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 2 

Abstract:  34 

 35 

Introduction: Common, consumer-grade biosensors mounted on fitness trackers and 36 

smartwatches can measure an array of biometrics that have potential utility in post-discharge 37 

medical monitoring, especially in remote/rural communities. The feasibility characteristics for 38 

wrist-worn biosensors are poorly described for post-COVID conditions and rural populations.  39 

 40 

Methods: We prospectively recruited patients in rural communities who were enrolled in an at-41 

home rehabilitation program for post-COVID conditions. They were asked to wear a FitBit 42 

Charge 2 device and biosensor parameters were analyzed (e.g. heart rate, sleep, and activity). 43 

Electronic patient reported outcome measures (E-PROMS) for mental (bi-weekly) and physical 44 

(daily) symptoms were collected using SMS text or email (per patient preference). Exit surveys 45 

and interviews evaluated the patient experience.  46 

 47 

Results: Ten patients were observed for an average of 58 days and half (N=5) were monitored 48 

for 8 weeks or more. Five patients (50%) had been hospitalized with COVID (mean stay = 41 49 

days) and 4 (36%) had required mechanical ventilation. As baseline, patients had moderate to 50 

severe levels of anxiety, depression, and stress; fatigue and shortness of breath were the most 51 

prevalent physical symptoms. Four patients (40%) already owned a smartwatch. In total, 575 52 

patient days of patient monitoring occurred across 10 patients. Biosensor data was usable for 53 

91.3% of study hours and surveys were completed 82.1% and 78.7% of the time for physical and 54 

mental symptoms, respectively. Positive correlations were observed between stress and resting 55 

heart rate (r=0.360, p<0.01), stress and daily steps (r=0.335, p<0.01), and anxiety and daily steps 56 

(r=0.289, p<0.01). There was a trend toward negative correlation between sleep time and 57 
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 3 

physical symptom burden (r=-0.211, p=0.05). Patients reported an overall positive experience 58 

and identified the potential for wearable devices to improve medical safety and access to care. 59 

Concerns around data privacy/security were infrequent. 60 

 61 

Conclusions: We report excellent feasibility characteristics for wrist-worn biosensors and e-62 

PROMS as a possible substrate for multi-modal disease tracking in post-COVID conditions. 63 

Adapting consumer-grade wearables for medical use and scalable remote patient monitoring 64 

holds great potential. 65 

 66 

 67 
 68 
 69 
 70 
 71 
 72 
 73 
 74 
 75 
 76 
 77 

 78 
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 4 

Introduction 81 

 82 

Recovery from COVID can be long and unpredictable. Some patients return to premorbid health 83 

quickly while others endure a debilitating and poorly understood recovery path lasting months to 84 

years, termed ‘long-COVID’, comprising both mental and physical symptoms (reviewed in 85 

Davis et al., 2023 and Koc et al., 2022). Traditional, clinic-based methods of disease assessment 86 

are episodic, limiting their utility in a complex and undulating disease course such as post-87 

COVID. New approaches are needed that can track longitudinal physiologic changes at the 88 

individual patient level. 89 

 90 

Wearable devices may be ideal tools for studying complex diseases and post-COVID conditions 91 

(reviewed in Smuck et al., 2021). Biosensor metrics have been shown able to predict health 92 

outcomes for a range of chronic diseases including congestive heart failure, COPD, 93 

hypertension, diabetes, and more (Channa et al., 2021; Khondakar & Kaushik, 2022; Rodriguez-94 

León et al., 2021; Singhal & Cowie, 2020). More recently, smartwatches have been used to 95 

detect pre-symptomatic COVID infections (Mishra et al., 2020). Common and affordable 96 

smartwatches and fitness trackers might support remote patient monitoring (RPM) if the 97 

emergent data is high-enough quality to inform safe decision making (Iqbal et al., 2021, Kwok et 98 

al., 2021; Lu et al., 2020, Kang & Exworthy, 2022). Remote patient monitoring is particularly 99 

important for patients living in remote and rural areas where in-person care can be limited 100 

(Fraser et al., 2022; Liao et al., 2019; Canali et al., 2022). 101 

 102 
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 5 

Feasibility data for wearable devices varies with population, technology, and monitoring 103 

protocol and little has been published for post-COVID conditions, especially in rural settings. 104 

Our study describes the feasibility of using common, consumer-grade wrist-worn biosensors 105 

