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Abstract

Analysing complex diseases such as chronic inflammatory joint diseases (CIJDs), where
many factors influence the disease evolution over time, is a challenging task. CIJDs are
rheumatic diseases that cause the immune system to attack healthy organs, mainly the
joints. Different environmental, genetic and demographic factors affect disease
development and progression. The Swiss Clinical Quality Management in Rheumatic
Diseases (SCQM) Foundation maintains a national database of CIJDs documenting the
disease management over time for 19’267 patients.

We propose the Disease Activity Score Network (DAS-Net), an explainable
multi-task learning model trained on patients’ data with different arthritis subtypes,
transforming longitudinal patient journeys into comparable representations and
predicting multiple disease activity scores.
First, we built a modular model composed of feed-forward neural networks, long
short-term memory networks and attention layers to process the heterogeneous patient
histories and predict future disease activity.
Second, we investigated the utility of the model’s computed patient representations
(latent embeddings) to identify patients with similar disease progression.
Third, we enhanced the explainability of our model by analysing the impact of different
patient characteristics on disease progression and contrasted our model outcomes with
medical expert knowledge. To this end, we explored multiple feature attribution
methods including SHAP, attention attribution and feature weighting using case-based
similarity.

Our model outperforms non-temporal neural network, tree-based, and naive static
baselines in predicting future disease activity scores. To identify similar patients, a
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k-nearest neighbours regression algorithm applied to the model’s computed latent
representations outperforms baseline strategies that use raw input features
representation.

Author summary

Chronic inflammatory joint diseases affect about 200′000 patients in Switzerland alone.
These conditions lead to immune system dysfunction resulting in inflammation that
targets the joint tissues. Understanding which aspects of patients’ characteristics and
disease management history are predictive of future disease activity is crucial to
improving patients’ quality of life.

A significant obstacle to the widespread adoption of deep learning (DL) methods in
healthcare is the challenge of understanding their “black-box” nature (i.e. the
underlying decision process for outcome generation). Therefore, the development of
“explainable” deep learning methods has become an active area of research. These
approaches aim to provide insights into the inner workings of deep learning models,
enabling physicians to understand and assess the output of DL models more effectively.

We propose DAS-Net: an explainable deep learning model that finds similar patients
and predicts future disease activity based on past patient history. In our analysis, we
contrast different explainability approaches highlighting which aspects of the patient
history impact model predictions the most. Furthermore, we show how computed
patient similarities allow us to rank different patient characteristics in terms of influence
on disease progression and discuss how case-based explanations can enhance the
transparency of deep learning solutions.

1 Introduction 1

Chronic inflammatory joint diseases (CIJDs) cause the immune system to attack 2

healthy organs, particularly the joints [1]. In addition to causing pain, the inflammation 3

can lead to synovitis, bone erosions, muscle and ligament damage. To this day, there 4

exists no cure and the treatments primarily help attenuate the patients’ symptoms and 5

improve their quality of life. Finding ways to minimise the disease activity is crucial to 6

alleviate the disease burden on patients’ everyday life. 7

Digitalising patient healthcare data has led to a massive increase in available 8

electronic health records (EHRs), opening up the opportunity to mine these records and 9

employ machine learning (ML) approaches to discover novel evidence about real-world 10

treatment efficacy and patient outcomes [2]. Due to the complex patient-specific disease 11

progression patterns, CIJDs patient registries are very heterogeneous in the collected 12

measurements and temporally sparse, presenting a challenge for ML models to learn 13

from the data. In this work, we use the database of the Swiss Clinical Quality 14

Management in Rheumatic Diseases (SCQM) Foundation [3]. It is a national 15

longitudinal database of CIJDs documenting the disease management over time for 16

19’267 patients with different forms of arthritis. 17

We propose the Disease Activity Score Network (DAS-Net), an explainable 18

multi-task neural network model to transform heterogeneous longitudinal patient 19

journeys from the SCQM registry into comparable representations and predict future 20

disease activity scores (DAS). DAS-Net evaluates the importance of the different 21

aspects of individual management history (events) to predict future disease activity 22

scores (i.e. multi-task forecasting). To this end, we trained our model on patients who 23

had available DAS28-BSR (hereafter DAS28) [4] or ASDAS-CRP (hereafter ASDAS) [5] 24

scores, without limiting our analysis to a specific arthritis subtype, but rather including 25
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all the patients for which either of these scores was available. The model is composed of 26

multilayer perceptrons, long short-term memory networks [6], and augmented with 27

attention mechanism [7] to process heterogeneous patient histories. The attention 28

mechanism highlights parts of the patients’ histories that are most likely contributing to 29

the outcome prediction, providing further insights into the model’s decision-making 30

process. 31

Compared to physicians who use their experience to assess possible similarities 32

among patients [8], we use our model to retrieve patients with similar disease 33

progression by mapping the patients’ raw entangled data into a latent space with higher 34

separability [9]. We empirically assessed DAS-Net’s ability to cluster patients with 35

similar disease progressions. 36

Lastly, we explored multiple explainability approaches in our analysis, in particular 37

through the (a) SHAP (SHapley Additive exPlanations) [10] value computation on the 38

baseline models’ input features to gain post-hoc insights into the contribution of each 39

feature (b) two-layered attention mechanism in the model architecture assigning weights 40

to the different events of the patient histories and highlighting their significance for the 41

model’s predictions, and (c) case-based importance weighting of the features for patient 42

similarity assessment. We offer visual insights to illustrate how the model evaluates the 43

similarity between some example patients and highlight the most influential features. 44

To expand on these case-based explanations, we developed aggregate metric to rank the 45

input features’ importance for similarity assessment. 46

By contrasting the results of these various approaches, we believe that we make a 47

significant step towards enhancing the transparency of the model’s output. 48

1.1 Related work 49

Temporal deep learning models such as recurrent neural networks and transformers are 50

commonly used in deep learning to analyse longitudinal patient data [11]. However, 51

there is limited research on employing these temporal modeling approaches to predict 52

disease progression in CIJDs. Most existing DL studies using CIJD databases focus on 53

classifying the diagnoses rather than predicting how the disease progresses [2]. In 54

studies that do predict disease progression, the continuous DAS values are usually 55

simplified and thresholded into a binary classification task such as remission/no 56

remission or response/no response, rather than predicted through regression [12]. For 57

instance, Norgeot et al. [13] implemented RNNs to predict disease activity 58

(remission/no remission) at the next rheumatology visit for rheumatoid arthritis 59

patients. Their model significantly outperformed a static baseline, indicating the 60

effectiveness of employing temporal models for modeling disease activity in CIJDs. 61

