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28

29 Abstract

30 Background:

31 Malaria vectors persist predominantly in houses lacking screened windows, doors, and eave 

32 space, leading to ongoing transmission. Some other vectors adapt their feeding behavior to 

33 sustain reproduction. This study evaluates the role of primary malaria vectors on malaria 

34 transmission in relation to house characteristics in Kilombero Valley.

35 Methods:

36 Mosquito data collection was done using three methods: a CDC light trap, a miniaturized double 

37 net trap (DN-Mini trap), and a Prokopack aspirator through 222 households that were randomly 

38 selected in the three villages, namely Ebuyu, Chirombora, and Mzelezi. The houses are 

39 characterized during mosquito collections, and the Geographical Position System (GPS) was 

40 used to geolocate the sampled houses. Morphological identification was done on the collected 

41 sample (i.e., fed, part-fed, gravid, and unfed), and a sub-sample was sent to the laboratory to 

42 assess the sibling species, blood meal, and sporozoite.

43 Results:

44 A total of 1542 Anopheline mosquitoes were collected, of which 79.1% (n= 1219) were An. 

45 funestus and 20.3% (n= 313) were An. arabiensis as primary malaria vectors, while the 

46 secondary malaria vector was 0.6% (n = 10). Out of 487 anopheline mosquitoes assayed for 

47 plasmodium falciparum sporozoite, 92.8% (n = 13) of An. funestus was reported to be dominant 

48 while An. arabiensis was dominant by 7.2% (n = 1). While An. funestus was the only species that 

49 had a blood meal and was found to feed on humans (88.16%, n = 134), dogs (11.18% n = 17), 

50 and a mixture of both human and chicken blood meal. In addition to that, the house with 

51 screened eave space had fewer An. funestus compared to the house with open eave space (RR = 

52 0.978, p =0.864), while the house with a brick wall had a higher An. funestus compared with the 

53 house with a mud wall (RR = 0.690, p =0.107).

54 Conclusion
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55 Anopheles funestus remained the dominant malaria vector responsible for all transmissions in the 

56 villages. The human population is at risk due to their preference for An. funestus, which 

57 contributes about 92.8% of infections in the village. Additionally, the house design appears to 

58 play a significant role in facilitating malaria vectors to continue transmitting malaria.

59 Keywords: Blood meal, CDC light trap, DN-Mini trap, Eave space, Indoor and Outdoor host-

60 seeking mosquitoes, Prokopack aspirator, Malaria transmission, Sporozoite.

61

62 Background

63 Malaria continues to be a major global public health concern, with an estimated 2 billion cases 

64 and 11.7 million deaths worldwide, particularly affecting Sub-Saharan African countries [1]. 

65 Malaria is primarily transmitted through the bites of infected female mosquitoes belonging to the 

66 Anopheles species. Four plasmodium species, namely Plasmodium falciparum, Plasmodium 

67 malariae, Plasmodium vivax, and Plasmodium ovale, are responsible for causing malaria [2]. 

68 Plasmodium falciparum was reported as the causative agent in 96% of malaria infections in 

69 Tanzania, particularly in malaria-endemic regions, while Plasmodium malariae and Plasmodium 

70 ovale accounted for the remaining 4% [3]. Tanzania has made commendable progress in 

71 reducing the malaria transmission rate, with prevalence dropping from 18.1% to 7.3% between 

72 2007 and 2017 [3, 4]. However, during the COVID-19 pandemic, there was a slight increase of 

73 1% in malaria cases due to healthcare system priorities and individual precautions [6]. Low- and 

74 middle-income countries, including Tanzania and Uganda, faced challenges in treating malaria 

75 during the pandemic [6, 7]. 