(e.g., FitBit fitness trackers) for disease parameter tracking in post-COVID conditions in a rural 106 

community, including both technical aspects (e.g. data quality/completeness) and the patient 107 

experience. 108 

 109 

Materials and Methods 110 

 111 

Patient Cohort:  112 

Patients were recruited from an early supported discharge (ESD) program in Camrose, Alberta, 113 

Canada, which has a population of just under 21,000 residents. The ESD program was originally 114 

designed to support patients recovering from acute stroke (Chouliara et al., 2023); however, 115 

during the COVID-19 pandemic, it was adapted for COVID-19. Patients were referred to the 116 

program either directly from hospital (at discharge) or through community clinics. The ESD 117 

team is a rehabilitation team that delivers intensive rehabilitation programs in the home using 118 

both in-person visits and telemedicine (video or phone). The team typically includes 119 

occupational therapy, physical therapy, speech-language pathology, social work, nursing, therapy 120 

assistants, recreation therapy and a psychologist.  Patients were also recruited through a virtual 121 

post-covid pilot program and were located throughout Alberta, primarily in rural settings. 122 

Patients were referred to this program through the Rehabilitation Advice Line. Rehabilitation in 123 

this program was provided solely via telemedicine.  124 

 125 
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 6 

All ESD patients were screened for eligibility at program start. Eligible patients were 126 

ambulatory, with mild to moderate functional impairment and sufficient cognitive capacity to 127 

participate in the program. Excluded patients were those without internet connectivity, who were 128 

unable to complete surveys (ex. language and speech deficits, non-English-speaking), or for 129 

whom device retrieval was deemed to be unlikely by the study investigators. 130 

 131 

Data Sources:  132 

Data sources included: 1) wearable devices, 2) health records, 3) digital surveys, and 4) patient 133 

interviews. Health record data comprised diagnostic, medication, and procedure codes occurring 134 

in the year before enrollment and during the observation period.  135 

 136 

Devices:  137 

FitBit Charge 2 devices were provided to each patient at enrollment. The FitBit Charge 2 is a 138 

wrist-worn fitness tracker that includes a triaxial accelerometer, an altimeter, and an optical heart 139 

rate tracker. Parameters collected included activity (steps per day), heart rate (beats per minute), 140 

and duration (minutes) and quality (% deep) of sleep. Data was sent via Bluetooth to a patient-141 

owned smartphone, uploaded to the FitBit cloud database and then extracted through the third-142 

party platform (Fitabase; https://www.fitabase.com/). 143 

 144 

Monitoring Protocol:  145 

Patients received an orientation to the device on study enrollment and were instructed to wear it 146 

as much as possible, up to 24 hrs a day (except when charging). There were no specific 147 

instructions on how to use device data and patients were free to share data with the clinical team 148 
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 7 

if desired; however, data was not directly transmitted to the clinical team. If the patient had 149 

questions about the device or technical issues, a research nurse was available for support by 150 

phone during daytime hours. 151 

 152 

Surveys:  153 

Patients received digital surveys via SMS text or email (per patient preference) using the RedCap 154 

(Harris et al., 2008) survey platform. Baseline health status surveys included measures of mental 155 

and physical health and a technology experience survey (Comprising two sections: Tech comfort 156 

(7-items, avg score [0-5]), Health Literacy (4-items, avg score [0-5]) adapted from the Telehealth 157 

Usability Questionnaire (TUQ) (Parmanto et al., 2016). During the follow-up period physical 158 

and mental symptom surveys were delivered daily and bi-weekly, respectively. English versions 159 

of validated self-reported screening scales were used to measure severity of stress, anxiety, and 160 

depression symptoms, including the Perceived Stress Scale (PSS), a 10-item questionnaire with a 161 

Cronbach’s alpha of >0.70 used to assess level of stress in the previous month (PSS; PSS score 162 

≥14 indicates moderate or high stress) (Cohen et al., 1983); the Generalized Anxiety Disorder 7-163 

item (GAD-7) scale, a 7-item questionnaire with a Cronbach’s alpha of 0.92 and used to assess 164 

the self-reported levels of anxiety in respondents in the two weeks prior to assessment  (GAD-7 165 

score ≥10 indicates likely generalized anxiety disorder [GAD]) (Spitzer et al., 2006); and the 166 