Furthermore, the majority of the existing studies are limited to patients with 62

rheumatoid arthritis. However, in [14], both rheumatoid arthritis (RA) and axial 63

spondyloarthritis (axSpa) patients were included and various non-temporal ML models 64

(such as random forest, logistic regression and vanilla neural networks) were used to 65

predict response/no response to different treatments. Their feature importance analysis 66

revealed that different patient-reported outcome measures were the most significant 67

predictors. This result supports our findings that past measures of disease activity are 68

highly predictive of disease progression. 69

Our model architecture builds on the work proposed in [15] and further extends it 70

(a) to support patients with different CIJD subtypes (not only RA) and (b) adding 71

attention layers to measure the importance of different patient characteristics and 72

management strategies for the model predictions. To the best of our knowledge, this is 73

the only study emphasising patient similarity and explainability in modeling temporal 74

disease progression in CIJDs. 75
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2 Materials and methods 76

2.1 Dataset 77

2.1.1 Description 78

The SCQM Foundation maintains a national database of inflammatory rheumatic 79

diseases since 1997. The database documents the disease management over time for 80

19′267 patients through clinical measurements during the visits, demographics, 81

prescribed medications and patient-reported outcome measures (database snapshot from 82

01.04.2022). Patients are diagnosed either with rheumatoid arthritis (RA), axial 83

spondyloarthritis (axSpA), psoriatic arthritis (PsA) or undifferentiated arthritis (UA). 84
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(a) DAS28 distribution. The
DAS28 score is usually recorded for
patients with RA.
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(b) ASDAS distribution. The ASDAS score is
usually recorded for patients with axSpA.

Fig 1. Disease activity scores distribution. Stacked histograms showing the
DAS28 and ASDAS distribution in the preprocessed dataset. The different colour bars
show the different arthritis types.

2.1.2 Preprocessing 85

The SCQM database documents the management and disease evolution of the patients 86

spanning several types of records and sources. We kept four distinct sources of 87

information: 88

1. Demographics (Dem): Non-temporal patient features such as date of birth or 89

gender. 90

2. Clinical measures (CM): Clinical measurements collected during a visit, such 91

as DAS or weight. 92

3. Medications (Med.): Features related to a prescribed medication and its 93

duration (i.e. start or stop). 94

4. Patient-reported outcome measure (PROM): Patient self-reported disease 95

activity scores (such as RADAI score [16]). 96

While the demographics are static and only collected once, the clinical measures, 97

medications and PROM are low-frequency time series. We refer to these as 98

“time-related events”. 99

As preprocessing steps, we discarded patients with less than three CMs with distinct 100

measurements of ASDAS or DAS28, or no medication information. We also discarded 101

records with missing dates in the time-related data, and the clinical measures without 102
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either DAS28 or ASDAS. We selected the features used in [15], and additional ones 103

based on availability and clinical relevance. We included the 90% most prescribed 104

medications. After preprocessing, 10′589 patients (with a total of 79′872 clinical 105

measures) and 31 features remained. The list of features is shown in appendix S1 Table. 106

Dataframes and features and Figure 1 shows the distribution of the two DAS we used as 107

predictive targets (i.e. outcomes). Summary statistics of the features are available in 108

the tables of appendices 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, 3.11. 109

2.2 Model 110

2.2.1 Motivation 111

Our dataset, like many EHR datasets, is irregular in both the temporal aspect (patients 112

do not have the same number of medical visits), and in the number of recorded features 113

(patients have varying numbers of recorded measurements and missing attributes). 114

Using non-temporal machine learning approaches (i.e. models that ignore patients’ 115

full history) would limit the modeling of the data by restricting the input features to 116

the subset shared by most data points or by discarding and imputing features to 117

homogenise the data. This approach usually implies discarding most temporal 118

information and using only the dataset’s main features, leading to significant 119

information loss, poor generalisability and bias. 120

With this in mind, our goal is to develop a deep learning model that can process the 121

full patients’ history, overcoming the challenges of temporal and feature irregularity. 122

Moreover, it should be modular and support multiple outcome predictions allowing us 123

to learn from all patients in the dataset with different DAS scores and arthritis 124

subtypes. Lastly, it should produce meaningful latent representations, allowing us to 125

compare patients with heterogeneous histories. An overview of the project pipeline, 126

from data collection to implementation and evaluation of the different models is 127

provided in Figure 2. 128

2.2.2 Architecture 129

Our model combines two main components. First, the model uses multilayer 130

perceptrons (MLPs), long short-term memory networks (LSTMs) [6] and is augmented 131

with attention layers [17] to build explainable vectorised patient representations. The 132

different sources of information in the patient histories are handled separately until 133

aggregation in the representation block. Then, we trained multilayer perceptrons to 134

predict future DAS from these representations. 135

We adapted the architecture proposed in [15] to our setting by training multiple 136

LSTMs, prediction networks, and by augmenting the model with several layers of 137

attention layers. Figure 3 shows the model architecture with brief description for each 138

component of the model. 139

Model input. The input features are the patient medications, PROM and CMs up to 140

a chosen time point, the demographics and the time to the prediction. Demographics, 141

medications, PROM and CM are treated separately since their measurements are not 142

aligned in time and contain different features. Merging them would result in a very 143

sparse matrix and necessitate significant feature imputation. 144

Model output. The model predicts the next available DAS28 or ASDAS score by 145

feeding the computed latent representation in the penultimate layers (i.e. representation 146

layers) to two separate blocks of prediction layers. The latent representation is used 147

posthoc to compute patient similarities. 148
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Fig 2. Project pipeline from data collection to implementation and evaluation of the
different models.
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Fig 3. Model architecture. The encoders and prediction networks are MLPs. The
model uses LSTMs to aggregate input sequences of different lengths and attention
mechanism to weigh the different components of the input. “CM” stands for “Clinical
measures”, “Med.” for “Medications”, “PROM” for “Patient-reported outcome measure”
and “Dem.” for “Demographics”.

