 1. Direct 

transitions between ED and re-ED and between hospital and re-hospital were not 

counted. 

We used Xt to indicate the state space occupied by the individual at time t, with t=0 … 

365 days and state space = {ED, Hospital, Home, Re-hospital, Re-ED, and Death}. The 

matrix of transition probabilities for the Markov process, (Xt)t≥0, was defined as: 

P(s, t) = (Plj(s,t))l,j, l,j є {ED, Hospital, Home, Re-hospital, Re-ED, and Death} 

with transition probabilities: 

Plj(s, t) = P(Xt = j |Xs = l) = P(Xt = j |Xs = l, Past), s ≤ t 

and definition of the transition hazards in the Markov process with  l -> j transition at t 

as: 

αlj(t) dt = P(X(t+dt)- = j| X t- = l), l,j = {ED, Hospital, Home, Rehospital, Re-ED, and 

Death}, l≠j 

The Markov proportional hazards model 
2,14,15

 was used to evaluate a common effect of 

one covariate as an example. In this particular case we used severe renal disease (sRD) 

—defined as the presence of baseline glomerular filtration rate values <30 ml/min/1.73 

m
2
 or serum creatinine values >2 mg/dL if baseline glomerular filtration rate was not 

available, a well known predictor or poorer outcomes in patients with HF 
16,17

— as the 

variable of interest to test the model with the following model: 
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αlj;i (t; Zi) = αlj;0 (t) exp(βlj Zi), l,j = {ED, Hospital, Home, Re-hospital, Re-ED, and 

Death}, l diferente de j, i =1,…n 

where βlj is a 1 × p vector of regression coefficients, Zi is a p × 1 vector of covariates for 

individual i, and αlj;0(t) is an unspecified, non-negative baseline hazard function. Hazard 

ratio (HR) estimates are presented with 95% confidence intervals (95%CI). All 

calculations were done using a R
18 

package msm
19

. 

 

Results 

A total of 3280 patients with HF were included, mean age 80.9 years (11.3), 1830 

(55.8%) women. Of these, 496 patients (15.1%) had severe renal disease. Baseline 

characteristics according to the presence of severe renal disease are presented in Table 

1. Patients with sRD were older, more frequently women and had more comorbidities. 

Patient with sRD presented also worse outcomes at 30 days and 1 year (Table 2 and 

Figure 2). 

Of these, 880 (26.8%) patients died during follow-up, 204 (41.13%) with sRD y 677 

(24.28%) without sRD (RR, 1.69; 95%CI, 1.50-1.92; p<0.001). Among all patients, 

only 247 (7.53%) had only one transition (41 died in the ED and 206 were discharged 

home directly and had no further state transitions) while 818 patients (24.9%) had >7 

changes of state, of whom 197 had died at the end of follow-up. No statistical 

differences were found between the number of state transitions and death.  

Patients with sRD spent a lower number of days at home 98.3 (50.5; 177.0) compared 

with those without sRD (147.0 [76.5; 348.0]; p <0.001). They also spent more time in 
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re-ED and in hospital (8.0 [5.0, 15.0] vs. 7.0 [5.0, 11.0] days) p<0.001. The times spent 

in each clinical state by the presence of sRD are shown in Supplementary Table 1) 

Table 3 presents the results of the analysis for sRD with the crude model (left column) 

and an age- and sex-adjusted model (three right columns). Both models confirm the 

significantly lower likelihood of patients with sRD to return home regardless of the state 

in which they were (ED → HOME (HR, 0.72; 95%CI, 0.54-0.95), RE-ED → HOME 

(HR, 0.83; 95%CI, 0.75-0.93), HOSPITAL → HOME (HR, 0.77; 95%CI, 0.69-0.86), 

RE-HOSPITAL → HOME (HR, 0.82; 95%CI, 0.74-0.92) and their higher mortality 

risk, in particular at the hospital and at home (HOME → Death [HR, 1.54; 95%CI, 

1.01-2.37] and HOSPITAL → Death [HR, 1.71; 95%CI, 1.30-2.24] adjusted for age and 

sex. Additionally, patients with sRD have a higher likelihood of return to the ED (HR, 

1.37; 95%CI, 1.26-1.49) or being re-hospitalized  (HR, 4.25; 95%CI, 2.70-6.70). 