76 Furthermore, the persistence of malaria transmission in villages is influenced by various factors, 

77 including migratory farming. Families residing in temporary, semi-open shacks (shamba huts) 

78 for extended periods while working on distant farms are at higher risk of malaria due to 

79 inadequate mosquito protection [9]. Additionally, many houses in Kilombero Valley lack proper 

80 screening of eave spaces, windows, and doors, potentially allowing mosquitoes to enter homes 

81 [10–12]. Several studies suggest that modern house features are favored by residents due to the 

82 perception that these features reduce mosquito bites [13], However, in rural settings, concerns 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 7, 2023. ; https://doi.org/10.1101/2023.12.05.23299501doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.05.23299501
http://creativecommons.org/licenses/by/4.0/


83 about the cost of maintaining these features have been raised. House improvement has been 

84 identified as an intervention that provides protection to all individuals in the house without 

85 involving insecticides [14]. In a study conducted by Bofu et al. in Kilombero in 2023, the 

86 community expressed the need for house improvement to protect families [13]. Despite reports 

87 of improved houses reducing malaria risk, there has been limited effort in national and 

88 international malaria strategies to prioritize housing improvement as part of malaria control.

89 The success in reducing malaria prevalence in Tanzania can be attributed to various 

90 interventions, such as the widespread use of long-lasting insecticide Nets (LLINs), indoor 

91 residual spraying (IRS), improvements in healthcare standards, and socio-economic 

92 enhancements, including better housing, education, income levels, and overall wealth [15]. 

93 Despite these efforts, residual malaria transmission persists in some rural areas of Tanzania [16]. 

94 One significant challenge contributing to malaria persistence is the insecticide resistance 

95 observed in Anopheles funestus mosquitoes, partly influenced by improper agricultural pesticide 

96 use [10, 11] Other factors, including malaria vectors, exhibit diverse behaviors that affect 

97 transmission[16]. Another important factor is the resting behavior of mosquitoes that are not 

98 resting on the targeted surfaces for indoor residual spraying [19]. 

99 In the 2000s, Kilombero and Ulanga districts primarily had An. arabiensis as the dominant 

100 malaria vector, despite An. funestus being more important [20]. Recent years have witnessed a 

101 significant shift in malaria transmission dynamics in Kilombero Valley, where An. funestus has 

102 become the predominant vector, responsible for over 85% of malaria transmission[21]. Both 

103 malaria vectors are developing resistance to commonly used chemicals [17,18,22]. 

104 Addressing malaria control in Kilombero Valley requires a multifaceted approach that targets 

105 Anopheles funestus, the current dominant primary vector, and addresses factors like healthcare 

106 access, housing conditions, and environmental management including appropriate applications of 

107 agricultural pesticide. This study aims to evaluate the role of malaria vectors in malaria 

108 transmission in regarding to house characteristics in Kilombero Valley.

109

110 Material and Methods
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111 Study area

112 The study was carried out in Ulanga district, located in the south-eastern region of Tanzania (Fig 

113 1). Mosquitoes were collected from three villages: Ebuyu (-8.979 S, 36.760 E), Chirombola (-

114 8.926 S, 36.753 E) and Mzelezi (-8.898 S, 36.735 E). Average annual rainfall ranging between 

115 1200 -1800mm and a mean annual temperature were 20–32 °C, as reported by Ngowo et al. in 

116 2017 [23]. The primary economic activities in this area are rice and maize cultivation. Currently, 

117 Ulanga district faces the prevalence of two major malaria vectors, namely, Anopheles arabiensis 

118 and Anopheles funestus.

119 The typical housing structures in this region feature clay brick walls, open eaves (the space 

120 between the roof and walls), and open windows. Plasmodium falciparum stands as the 

121 predominant malaria parasite species in this area, while its transmission is primarily attributed to 

122 Anopheles funestus [21].

123

124 Figure 1: Map of the study area, showing study villages in Ulanga district, south-eastern 

125 Tanzania.

126

127 Study design

128 Mosquito sampling 

129 Adult anopheline mosquitoes were collected from March 2022 and July 2022. The host-seeking 

130 and resting mosquitoes were collected indoors and outdoors by using three methods: the double 

131 net trap (DN-mini trap) [24], CDC light trap [25], and Prokopack aspirator [26]. Mosquito data 

132 were collected for three days a week for four months. Here, the DN-Mini trap was used to 

133 sample mosquitoes indoors and outdoors, CDC-Light trap were used to collect host-seeking 

134 mosquitoes indoors, while a Prokopack was used to collect resting mosquitoes both indoors and 