Encoders. First, the MLP encoders process the normalised event-specific features. 149

We defined separate encoders for each type of information (CM, Dem, PROM and Med). 150

The encoders output lower dimensional embeddings for the time-related events and 151

higher dimensional embeddings for the demographics to have matching history sizes in 152

the later aggregation step. The order of the initial events is maintained in the computed 153

embeddings. 154

We describe how the model is applied to a patient p. Let ev ∈ {CM,Med, PROM} 155

be a time-related event, sev the number of features for ev, qev the embedding size, 156

Eev : Rsev −→ Rqev be the corresponding encoder and 157

[Xt1(ev)
, . . . , Xtn(ev)

]T ∈ Rsev×n(ev) the ordered events measured at times 158

t1(ev) < · · · < tn(ev). To ease the notation, we omitted the dependencies to p. We store 159

the time-ordered embeddings [et1(ev)
, . . . , etn(ev)

]T ∈ Rqev×n(ev) with 160

eti(ev)
= Eev

(
Xti(ev)

)
. 161

For the demographics event, we simply have edem = Edem(Xdem), where 162

Xdem ∈ Rsdem×1 are the demographic features. 163

Temporal block. For a given sequence of events, the temporal block aggregates the 164

embeddings into a one-dimensional vector. It contains one LSTM and one attention 165

mechanism per category of time-related events. The LSTMs process the ordered 166

embeddings computed by the event encoders. The attention mechanism is a trainable 167

vector that weighs the contribution of each output of the LSTMs to the aggregated 168

event history. For a given event, the aggregated history vector is the weighted sum of 169

the outputs of the LSTM. 170

Thus, let Lev be the LSTM for event ev, ev ∈ {CM,Med, PROM}. Lev takes as
input the sequence of embeddings [et1(ev)

, . . . , etn(ev)
]T and outputs a processed sequence

[Lev

(
et1(ev)

)
, . . . , Lev

(
etn(ev)

)
]T . Given the computed local attention weights alocti(ev)

,

i = 1, . . . , n, the aggregated event history is

H(ev) =
n∑

i=1

alocti(ev)
· Lev

(
eti(ev)

)
,
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where using the softmax operator we have that
∑n

i=1 a
loc
ti(ev)

= 1. 171

Representation block. The representation block combines the event-specific outputs 172

H(ev) of the temporal block, the demographics embedding edem and the time to 173

prediction t into a unique vector. It is augmented by an attention mechanism, weighing 174

the contribution of each type of event to the representation. The representation of a 175

patient is the weighted sum of the demographics embedding and the aggregated 176

event-specific histories, concatenated with the prediction time t. 177

Thus, R = [P, t] where

P =
∑

ev∈{CM,Med,PROM}

aglob(ev) ·H(ev) + aglob(dem) · edem

and
∑

ev∈{CM,Med,PROM,Dem}

aglob(ev) = 1.

R = [P, t] is the combined latent representation of the patient history. It is used as 178

input to predict future disease states and to compute similarities between patients. 179

Prediction networks. We defined two multilayer perceptron prediction networks, 180

PDAS28 : Rr×1 −→ R and PASDAS : Rr×1 −→ R . The networks take as input the 181

patient representation R and output the predicted DAS value at the medical visit at 182

time t. 183

2.2.3 Features and target selection 184

As described in subsubsection 2.1.2, we only included patients with at least three 185

measurements of either DAS28 or ASDAS. These two DAS are part of the clinical 186

measures, i.e. they are recorded during the medical visits of the patients. We use as 187

targets the DAS collected from the second CM onwards, to ensure sufficient history 188

length. The DAS from past CMs are part of the input features; a DAS is thus the target 189

and then a feature once it becomes part of the patient’s history. 190

For each possible target, we used as input features the demographics and all the 191

time-related events observed at least 15 days before the target CM. 192

2.2.4 Optimisation 193

We stratified the patients on the number of CMs and randomly sampled 20% of the 194

stratified patients as testing set that was not used for model training and tuning. We 195

standardised the features and imputed missing values. We performed a five-fold CV on 196

the training data to find the optimal parameters via random search. We selected the 197

hyperparameters with the lowest average loss across the folds on their respective 198

validation sets. 199

Following the empirical risk minimisation principle, our training objective is the sum 200

of the mean squared error (MSE) for the DAS28 and ASDAS predictions. We used the 201

AdamW [18] algorithm with mini-batch processing to optimise the objective. 202

At each step, we randomly sampled two batches of patients, one containing the 203

patients with available DAS28 and the other with available ASDAS to ensure consistent 204

joint optimisation of both objectives for these patients. We predicted all the available 205

targets for each selected patient. The loss optimised at each optimiser step is defined in 206

Equation 1 207

L(θ) =
∑

B∈{BDAS28,BASDAS}

1

NB

∑
p∈B

np∑
v=1

(modelθ(f
v
p , tv)− yvp)

2 (1)
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where BDAS28 and BASDAS are the sampled batches patients with available DAS28 208

and ASDAS respectively, NB is the total number of targets in batch B, np is the 209

number of targets for patient p, fv
p are the input features for patient p to predict target 210

v, tv is the time to target v and yvp is the true value of the target. θ denotes the model 211

parameters to be optimised. We used batch sizes proportional to the total number of 212

available targets per score to ensure consistent joint optimisation of both prediction 213

networks. 214

2.3 Patient similarity: k−NN regression model 215

We evaluated the utility of DAS-Net’s computed latent representations (i.e. computed 216

vector representation R as described in subsubsection 2.2.2) to retrieve similar patients. 217

Given a patient representation at a prediction time-point, we computed the L1 distance 218

to all other representations and selected the k closest patient embeddings (k = 50). 219

We matched the computed patient representations from the test set to their closest 220

representations in the train set, such that for each patient representation 221

ep,t := e ∈ Rtest (i.e. the computed representation embedding for patient p at time t), 222

we found the subset of nearest neighbour representations Ne ∈ Rtrain. We omitted the 223

dependencies to p and t to ease the notation. This experiment simulates comparing 224

incoming data to an extensive established database, possibly across hospitals. It could 225

help find optimal management strategies faster by assessing which strategy worked best 226

for similar patients. 227

Analogous to k−NN regression, we compared the representation’s future DAS with 228

the average DAS of their closest matched set. We refer to this model as the k−NN 229

regression model. 230

2.3.1 Feature importance for similarity assessment 231

We developed aggregate metrics to assess the average importance given to each feature 232

for the similarity computation between an index patient and their subset of nearest 233

neighbours. 234

For continuous features, we computed the average absolute distance (AAD) between
the feature value of the patients in the test set and the average value in their matched
set (in the training data), and the standardised AAD by dividing the AAD by the
standard deviation of the feature:

AAD =
1

| Rtest |
∑

e∈Rtest

| xc
e −

1

| Ne |
∑

e′∈Ne

xc
e′ |,

where xc
e is the value of the continuous feature c for patient embedding e. For all 235

computations, we restricted the subsets to the embeddings with available feature c. 236