The multi-state models were tested for 30-day (Supplementary Table 2) and 1-year 

outcomes (Table 3). Figure 3 shows the effect of severe renal dysfunction on the 

transition risks from one to other states at 30 days and 365 days. 

 

Discussion 

We have applied a statistical approach for the analysis of multiple composite outcomes 

over time based on multi-state Markov models for longitudinal data that can be used 

with the COHERENT model. This approach allows the calculation of the probabilities 

of transitions available between all the components of the mutually exclusive endpoints 

contained in the model and the study of the effect of covariables on the probability 

(risk) of transitioning from one to other state. Our model is, therefore, an attempt to 

improve the complex analysis of composite endpoints over time when these include 
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multiple components with different incidences and durations, and are registered with 

different times of initiation and termination, and potential censoring in follow-ups. As 

we acknowledged in the presentation of the COHERENT model the statistical approach 

for these analyses is quite complex and had not been solved so far
6
. 

Multistate Markov models improve current competing risk models providing not only 

with the risks of the transitions between the components of interest of the composite 

endpoints (i.e. home, hospital, re-hospitalization, re-ED visit, and the absorbing state, 

death), facilitating the description of the probabilities of the patients´ trajectories
8,11

.
 

Thus, multistate Markov Models allow describing the risks and the related costs of 

events occurring after the index contact (ED visit in this particular case). 

This method allows multivariate analysis, estimating the risk of transitioning from one 

state to any other one as a function of other covariates, such as baseline characteristics, 

providing with adjusted hazard ratios for each transition as shown in the results. In the 

example, the presence of sRD is associated with an increased risk of in-hospital and out 

of hospital death with longer hospital stays independently form age and sex. The lack of 

sRD is associated with a greater likelihood to return home from any other state. 

The time origin is characterized by a transition into an initial, transient, state, such as 

the start of treatment; the endpoint is an ‘absorbing’ final transition. Instead of survival 

data or time-to-event data, data on the history of events is available. Multi-state models 

provide a framework that allows for the analysis of such event history data. They are an 

extension of competing risk models, since they extend the analysis to what happens 

after the first event There are different approaches in the scientific literature trying to 

assess, at least in part, the landscape of multiple composite outcomes over time. For 

instance, dynamic prediction of time to a clinical event, that is, the computation of the 

predictive distribution at a certain moment in time given the history of event(s) and 
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covariates until that moment, as well as of competitive events does not allow studying 

what occurs after each component of the composite outcome
20,21

. 

Multistate Markov Models have "no memory" as these do not consider time durations in 

the previous states in the calculation of the probabilities of transition to other states. 

Currently, new multistate Markov models have incorporated sojourn time in each 

intermediate state to solve this limitation when this is relevant, that is, the time spent by 

each individual in each state is now considered. Although these models without memory 

loss, named semi-Markov multistate models, may be a further advance in this field
22

 

 

There are, however, limitations to this approach. In general, multistate models need big 

computational efforts for the estimation of parameters, and their estimations are 

influenced when there are transitions with few observations. The "lack of memory" of 

multistate Markov Models and the difficulty to solve this limitation has been mentioned 

before.  