135 outdoors. Mosquito collections were done from 6pm to 6am. The CDC light trap with a lid was 

136 hung about 1-1.5 m above the ground under occupied bed net. The DN-Mini trap was allocated 

137 in the sitting room, with volunteers inside acting as bait and collecting mosquitoes after every 

138 one-hour interval. Along with mosquito sampling, the sampled houses were also characterized, 
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139 and variables such as eaves status, roof type, wall type, window status, presence of animals shed, 

140 latrine location inside or outside, and presence of poultry inside the house were collected from 

141 each sampled house. Geographical positioning system (Garming Extrex 20, GPS) coordinates 

142 were also collected during household characterization.

143 Sibling Specie Identification of and Detection of Plasmodium Infection in Malaria Vectors

144 Female Anopheline mosquito collected were killed each morning using petroleum fumes, then 

145 sorted by taxa and physiological states [27], while the abdominal status of each female 

146 Anopheles mosquitoes was recorded as blood fed, unfed, partially fed or semi-gravid or gravid. 

147 Additionally, An. arabiensis and An. funestus were packed individually of one mosquito and in 

148 batches of ten mosquitoes in 1.5 ml microcentrifuge (Eppendorf®) tubes filled with silica gel as 

149 a preservative, then submitted to the laboratory for species identification by using multiplex 

150 polymerase chain reaction (PCR), sibling species of An. gambiae s.l [28] and An. funestus 

151 Koekemoer et al. [27]. and Cohuet at al [29]. Moreover, the head and thorax from An. gambiae 

152 s.l and An. funestus were separated from abdomen and tested for the presence of Plasmodium 

153 falciparum circum-sporozoite protein (Pf CSP) in their salivary glands, using the enzyme-linked 

154 immunosorbent assay (ELISA) method [27].

155 House characterization

156 After collecting mosquitoes from traps placed both indoors and outdoors within the houses, 

157 participants recorded various house characteristics. These details included the house type, 

158 construction materials, and the overall condition of the house, encompassing factors like the 

159 presence of eave spaces, and the status of window and door screening. Additionally, precise 

160 house data was collected using a Global Positioning System (GPS) device and concurrently 

161 saved in a data collection form, which contained more information than what was initially stored 

162 in the GPS device.

163 Blood meal analysis for Malaria vectors

164 Anopheline blood meal content analysis was conducted through an enzyme-linked 

165 immunosorbent assay (ELISA) using the abdomens of all blood-fed malaria vectors [30,31] to 

166 investigated for their blood meal sources, whether they were human, dog, chicken, or bovine. To 

167 prevent false positives, the ELISA lysate underwent heating to 100°C for 10 minutes, ensuring 
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168 complete elimination of heat-labile non-Plasmodium falciparum antigens. Blood meal 

169 information from malaria-transmitting mosquitoes is crucial for understanding host preferences, 

170 transmission dynamics, and vector behavior.

171 Data analysis

172 All data were analyzed using open-source statistical software, R program language version 

173 4.2.11[32]. A generalized linear mixed model using template model builder (GlmmTMB) [32], 

174 was used to analyze mosquito count data. Here, we opted for GlmmTMB because of its ability to 

175 directly incorporate negative binomial and zero-inflated approaches. Mosquito counts were 

176 modeled as response variables, while house characteristics were modeled as fixed terms. On the 

177 other hand, household ID and sampling date were included in the model as random terms to 

178 account for any unexplained variations between houses and pseudo-replicates. Significance 

179 levels were considered at p<0.05.

180 Ethical considerations

181 The research was conducted following the principles of the Declaration of Helsinki. Ethical 

182 approval was obtained from the Muhimbili University of Health and Allied Sciences Review 

183 Board (MUHAS-REC-12-2021-910), and permission to publish the work was granted by NIMR 

184 (Ref: NIMR/HQ/P.12VOL.XXXVI/35). Approval to conduct the study was obtained from the 

185 district medical officer of Ulanga district and the local government leadership in the selected 

186 villages. Before commencing the study, meetings were held with local government leaders to 

187 explain the study's aim and procedures. Verbal and written informed consent were obtained from 

188 individual house occupants and human volunteers involved in mosquito collection. Participants 

189 were fully informed of potential benefits and risks, and their voluntary participation was assured. 