This metric reflects how much the values of the features of the subset of nearest 237

neighbours deviate from the values of the index patient. 238

For a categorical feature fj with possible categories Sj we computed the prior
empirical probability of each category k ∈ Sj . Furthermore, for each k ∈ Sj , we
computed the adjusted probabilities for the embeddings in the neighbourhood Ne of an
index patient embedding e with feature value k, i.e. the probability
P (xj

e′ = k | xj
e = k, e′ ∈ Ne). We compared the two quantities to evaluate the

importance of each categorical feature for the similarity computation. For an
embedding e′ ∈ Rtrain, the prior empirical probability P (xj

e′ = i) of category i ∈ Sj is

P (xj
e′ = i) =

∑
e∈Rtrain

1{xj
e = i}∑

e∈Rtrain

∑
k∈Sj

1{xj
e = k}

,
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Model MSE ASDAS MSE DAS28
DAS-Net 0.510± 0.009 0.965± 0.014
XGBoost 0.534± 0.003 0.992± 0.002
MLP 0.562± 0.005 1.029± 0.007
Naive 0.842 1.475

Table 1. Model performance (regression). DAS-Net outperforms the three
baselines for both prediction tasks. The naive baseline simply reuses the last available
DAS. The MLP and XGBoost baselines use the last available values of each feature as
input and our model the whole patient history.

and the adjusted probability is

P (xj
e′ = k | xj

e = k, e′ ∈ Ne)) =

∑
e∈Rtest

1{xj
e = k}

∑
e′∈Ne

1{xj
e′ = k}∑

e∈Rtest
1{xj

e = k}
∑

e′∈Ne

∑
i∈Sj

1{xj
e′ = i}

.

Again, we restricted the computations to the subsets of patients with available feature j. 239

The increase in adjusted probabilities versus prior probabilities reflects how likely the 240

feature is to have the same value as the index patient within its subset of nearest 241

neighbours. 242

3 Results and Discussion 243

We compared the performance of DAS-Net and of the k−NN regression model for future 244

disease activity prediction to different baseline models and further explored the three 245

explainability approaches to better understand the relationship between input features 246

and model output at different stages of the modeling process. 247

3.1 Performance 248

3.1.1 DAS-Net prediction 249

We compared the performance of our model to two machine learning models: vanilla 250

neural network (MLP), tree-based gradient boosting model (XGBoost), and one static 251

naive baseline. The static naive baseline uses the last available DAS28 (resp. ASDAS) 252

score for the given patient as its prediction. This strategy implies using the last disease 253

state of a patient as a predictor of their future disease state. The MLP and XGBoost 254

baselines take as input the same features as our model but only their last available 255

values. Restricting the number of values per feature is necessary since these models 256

cannot handle varying input sizes. We trained one MLP and XGBoost model per 257

prediction task. 258

In Table 1 we report the models’ average performance and standard deviation on the 259

test set. Our model achieves the lowest mean squared error (MSE) on both prediction 260

tasks (MSEs of 0.510± 0.009 for ASDAS and 0.965± 0.014 for DAS28). In second place 261

comes the XGBoost model performing the best out of all baseline models (MSEs of 262

0.534± 0.003 for ASDAS and 0.992± 0.002 for DAS28). Using a naive model that uses 263

the most recent DAS score as prediction achieves the worst performance (MSEs of 0.842 264

for ASDAS and 1.475 for DAS28). 265

Furthermore, we evaluated the models’ ability to correctly predict active RA (i.e. 266

DAS28 values above 2.6) and moderate axSpA (i.e. ASDAS values above 2.0). To 267

perform the classification, we trained a logistic regression model on DAS Net’s latent 268

embeddings from the training set and evaluated the performance on the test set. We 269
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Model Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy
ASDAS ASDAS ASDAS DAS28 DAS28 DAS28

DAS-Net 0.771± 0.002 0.749± 0.003 0.761± 0.001 0.759± 0.001 0.754± 0.001 0.757± 0.000
XGBoost 0.859± 0.009 0.619± 0.014 0.750± 0.003 0.845± 0.001 0.620± 0.002 0.736± 0.001
MLP 0.818± 0.008 0.657± 0.010 0.745± 0.001 0.835± 0.009 0.631± 0.011 0.736± 0.002

Table 2. Model performance (classification). We evaluated the performance of
the different approaches at predicting active disease (i.e. DAS28 values above 2.6 or
ASDAS values above 2.0). While our approach has a slightly lower sensitivity than the
baselines, it has a better balance between sensitivity and specificity and has an overall
higher accuracy.

(a) DAS28 prediction (b) ASDAS prediction

Fig 4. MSE versus number of prior medical visits. The MSE between model
predictions and target DAS values decreases as the number of prior medical visits
increases. The availability of at least three prior medical visits induces a steep decrease
in MSE.

compared the performance of this approach to the XGBoost and MLP predictions, 270

where we thresholded the predicted values of DAS28/ASDAS. Our approach achieves 271

overall a higher accuracy than the baseline ML models (accuracies of 0.761± 0.001 for 272

ASDAS and 0.757± 0.000 for DAS28 for our approach) (Table 2). Furthermore, the 273

sensitivity and specificity of our approach are more balanced than for the baseline 274

models. The baseline models achieve a higher sensitivity but suffer from a low 275

specificity (Table 2). 276

To understand the effect of the length of patient history on the prediction 277

performance, we computed the model’s performance as a function of varying lengths of 278

patient histories. Figure 4 shows the MSE decreases as more prior medical visits 279

become available to the model. Additionally, in Figure 5, we plot the predicted versus 280

ground truth DAS28 and ASDAS scores for two example patients, showcasing how DAS 281

Net could be used by clinicians to monitor and predict disease activity. 282

3.1.2 Patient similarity: k−NN regression model 283

We evaluated the ability of our model to cluster patients with similar disease 284

progressions, by comparing the future DAS values of the embeddings in the test set 285

with the average values of their most similar embeddings, as computed by our k−NN 286

regression approach on DAS-Net’s latent embeddings. We compared the performance of 287

our approach to the performance of a k−NN algorithm applied to the raw data, and a 288

naive approach selecting a random subset of patients. Both baseline strategies thus do 289

not utilise DAS-Net’s computed latent representations. The k-NN model on the latent 290

representations achieves the lowest MSE (MSEs of 0.506 and 0.966 for ASDSAS and 291
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(a) DAS28 prediction (b) ASDAS prediction

Fig 5. Predictions of individual patient trajectories. We compare the model
predictions with the ground truth values of DAS28/ASDAS for two example patients.
The bar charts show the prescribed medications present in the database.

Model MSE ASDAS MSE DAS28
k-NN model on DAS-Net latent representations 0.506 0.966

k-NN on raw data 0.681 1.218
Random subset 0.915 1.863

Table 3. Similarity matching. The k-NN (k = 50) method based on the model
latent embeddings outperforms the k−NN algorithm directly applied to the raw data
and the completely random subset for the retrieval of similar patients.