 

Conclusion 

This statistical approach, based on Markov chain models, provides with a statistical 

solution for the multivariate estimation of the risk of all potential transitions included 

within mutually exclusive composite endpoints and is a useful complement for complex 

models of composite outcome analysis, such as the COHERENT model. 
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Figure Legends 

Figure 1. States in the Markov chain used in the analysis for the current 

COHERENT model 

Abbreviations. ED (initial state), Hospital, Rehospital, Home, ReED, and Death (final 

state). Yellow arrows indicate the permanence in the same state, Orange arrows 

represent forward transitions and red arrows forward and backward transitions 
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Figure 2. Composite outcomes graph using the COHERENT model comparing 

patients with severe renal dysfunction (right) and patients without 

severe renal dysfunction (left) using the Markov proportional hazard 

models 

2.A. 30 days follow-up 

2.B. 1 year follow-up 

Figure 3. Significant changes of state in the Markov chain used in the analysis for 

30 and 365-day follow up.  
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Table 1. Baseline characteristics according to the presence of severe renal 

dysfunction 

 
No severe 

renal disease 

(n=2784) 

Severe 

renal disease 

(n=496) 

P value 

Age 83.0 (75.0 - 88.0) 85.0 (78.0 - 89.0) <0.001 

Age group   0.002 

    Younger than 65 285 (10.24%) 35 (7.06%)   

    Between 65 and 74 357 (12.82%) 56 (11.29%)   

    Between 75 and 84 898 (32.26%) 139 (28.02%)   

    Older than 85 1244 (44.68%) 266 (53.63%)   

Female sex 1557 (55.93%) 273 (55.04%) 0.751 

Diabetes 1153 (41.41%) 275 (55.44%) <0.001 

AHT     0.410 

    Hipertension 1020 (36.63%) 200 (40.32%)   

    Hipotension 39 (1.40%) 7 (1.41%)   

    Normotension 1651 (59.30%) 279 (56.25%)   

    Not available data 74 (2.66%) 10 (2.02%)   

Heart rate     0.012 

    High heart rate 378 (13.58%) 48 (9.68%)   

    Low heart rate 257 (9.23%) 63 (12.70%)   

    Normal heart rate 2075 (74.53%) 375 (75.60%)   

    Not available data 74 (2.66%) 10 (2.02%)   

Smoking 941 (33.80%) 154 (31.05%) 0.252 

Dyslipidaemia 1271 (45.66%) 147 (29.64%) <0.001 

LVEF     0.050 

    HFmrEF 230 (8.26%) 37 (7.46%)   

    HFpEF 1869 (67.13%) 349 (70.36%)   

    HFrEF 293 (10.52%) 59 (11.89%)   

    HF with unknown LVEF 69 (2.48%) 15 (3.02%)   

   Not available echocardiogram 323 (11.60%) 36 (7.26%)   

COPD 242 (8.69%) 32 (6.45%) 0.116 

Cancer 115 (4.13%) 19 (3.83%) 0.851 

Hypertensive Heart Disease 373 (13.40%) 47 (9.48%) 0.020 

Cerebrovascular disease 7 (0.25%) 1 (0.20%) 1.000 
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Atrial fibrillation 641 (23.02%) 96 (19.35%) 0.081 

Heart valve disease 197 (7.08%) 24 (4.84%) 0.083 

Dementia 11 (0.40%) 2 (0.40%) 1.000 

Respiratory insufficiency 1023 (36.74%) 169 (34.07%) 0.276 

Ischemic Heart Disease 414 (14.87%) 76 (15.32%) 0.848 
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Table 2. Clinical outcomes according to the presence of several renal dysfunction 

  

No severe 

renal disease 

Severe 

renal disease 
P value 

(n=2784)  (n=496) 
  

  