190 Respondents were informed of their right to withdraw from the study at any time without 

191 consequences, and confidentiality was maintained to ensure anonymity of participants

192

193 Results

194 Mosquito population and composition
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195 Overall, a total of 19,841 female mosquitoes were collected indoors and outdoors between 

196 March and July 2022 using the CDC-light trap, DN-Mini trap, and Prokopack aspirator. An. 

197 funestus s.l. were 17.0% (n = 1219), An. gambiae s.l. were 1.6% (n = 313), and 0.1% (n = 10) 

198 were other anopheline mosquitoes. On the hands, Culex species were 99.8% (n = 18268) 

199 Mansonia were 0.2 %, (n = 29) and 0.0 % (n = 2) were Aedes species. 

200 Sporozoite Rate Infections of malaria vectors

201 Out of the 487 Anopheles mosquitoes submitted to the molecular laboratory for ELISA, 14 were 

202 confirmed to be infected with Plasmodium falciparum sporozoites. Among these infected 

203 mosquitoes, 92.8% (n = 13) were identified as An. funestus s.s., while only one mosquito, 

204 constituting 7.2% (n = 1), was classified as An. arabiensis.

205 Effects of household characteristics on vector density

206 Regarding the mosquito collected in the house with different characteristics, the results show 

207 that, the house with metal roof material had fewer An. funestus mosquitoes with higher An. 

208 arabiensis compared to those constructed with grass roof material (RR= 0.646, p <0.05), (RR= 

209 0.1600, p =0.5871), the house with ceilings had fewer number of An. funestus compared with 

210 those with ceilings (RR= 0.780, p =0.454), In addition to that, the house with screened eave 

211 space had fewer An. funestus compared to the house with open eave space (RR= 0.978, p 

212 =0.864) but not statistical significant, the house made by brick wall had higher An. funestus 

213 compared with the house made with mud wall (RR = 0.690, p =0.107) while the house with 

214 house with animals inside had fewer number of An. funestus compared to the houses no animals 

215 (RR= 0.672, p <0.01) Table 1.
216

217 Table 1. Effect of household characteristics on malaria vectors densities

218

Species Variable 
(Household 
Characteristics)

Type Mean ± 2SE RR [95% CI] p-values

Grass 2.24 ± 0.972 1Roof Materials Metal 2.10 ± 0.276 0.646 [0.418, 0.998] <0.05

No 2.12 ± 0.272 1
Anopheles 
funestus Ceiling Yes 2.00 ± 1.20 0.780 [0.407, 1.495] =0.454
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Open 2.02 ± 0.314 1Eaves Screened 2.39 ± 0.498 0.978 [0.761, 1.258] =0.864

Brick 2.15 ± 0.285 1Wall Materials Mud 1.76 ± 0.717 0.690 [0.439, 1.083] =0.107

No 2.47 ± 0.402 1Animal (100) Yes 1.71 ± 0.331 0.672 [0.534, 0.847] <0.01

Grass 0.206 ± 0.199 1Roof Materials Metal 0.203 ± 0.083 1.600 [0.294, 8.715] =0.587

Open 0.203 ± 0.079 1Ceiling Screened 0.2 ± 0.392 0.526 [0.055, 4.993] =0.575

Open 0.231 ± 0.096 1Eaves Screened 0.120 ± 0.108 0.108 [0.022, 0.536] <0.01

Brick 0.206 ± 0.084 1Wall Materials Mud 0.176 ± 0.154 0.351 [0.065, 1.899] =0.225

No 0.115 ± 0.080 1

Anopheles 
arabiensis

Animal (100) Yes 0.301 ± 0.135 0.385 [0.074, 1.986] =0.254

219

220 Blood meal analysis 

221 A total of 304 blood-fed An. funestus (identified by PCR) that were collected indoors and 

222 outdoors for both host-seeking and resting mosquitoes collection were tested for vertebrate host 

223 blood source (human, bovine, dog and chicken) from all three villages. Overall, the proportion of 

224 An. funestus that fed on humans was 88.16% (134/152), with dog blood being the most common 

225 non-human source Fig 2. 