DAS28 prediction). 292

Interestingly, our k−NN approach has a similar predictive performance to the 293

DAS-Net model for prediction (Table 1), and also outperforms the MLP and XGBoost 294

baselines, suggesting that the DAS-Net latent representations successfully capture the 295

important predictive components from the patient history. 296

3.2 Explainability approaches 297

In this section, we compare and contrast the results obtained from the different feature 298

attribution techniques we applied or developed. These methods offer multiple insights 299

on the relationship between input features and model output at different stages of the 300

modeling processes. 301

3.2.1 SHAP values on vanilla neural network 302

For the baseline neural network model (MLP), we computed the SHAP [10] values for 303

the input features. SHAP values are derived from the game-theoretic-based Shapley 304

values [19] and compute the contribution of each feature to the model predictions. 305

The plots in Figure 6 show the top-10 SHAP values for ASDAS and DAS28 306

predictions. Each dot represents a feature value from the test set and is overlaid with a 307

colour reflecting the value of the feature. The x-axis shows the SHAP value. In our 308

setting, a positive SHAP value indicates that the feature drives the model predictions 309

upwards, and thus leads to higher predicted DAS. The features are ordered by the 310

average magnitude of their SHAP values (from top to bottom, and we included only the 311

top ten features). Overall, the SHAP values are consistent with the clinical knowledge. 312
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For ASDAS prediction, the past ASDAS values, age and number of enthesitides are 313

positively correlated with their SHAP values, indicating that a higher value leads to a 314

higher predicted disease activity score. For the medications, currently taking a 315

bDMARD leads to lower future predicted DAS and the opposite for csDMARDs. For 316

DAS28 prediction, the past DAS28 values, BSR, HAQ and RADAI pain level are 317

positively correlated with higher predicted disease activity scores. The absence or short 318

duration of morning stiffness leads to lower predicted DAS. Being male is also a better 319

prognostic factor. 320

Furthermore, we computed the absolute SHAP values of the features for each model 321

trained on one of the 5 folds in our data (during 5-fold cross-validation). The plots in 322

Figure 7 show the average and standard deviation of the absolute SHAP values for the 323

10 features with the largest overall absolute SHAP values (ordered from top to bottom). 324

The importance ranking of the features is consistent across the different models. 325

Clinical relevance of findings In predicting future DAS in RA patients, the model 326

was strongly influenced by the presence and duration of morning stiffness, with no or 327

shorter morning stiffness resulting in lower predicted DAS. Morning stiffness for more 328

than one hour strongly correlates with DAS28 scores [20]. Thus, in the model, the level 329

of morning stiffness might have reinforced the strong dependency of the future DAS 330

from current and past DAS measurements. 331

Notably, the feature importance in predicting ASDAS in patients with axSpA 332

differed with respect to the influence of current and past treatment. In RA, current use 333

of bDMARDs predicted low DAS levels. Similarly, in axSpA, the current use of 334

bDMARDs was linked to predicting low future disease activity. This suggests that 335

bDMARDs are effective in managing disease progression in this context. However, in 336

the axSpA cohort, the situation is more complex. Both past use of bDMARDs and 337

current use of csDMARDs (conventional synthetic disease-modifying antirheumatic 338

drugs) are connected to high future disease activity. This suggests that patients who 339

have experienced previous failure with bDMARDs or require additional csDMARD 340

therapy belong to a difficult-to-treat group with a low likelihood of responding 341

favourably to future treatments.
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(b) DAS28 prediction

Fig 6. SHAP feature importance. The x-axis shows the SHAP value, and each dot
is overlaid with a color representing the feature value. Thus, a pink dot with a positive
SHAP indicates that the feature has a high value and leads to a higher predicted DAS.
We show the top-10 features with the highest absolute SHAP values (ordered from top
to bottom).

342
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(a) ASDAS prediction
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DAS283BSR score

DAS28 Patients

(b) DAS28 prediction

Fig 7. Mean and standard deviation of the absolute SHAP values across
folds. We trained one MLP model per DAS on each cross-validation fold and computed
their average absolute SHAP values on the test set. The top-10 most important features
are consistent across folds.

(a) Global attention weights for the
different event features in the history

(b) Local attention weights for clinical
measures

Fig 8. Local and global attention weights for increasing number of medical visits
(i.e. increasing patient histories) aggregated over the patients in the test set. The
global attention shows that the model uses clinical measures the most for the
predictions. Furthermore, this pattern grows stronger as the number of available clinical
measures increases. The local attention shows that within the clinical measures, most
of the weight is attributed to the recent clinical measures.

3.2.2 Attention weights 343

DAS-Net employs a two-layered attention mechanism for model-based explainability. 344

The attention mechanism assign weights to the different events of the patient histories 345

highlighting their significance for the model’s predictions. The local attention is 346

specific to each type of time-related event showing the weight given to each event when 347

building the aggregated event history (H(ev), ev ∈ {CM,Med, PROM} in 348

subsubsection 2.2.2). For example, they show which specific clinical measure 349

contributed the most to the prediction. The global attention gives weight to the 350

aggregated event histories and demographics when building the patient’s full history 351

representation (P in subsubsection 2.2.2). It shows which type of event is used the most 352

by the model to make the prediction. 353

Global attention. Figure 8a shows the attribution of the global attention weights to 354

the different event features (i.e. CM, PROM, etc.) in the patients’ history as the history 355

length increases (denoted by the number of predicted targets). At the first target 356

prediction, while most of the attention weight is already attributed to past CM, 357

one-third is still attributed to other sources of information. Thus, when limited 358
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information is available, the model considers all the sources of information (i.e. clinical 359

measures, medications, demographics and PROM). As the volume of available 360

information increases (i.e. increasing length of history), the model increasingly assigns 361

higher weights to the past clinical measures (CM) compared to the other sources of 362

information. This weight distribution is reasonable because the previous CM contain 363

the previous DAS that is predictive of future DAS. 364

Interestingly, for patients with a significant improvement in DAS (at least 20% 365

improvement since the last CM), DAS-Net attributes less attention to the CM and 366

redistributes it towards the other types of events (Figure 9). 367

(a) DAS28 prediction (b) ASDAS prediction

Fig 9. Global attention weights. Comparison in global attention weight attribution
between patients with or without improvement in disease activity. The attention
redistributes for patients with at least 20% improvement at the next visit.