30-day mortality       191 (6.86%)            77 (15.52%)      <0.001  

365-day mortality       677 (24.32%)           204 (41.13%)      <0.001  

In-hospital mortality       145 (5.21%)            63 (12.70%)      <0.001  

30-day admissions       269 (9.66%)            58 (11.69%)       0.190  

365-day admissions       886 (31.82%)           209 (42.13%)      <0.001  

30-day readmissions       77 (2.77%)             20 (4.03%)       0.165  

365-day readmissions       360 (12.93%)            60 (12.09%)       0.660  

30-day re-ED visits       501 (17.99%)            99 (19.96%)       0.327  

365-day re-ED visits      1717 (61.67%)           314 (63.30%)       0.522  
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Table 3. Markov proportional hazards model at 1 year for the change among the 

different clinical states in patients with severe renal dysfunction 

(univariate model) and Markov proportional hazards model with severe 

renal dysfunction as the variable of interest adjusted for age and sex 

(multivariate model) 

 

1-year Transitions Univariate model Multivariate model 
          

  

Severe renal 

  dysfunction 

Severe renal  

dysfunction  

Age 

 

Sex 

 

 HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) 
          

ED - Home 0.692 (0.526 - 0.910) 0.719 (0.545 - 0.948)  0.715 (0.599 - 0.853) 1.019 (0.860 - 1.207) 

ED - Hospital 1.130 (1.002 - 1.275) 1.119 (0.993 - 1.262)  1.072 (0.980 - 1.172) 0.956 (0.874 -1.045) 

ED - Death 1.151 (0.008 - 159.721) 1.112 (0.001 - 1229.6)  1.149 (0.010 - 133.627) 1.189 (0.009 - 159.953) 

Home - ReED 1.422 (1.296 - 1.561) 1.367 (1.257 - 1.486)  0.938 (0.877 - 1.004) 0.862 (0.806 - 0.921) 

Home - Hospital 1.004 (0.274 - 3.673) 0.922 (0.298 - 2.851)  0.218 (0.039 - 1.201) 0.546 (0.261 - 1.141) 

Home - Rehospital 1.970 (0.691 - 5.618) 4.250 (2.697 - 6.699)  0.114 (0.021 - 0.619) 0.380 (0.196 - 0.734) 

Home - Death 1.548 (0.993 - 2.414) 1.541 (1.002 - 2.368)  2.417 (1.631 - 3.582) 0.842 (0.581 - 1.221) 

ReED - Home 0.827 (0.743 - 0.921) 0.831 (0.746 - 0.925)  0.854 (0.787 - 0.927) 0.975 (0.900 - 1.056) 

ReED - Hospital 0.779 (0.522 - 1.164) 0.810 (0.569 - 1.154)  1.477 (1.113 - 1.958) 0.922 (0.707 - 1.204) 

ReED - Rehospital 1.236 (1.067 - 1.431) 1.106 (0.974 - 1.256)  1.154 (1.033 - 1.288) 0.939 (0.841 - 1.047) 

ReED - Death 0.913 (0.251 - 3.319) 0.589 (0.116 - 2.989)  2.029 (0.706 - 5.831) 1.070 (0.376 - 3.046) 

Hospital - Home 0.773 (0.693 - 0.863) 0.769 (0.689 - 0.859)  1.186 (1.094 - 1.285) 1.024 (0.945 - 1.109) 

Hospital - ReED 0.567 (0.189 - 1.706) 0.474 (0.137 - 1.645)  0.799 (0.379 - 1.688) 0.579 (0.280 - 1.198) 

Hospital - Death 1.746 (1.326 - 2.300) 1.706 (1.298 - 2.241)  2.030 (1.574 - 2.620) 0.742 (0.577 - 0.954) 

Rehospital - Home 0.822 (0.739 - 0.916) 0.822 (0.739 - 0.915)  0.932 (0.851 - 1.020) 1.027 (0.940 - 1.122) 

Rehospital - ReED 0.770 (0.245 - 2.420) 0.785 (0.257 - 2.403)  1.030 (0.421 - 2.522) 1.421 (0.572 - 3.532) 

Rehospital - Death 1.060 (0.795 - 1.415) 1.091 (0.817 - 1.457)  1.955 (1.509 - 2.533) 1.174 (0.908 - 1.518) 
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