226

227 Fig 2. Showing a blood meal of An. funestus from different blood sources identified by ELISA 

228 method from the sample collected in Ulanga district, Mzelezi, Ebuyu and Chirombora villages.

229 Ethical clearance and informed consent

230 The study was conducted following the principles of the Declaration of Helsinki. Ethical 

231 approval for conducting this study was obtained from the Muhimbili University of Health and 

232 Allied Sciences Review Board (MUHAS-REC-12-2021-910). while the permission to publish 

233 the work was approved by NIMR (Ref: NIMR/HQ/P.12VOL.XXXVI/27). Permission to conduct 

234 this study was secured through the approval of the District Medical Officer of Ulanga district and 

235 the cooperation of local government authorities in the chosen villages. Prior to commencing the 
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236 study, comprehensive meetings were convened with local government leaders to elucidate the 

237 study's objectives and methodologies. 

238 Informed consent, both verbal and written, was diligently obtained from all individual residents 

239 of the households and the human volunteers engaged in mosquito collection. Participants were 

240 provided with detailed information regarding the potential benefits and risks associated with their 

241 participation, and their voluntary involvement was emphasized and respected. Participants were 

242 also assured of their right to withdraw from the study at any point without facing any adverse 

243 consequences, and strict measures were in place to maintain confidentiality, ensuring the 

244 anonymity of all participants.

245

246 Discussion

247 This study shows that both An. funestus and An. arabiensis were the most prevalent mosquito 

248 species among the anopheline population in the study villages. Notably, Anopheles funestus 

249 predominated over to An. arabiensis in the rural Ulanga villages. However, a recent study 

250 revealed that, despite the lower population of An. funestus in comparison to An. arabiensis in the 

251 area, it accounted for over 85% of malaria transmission [21].

252 This study uncovered that Anopheles funestus mosquitoes not only carried the majority of 

253 malaria parasites but were also present in high numbers in all three villages. A previous study by 

254 Lwetoijera et al. in the Kilombero district also highlighted the increasing significance of 

255 Anopheles funestus in malaria transmission, particularly in the context of high resistance [33]. 

256 Furthermore, studies conducted in the Kilombero valley by Pinda et al, and Urio et al 

257 demonstrated that also Anopheles arabiensis also exhibited significant resistance to pyrethroid 

258 chemicals[18,22] .

259 Based on our research findings, Anopheles funestus emerged as the predominant vector in terms 

260 of both malaria parasites and population density. In a prior study conducted by Kaindoa et al, 

261 [34], Anopheles arabiensis was identified as more abundant species. However, Anopheles 

262 funestus reported to harbor the majority of residual malaria parasites, even though it was in the 

263 minority compared to Anopheles arabiensis [34]. it seems that, An. funestus is increasing their 
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264 dominance both in terms of abundance and transmission of malaria, which could be attributed to 

265 their resistance to insecticides used in malaria control.

266 Furthermore, our study revealed that An. funestus exhibited a strong preference for human blood 

267 meals over other potential hosts such as dogs and chickens. This anthropophilic behavior is 

268 consistent with the species known tendencies [35]. In recently study conducted in Kilombero 

269 valley in 2022, Katusi et al. revealed that, An. arabiensis and other secondary malaria vectors 

270 showed a preference for bovine blood over human blood. However, in another study conducted 

271 in the Kilombero valley, it was observed that An. arabiensis and An. gambiae s.s. exhibited a 

272 preference for feeding on chicken hosts over other available hosts [36]. Additionally, a separate 

273 study conducted in Kenya reported that mosquitoes deviated from the feeding on humans and 

274 opted for hosts other than humans, particularly in areas where livestock herding is prevalent [37], 

275 while other studies suggest that animal keeping may influence mosquito densities and potentially 

276 pose a risk to humans, while others argue that it could reduce malaria transmission risk [38].