Local attention. We further inspected the attribution of the local attention weights 368

for the clinical measures in patients’ history when predicting the target outcome 369

Figure 8b. Most attention is directed at the last available clinical measure in the history 370

before the prediction. Furthermore, the attribution to past clinical measures is inversely 371

proportional to their distance from the target. Our model thus assigns the highest 372

attention scores to the recent clinical measures (i.e. latest measures), particularly the 373

ones preceding the prediction. 374

3.2.3 Patient similarity 375

Case-based visualisations. We visualised the patient representations by computing 376

and plotting their two-dimensional t-SNE embeddings [21]. We plotted the embeddings 377

for the entire cohort, i.e. the t-SNE embeddings of all the higher dimensional 378

representations in R = Rtest ∪Rtrain. In Figure 10, we overlaid the embeddings in each 379

subplot with colourmaps reflecting the values of the features. We reported the last 380

available value for the given feature at the time of computation of an embedding (we 381

restricted the plots to the embeddings with an available value for the feature). The 382

subspace is separated according to different values of the features. In Figure 10a, we 383

overlaid the embeddings with the CIJD subtype of the patients, even though this 384

attribute is not explicitly used as an input feature in our model, to get an overview of 385

the distribution of the different CIJD subtypes in the latent space. 386

The plots provide general visual insight into the latent representation space. For 387

instance Figure 10d shows the repartition of the smoker statuses, and a cluster of 388

smoker patients in the top left of the figure stands out. Embeddings in this subspace 389

correspond to patients with a smoking status that seems determinant for their disease 390

activity prediction. Non-smoking patients and former smokers for more than a year are 391

generally mapped to the same subspace, showing that the algorithm treats them the 392

same. Some smokers, with possibly other more determinant factors, are also mapped in 393
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Category c Base P (c) Adjusted P (c | xe = c) Increase (percentage)

morning stiffness duration RADAI: 2 to 4 hours 0.04 0.08 100.0
morning stiffness duration RADAI: more than 4 h... 0.02 0.04 100.0
gender: male 0.29 0.46 59.0
morning stiffness duration RADAI: 1 to 2 hours 0.08 0.11 38.0
morning stiffness duration RADAI: all day 0.03 0.04 33.0
smoker: i am currently smoking 0.23 0.27 17.0
ra crit rheumatoid factor: negative 0.37 0.43 16.0
morning stiffness duration RADAI: 30 minutes to... 0.16 0.18 12.0
gender: female 0.71 0.78 10.0
morning stiffness duration RADAI: no morning st... 0.47 0.51 9.0
ra crit rheumatoid factor: positive 0.63 0.68 8.0
smoker: i am a former smoker for more than a year 0.31 0.33 6.0
anti ccp: negative 0.38 0.40 5.0
anti ccp: positive 0.62 0.63 2.0
smoker: i have never smoked 0.46 0.47 2.0
morning stiffness duration RADAI: less than 30 ... 0.21 0.21 0.0

Table 4. Similarity metric: contribution of categorical features. Empirical
probability of a category c versus adjusted probability, given that the data point is in
the subset of nearest neighbours Ne of a datapoint xe with the same category c. The
increase in the adjusted probability reflects the importance of a given category in the
similarity assessment. Longer durations of morning stiffness and gender have the
strongest impact on the similarity assessment.

the same subspaces as non-smokers. By inspecting the gender plot (Figure 10c) we 394

notice that males are generally mapped towards the edges of the sub-clusters. The same 395

regions generally correspond to lower DAS28 activity regions (Figure 10b). 396

Furthermore, in Figure 10 we highlighted a randomly selected patient embedding 397

ep,t from the test set (larger dot) and its nearest neighbours (triangles) Ne as computed 398

by our k−NN regression model. For each continuous feature (here the DAS28 score) we 399

also computed the average value in the entire representation set R and within Ne. For 400

categorical features (here gender, duration of morning stiffness, rheumatoid factor and 401

smoker status), we computed the incidence of each category in R and Ne. By comparing 402

the overall distribution of the feature value with its distribution within Ne, we get 403

insight into the importance given to the different features for the similarity assessment. 404

The example patient in Figure 10 is diagnosed with rheumatoid arthritis, and most 405

of her nearest neighbours also belong to the same CIJD subtype (Figure 10a). She has a 406

higher DAS28 value than average (4.4 versus mean cohort value of 3.1) and there is a 407

distribution shift within her subset of nearest neighbours towards higher DAS28 values 408

(average of 4.2 within her subset of nearest neighbours) (Figure 10b). Her smoker status 409

(Figure 10d) and gender (Figure 10c) seem determinant for the similarity assessment, 410

since all of her nearest neighbours are also smoking females. Conversely, the rheumatoid 411

factor (positive Figure 10e) and duration of the morning stiffness (all day, Figure 10f) 412

seem to be considered less important for this patient. However, there is still an overall 413

redistribution towards positive rheumatoid factor and longer durations of morning 414

stiffness in the nearest neighbour subset compared to the distribution in the entire 415

representation cohort. 416

Ranking of features Plots in Figure 10 and in the appendix S1 Appendix. 417

Similarity provide insights into the nearest neighbour attribution mechanism on an 418

individual patient level. Using the method described in subsubsection 2.3.1, we ranked 419

the features by global importance in the cohort. We found that overall both DAS scores 420

and the number of swollen joints are the most important for the similarity assessment 421

for continuous features (Table 5). Similarly, high duration of morning stiffness and 422

gender are the top-2 categorical features for the similarity assessment (Table 4). 423
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Feature AAD Standardised AAD

asdas score 0.25 0.24
das283bsr score 0.35 0.25
n painfull joints 28 2.05 0.41
n painfull joints 2.40 0.43
crp 5.35 0.46
n swollen joints 2.14 0.50
bsr 8.03 0.50
mda score 0.73 0.56
n enthesides 1.42 0.58
joints type 8.05 0.61
haq score 0.46 0.65
pain level today RADAI 1.91 0.71
activity of rheumatic disease today RADAI 1.89 0.71
hb 0.97 0.72
height cm 6.73 0.73
weight kg 12.05 0.76

Table 5. Similarity metric: contribution of continuous features. Average
absolute distance (AAD) and standardised AAD between the feature value of a test
embedding ep,t and the mean feature value within its nearest neighbours Ne. The
features are ordered by standardised AAD. We see that the two DAS and the number of
painful joints are taken into account the most during the similarity assessment.

Clinical relevance of findings Our analysis of patient similarity suggested that the 424

impact of smoking on disease parameters varies among patients. Genetic association 425

studies showed that smoking is only associated with an increased risk of developing RA 426

in people carrying the shared epitope genes in the HLA-DR locus, but not in current 427

smokers without these RA risk genes [22]. While it is known that smoking negatively 428

affects treatment response and disease severity in both RA and axSpA [23–26], it would 429

be interesting to know if this is the same in all patients or if genetic background plays a 430

similarly important role in the impact of smoking on disease. 431
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(a) Diagnosis (b) DAS28 value

(c) Gender (d) Smoker status

(e) Rheumatoid factor (f) Morning stiffness duration

Fig 10. t-SNE visualisation of patient representations. Each point shows the
t-SNE embedding of a representation of a patient at a given time. The subplots show
the decomposition overlaid with the feature values (restricted to the embeddings with
an available value for the feature). Furthermore, we highlighted a patient from the test
set (larger filled dot) and her nearest neighbours (triangles) as computed by our
algorithm. For each continuous feature we compute the average value in the entire
cohort and within the subset of nearest neighbours. For categorical features, we
computed the proportion of each category.
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Conclusion 432

In this work, we propose DAS-Net, a multitask neural network-based model for 433

transforming heterogeneous rheumatic disease registry data into comparable patient 434

representations and predicting future disease activity. When predicting future DAS, 435

DAS-Net outperformed all non-temporal baseline models that discarded or 436

oversimplified most of the patient history. 437

Our model design included attention layers that aided in explaining the importance 438

of the different visits and parts of the patient’s history in outcome prediction. It showed 439

that our model uses recent information but still attributes significant weight to older 440

events and that the model attributes the majority of the weight to the clinical measures. 441

This pattern gets stronger as the amount of available history increases and the model 442

performance improves for longer medical histories. 443

Moreover, the predictive power of the nearest neighbour approach on the model’s 444

latent representations showed that our model is well suited to transform heterogeneous 445

electronic health records into comparable representations. One possible extension for 446

our model would be to explicitly incorporate a clustering loss in the training 447

objective [27] to further improve the patient similarity framework. 448

Lastly, the results of the three different analyses of feature importance (feature 449

attribution via SHAP, attention weights and case-based similarity) are in concordance 450

with clinical expert knowledge ( [28], [29], [30]). Past disease activity scores were 451

consistently the strongest predictors in all three analyses and gender and rheumatoid 452

factor stood out as important features for the similarity assessment. Consistent with 453

these findings, low disease activity, including low CRP/BSR levels, and low HAQ levels 454

have also been associated with good future outcomes in patients with RA in previous 455

studies [31,32]. Similarly, autoantibody status and gender have been described before as 456

predictors of outcomes in RA patients [32–34]. 457

Overall, our study demonstrates promising results towards developing an explainable 458

clinical decision support system for retrieving similar patients and predicting their 459

disease progression while considering the different disease management strategies that 460

worked best for similar patients. Such a CDSS would be especially useful for managing 461

complex chronic diseases. It could help find optimal management strategies faster by 462

assessing which strategy worked best for similar patients. 463
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Data and code availability 464

Data are owned by a third party, the Swiss Clinical Quality Management in Rheumatic 465

Diseases (SCQM) foundation and may be obtained after approval and permission from 466

SCQM. 467

The code developed for the analysis is available on the following GitHub repository 468

https://github.com/uzh-dqbm-cmi/scqm. 469

Acknowledgments 470

The authors thank the patients and caregivers who made the study possible, as well as 471

the clinicians who collected the data. A list of rheumatology offices and hospitals that 472

are contributing to the SCQM registries can be found on www.scqm.ch/institutions. 473

The SCQM is financially supported by pharmaceutical industries and donors. A list of 474

financial supporters can be found on www.scqm.ch/en/partners/. The authors thank 475

Almut Scherer for her feedback on the manuscript. 476

References

1. Chronic inflammation and your joints - Harvard Health;. Available from: https:
//www.health.harvard.edu/pain/chronic-inflammation-and-your-joints.

2. Kingsmore KM, Puglisi CE, Grammer AC, Lipsky PE. An introduction to
machine learning and analysis of its use in rheumatic diseases. Nature Reviews
Rheumatology. 2021;17(12):710–730.

3. Uitz E, Fransen J, Langenegger T, Stucki G. Clinical quality management in
rheumatoid arthritis: putting theory into practice. Rheumatology.
2000;39(5):542–549.

4. The DAS28 score — NRAS — Disease Activity Score;. Available from:
https://nras.org.uk/resource/the-das28-score/.

5. ASDAS calculator - ASAS;. Available from:
https://www.asas-group.org/instruments/asdas-calculator/.

6. Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation.
1997;9(8):1735–1780.

7. Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to
align and translate. arXiv preprint arXiv:14090473. 2014;.

8. Allam A, Dittberner M, Sintsova A, Brodbeck D, Krauthammer M. Patient
similarity analysis with longitudinal health data. arXiv preprint arXiv:200506630.
2020;.

9. Karim MR, Beyan O, Zappa A, Costa IG, Rebholz-Schuhmann D, Cochez M,
et al. Deep learning-based clustering approaches for bioinformatics. Briefings in
bioinformatics. 2021;22(1):393–415.

10. Lundberg SM, Lee SI. A unified approach to interpreting model predictions.
Advances in neural information processing systems. 2017;30.

11. Choi E, Bahadori MT, Schuetz A, Stewart WF, Sun J. Doctor ai: Predicting
clinical events via recurrent neural networks. In: Machine learning for healthcare
conference. PMLR; 2016. p. 301–318.

November 30, 2023 20/27

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 6, 2023. ; https://doi.org/10.1101/2023.12.05.23299508doi: medRxiv preprint 

https://github.com/uzh-dqbm-cmi/scqm
www.scqm.ch/institutions
www.scqm.ch/en/partners/
https://www.health.harvard.edu/pain/chronic-inflammation-and-your-joints
https://www.health.harvard.edu/pain/chronic-inflammation-and-your-joints
https://nras.org.uk/resource/the-das28-score/
https://www.asas-group.org/instruments/asdas-calculator/
https://doi.org/10.1101/2023.12.05.23299508
http://creativecommons.org/licenses/by/4.0/


12. Montani S, Striani M. Artificial intelligence in clinical decision support: a focused
literature survey. Yearbook of medical informatics. 2019;28(01):120–127.

13. Norgeot B, Glicksberg BS, Trupin L, Lituiev D, Gianfrancesco M, Oskotsky B,
et al. Assessment of a deep learning model based on electronic health record data
to forecast clinical outcomes in patients with rheumatoid arthritis. JAMA
network open. 2019;2(3):e190606–e190606.

14. Lee S, Kang S, Eun Y, Won HH, Kim H, Lee J, et al. Machine learning-based
prediction model for responses of bDMARDs in patients with rheumatoid
arthritis and ankylosing spondylitis. Arthritis Research & Therapy. 2021;23:1–12.

15. Kalweit M, Walker UA, Finckh A, Müller R, Kalweit G, Scherer A, et al.
Personalized prediction of disease activity in patients with rheumatoid arthritis
using an adaptive deep neural network. PLoS One. 2021;16(6):e0252289.

16. Aletaha D, Smolen JS. Outcome Measurement in Rheumatoid Arthritis: Disease
Activity. Rheumatoid Arthritis. 2009; p. 225–230.

17. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al.
Attention is all you need. Advances in neural information processing systems.
2017;30.