277 In this study, we observed a relatively small number of An. funestus specie with the capability to 

278 feed on two different hosts as described in Table 1. where as An. arabiensis also have been 

279 commonly reported to have multiple feeding outdoor [16]. The tendence of mosquitoes feeding 

280 to various hosts has also been observed in neighbouring countries [39]. 

281 Our findings also indicate that dogs and chickens were the second most common sources of 

282 blood meals for An. funestus mosquitoes, following humans. This finding is in line with the 

283 prevalence of these animals in rural households, where dogs and chickens are commonly kept 

284 [35]. Studies by Katusi et al 2022 and Lyimo et al [35,36], reported that in Kilombero valley 

285 availability of cows influence the blood meal for An. arabiensis and An. funestus, like in Kenya 

286 found that, human blood were seems to be the most vulnerable to these species [40]. The 

287 preference for human blood meals by An. funestus is of particular concern for malaria control, as 

288 it increases the risk of malaria transmission to humans and underscores the importance of 

289 targeting this species in control strategies. Furthermore, it’s the observed that, higher An. 

290 funestus compared than An. arabiensis, suggest that An. funestus is the most responsible for 

291 malaria transmission in the area.

292 The study conducted by Lyimo et al 2013 [36], demonstrated that An. arabiensis was more likely 

293 to be affected by ivermectin, primarily applied to cattle, ivermectin affects the survival and  egg 
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294 production of Anopheles mosquitoes, consequently, this intervention appeared to have a 

295 controlling effect on An. arabiensis due to their behavior of feeding on other vertebrate blood 

296 including cows. On the other hand, there is limited knowledge regarding the impact of 

297 ivermectin on An. funestus, which exhibits a stronger preference for feeding on humans rather 

298 than cattle. An. funestus, being an indoor-biting species, is expected to be more susceptible to 

299 indoor interventions such as Long-Lasting Insecticide Nets (LLINs) and Indoor Residual 

300 Spraying (IRS), unfortunately, resistance to these interventions has been reported in this species.

301 This study also revealed that a substantial number of households had eave gaps and unscreened 

302 windows and doors Table 1, conditions that can facilitate mosquito entry and increase the risk of 

303 malaria transmission. These findings align with previous research which also emphasize the 

304 importance of addressing related factors in malaria control efforts [41]. 

305 Our study, also found that houses with eave space harbors more of An. funestus than those with 

306 no eave space, similar findings were reported by to Mburu et al 2018, where  more Anopheline 

307 mosquitoes were caught in the houses with open eaves than other houses with small or single 

308 eave [14]. Many houses in the villages prefer to have eave space for air accelerations [42], but in 

309 other hands it poses a threat to malaria transmission risks, as mosquitoes are more likely to enter 

310 in the house through eave space. Several interventions on house screening have been introduced, 

311 this including the idea of eave tube treated with conventional insecticides plus house 

312 modification with eave tubes installed with physical barrier inside [42],  treated curtains [43] and 

313 treated eave ribbons [35, 36], treated chair [46], treated sandals [47], all these tools introduced as 

314 structural interventions, in and around the houses, which may impact vector feeding, 

315 survivorship, population density and overall vectorial capacity and thus ability to transmit 

316 malaria and other pathogens. 

317 This study has a limitation, where by a include small sample sizes was used from all three 

318 villages, therefore, further study is needed to study the major malaria vectors in the area, 

319 additionally, to investigate the factors that contribute to the rebounded of An. gambiae while they 

320 were eradicated by frontline interventions in Kilombero valley in 2000’s. 

321 Conclusion
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322  Anopheles funestus is the prevalent malaria vector in the region and a significant 98% of this 

323 species were found to carry sporozoites. Additionaly, Anopheles funestus is one of the two 

324 species known to exhibit resistance to insecticides [17,18]. Several concurrent approaches 

325 [21,33,44,46–50], are required to complementary existing interventions like LLINs and IRS for 

326 effective malaria vector control specifically focus on targeting An. funestus specie.

327 House improvement and screening have also been contributing to malaria vector control in many 

328 developed countries [49]. Despite low quality evidence, the direction and consistence of effects 

329 indicate that housing is an important risk factor for malaria [51]. 

330
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