18. Loshchilov I, Hutter F. Decoupled weight decay regularization. arXiv preprint
arXiv:171105101. 2017;.

19. Shapley L. Value for n-person games, contributions to the theory of games
(Kuhn, HW, Tucker, AW Eds.). 307–317. Ann Math Stud. 1953;28:275–293.

20. Orange DE, Blachere NE, DiCarlo EF, Mirza S, Pannellini T, Jiang CS, et al.
Rheumatoid arthritis morning stiffness is associated with synovial fibrin and
neutrophils. Arthritis & Rheumatology. 2020;72(4):557–564.

21. Van der Maaten L, Hinton G. Visualizing data using t-SNE. Journal of machine
learning research. 2008;9(11).

22. Padyukov L, Silva C, Stolt P, Alfredsson L, Klareskog L. A gene–environment
interaction between smoking and shared epitope genes in HLA–DR provides a
high risk of seropositive rheumatoid arthritis. Arthritis & Rheumatism: Official
Journal of the American College of Rheumatology. 2004;50(10):3085–3092.

23. Masdottir B, Jonsson T, Manfreosdóttir V, Vı́kingsson A, Brekkan Á,
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34. Vallejo-Yagüe E, Pfund JN, Burkard T, Clair C, Micheroli R, Möller B, et al.
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Supporting information

3.3 S1 Table. Dataframes and features

Dataframe demographics clinical measures medications PROM

Features date of birth,
gender,

date first symptoms,
date diagnosis

date,
weight kg,

das283bsr score,
asdas score,

n swollen joints,
n painfull joints,

bsr,
n painfull joints 28,

height cm,
crp,
hb,

n enthesides,
mda score,
joints type,
anti ccp,

ra crit rheumatoid factor,
smoker,
haq score

medication generic drug,
medication drug classification,

medication dose,
date,
is start

date,
pain level today RADAI,

morning stiffness duration RADAI,
activity of rheumatic disease today RADAI

Table S 1. Name of input features in the different types of patient records in the
SCQM database.

3.4 S2 Table. Description of continuous clinical measure
features

mean std missing (%)
weight kg 72.78 16.03 30.21
das283bsr score 3.02 1.40 14.45
asdas score 2.34 1.03 84.63
n swollen joints 2.54 4.18 4.94
n painfull joints 3.42 5.51 18.70
bsr 16.33 15.91 0.98
n painfull joints 28 2.99 4.86 14.36
height cm 167.06 9.23 34.72
crp 6.56 11.33 26.74
hb 13.80 1.36 36.64
n enthesides 1.31 2.40 78.62
mda score 1.68 1.33 0.31
haq score 0.77 0.71 40.16

Table S 2. Mean, standard deviation and missingness of the continuous
clinical measure features.

3.5 S3 Table. Description of categorical clinical measure
features

3.6 S4 Table. Description of continuous medication features

mean std missing (%)
medication dose 253.32 459.76 0.25

Table S 4. Mean, standard deviation and missingness of continuous medication
features
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smoker anti ccp ra crit rheumatoid factor joints type
i have never smoked (%) 16.18 NaN NaN NaN
i am a former smoker for more than a year (%) 11.05 NaN NaN NaN
i am currently smoking (%) 7.71 NaN NaN NaN
positive (%) NaN 36.34 51.44 NaN
negative (%) NaN 22.40 30.07 NaN
28.0 (%) NaN NaN NaN 65.36
44.0 (%) NaN NaN NaN 22.39
68.0 (%) NaN NaN NaN 12.20
missing (%) 65.06 41.26 18.49 0.05

Table S 3. Distribution of categorical clinical measure features

3.7 S5 Table. Description of categorical medication features

medication generic drug medication drug classification is start
methotrexate (%) 23.34 NaN NaN
prednisone (%) 17.32 NaN NaN
rituximab (%) 10.26 NaN NaN
adalimumab (%) 8.09 NaN NaN
etanercept (%) 6.68 NaN NaN
infliximab (%) 5.77 NaN NaN
leflunomide (%) 5.70 NaN NaN
sulfasalazine (%) 5.09 NaN NaN
Other (%) 3.53 NaN NaN
golimumab (%) 3.40 NaN NaN
hydroxychloroquine (%) 2.95 NaN NaN
tocilizumab (%) 2.69 NaN NaN
abatacept (%) 2.15 NaN NaN
certolizumab (%) 2.15 NaN NaN
secukinumab (%) 0.89 NaN NaN
bDMARD (%) NaN 42.68 NaN
csDMARD (%) NaN 37.40 NaN
steroid (%) NaN 17.35 NaN
tsDMARD (%) NaN 2.23 NaN
yes (%) NaN NaN 54.96
no (%) NaN NaN 45.04
missing (%) 0.00 0.35 0.00

Table S 5. Distribution of categorical medication features

3.8 S6 Table. Description of continuous PROM features

mean std missingness
pain level today RADAI 3.01 2.59 0.57
activity of rheumatic disease today RADAI 3.14 2.57 0.75

Table S 6. Mean, std and missingness of continuous PROM features

3.9 S7 Table. Description of categorical PROM features

morning stiffness duration RADAI
no morning stiffness (%) 45.86
less than 30 minutes (%) 23.87
30 minutes to 1 hour (%) 14.36
1 to 2 hours (%) 7.10
2 to 4 hours (%) 3.78
all day (%) 2.31
more than 4 hours (%) 1.83
missing (%) 0.89

Table S 7. Distribution of categorical PROM features
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3.10 S8 Table. Description of continuous demographic features

mean std missing (%)
age 65.41 15.71 0.00
age at first symptoms 41.88 15.77 2.52
age at diagnosis 44.56 15.06 1.98

Table S 8. Mean, standard deviation and missingness of demographic features

3.11 S9 Table. Description of categorical demographic features

female male missing (%)
gender (%) 65.17 34.83 0.0

Table S 9. Distribution of categorical demographic features
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3.12 S1 Appendix. Similarity

The plots in Figure S 1 and Figure S 2 show additional t-SNE visualisations of patient
representations. In each of the figures, the larger dot represents a randomly selected
patient, and the triangle their nearest neighbours as computed by our algorithm.

(a) DAS28 value (b) Gender

(c) Morning stiffness duration (d) Rheumatoid factor

Figure S 1. The DAS28 score and gender show a high level of consistency among the
closest neighbors of this patient. Duration of morning stiffness and rheumatoid factors
also show slight distribution shifts within the subsets of nearest neighbours.
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(a) DAS28 value (b) Gender

(c) Rheumatoid factor

Figure S 2. The patient’s rheumatoid factor status and their low DAS28 value can be
observed among nearest neighbours subset as well.
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