Patient Health Questionnaire-9 (PHQ-9) a 9-item questionnaire with a Cronbach’s alpha of 0.89 167 

and used to assess the severity of depression symptoms ( for PHQ-9; a score ≥10 indicates likely 168 

major depressive disorder (MDD) (Kroenke et al., 2001).   169 

 170 

Detailed description of physical symptom surveys and results can be found in the supplementary 171 

materials, Table S1.  In short, 18 total symptom scales (6-point scale, ‘absent’ [1] to ‘very 172 
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severe’ [6]) were grouped by body system (constitutional, gastrointestinal, neurologic, 173 

respiratory, cardiovascular). At discharge, patients received an exit survey that included feedback 174 

on the devices, also adapted from the TUQ. 175 

 176 

Interviews:  177 

At the conclusion of the study patients were approached for interview. Questions focused on 178 

technology usability, acceptance, and perceived barriers to use, such as data privacy/security. 179 

Author MW completed interviews virtually using Zoom and curated auto-generated 180 

transcriptions. 181 

 182 

Study Outcomes: 183 

 184 

Primary Outcome: Protocol Adherence 185 

Our primary outcome was protocol adherence, defined as device wear time (% of minutes with 186 

analyzable heart rate data) and survey completion rates. Patient interviews and survey responses 187 

added context for this outcome, exploring patient perceptions and experience. 188 

 189 

Secondary Outcomes: Biosensor Parameter Correlations 190 

Secondary outcomes were associations between 1) the primary outcome (adherence) and patient 191 

characteristics (e.g., age, sex, symptom severity, technology readiness measures, and time under 192 

observation), and 2) device biometrics (activity/HR/sleep) and disease outcomes (physical and 193 

mental symptoms). 194 

 195 
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Statistical Analysis:  196 

Descriptive statistics (mean and standard deviation [SD]) were calculated for primary and 197 

secondary outcomes. We used Pearson correlation coefficients and weekly aggregated data to 198 

explore secondary outcomes. We performed a within-subject longitudinal analysis and paired t-199 

tests to evaluate for changes in symptom severity over time, comparing weeks 1-4 and weeks 8+ 200 

for those subjects observed for more than 8 weeks (N=5).  201 

 202 

Qualitative Analysis:  203 

We conducted thematic analysis of interview transcripts using a combined deductive and 204 

inductive approach, aided with NVIVO software. Two team members (MW and JL) reviewed 205 

original transcripts to identify themes of interest and compared results. Where there was 206 

disagreement, consensus was obtained through discussion. Smaller themes were sequentially 207 

grouped into larger categories until core themes were identified.  208 

 209 

Funding and Ethics 210 

This study was registered and approved by the University of Alberta Research Ethics Board 211 

(Pro00113943). 212 

 213 

 214 

 215 

 216 

 217 

 218 

 219 

 220 

 221 

 222 

 223 

 224 
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Results 225 

 226 

Participant characteristics:  227 

Between November 2021 and May 2022, 18 patients were approached for enrollment; three 228 

declined and one patient was ineligible due to lack of wireless connectivity. After enrollment, 3 229 

of 14 patients withdrew consent, and 1 was removed due to technical issues with their device, 230 

leaving 10 patients for the final analysis. Seven patients consented to an interview. The overall 231 

recruitment rate was therefore 61.1%.  232 

 233 

Figure 1. Flow diagram of study recruitment. 234 

 235 
 236 

Table 1 shows baseline patient characteristics. Mean age was 53 years (SD 15.0) and 80% (8/10) 237 

of patients were female. Five (50%) had been hospitalized with COVID (average length of stay = 238 

41 days) and four (40%) had required ventilatory support in the ICU. The remaining 50% were 239 

referred from community clinics. On average, patients had fewer than one documented medical 240 

condition prior to their COVID-19 diagnosis and half (5/10) owned their own smartwatch. The 241 

most common physical symptoms were ‘constitutional’ (ex. fatigue, poor sleep), followed by 242 
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‘respiratory’ and ‘cardiovascular’. Average mental health symptoms scores were GAD-7 = 15.7 243 

(severe anxiety), PHQ-9 = 14.8 (moderate depression) and PSS = 22.7 (moderate stress). Patients 244 

had moderate to high levels of familiarity with technology (ex. comfort with technology = 3.6/5; 245 

health literacy = 3.7/5). Detailed patient characteristics, including comorbidities and medications, 246 

are shown in Supplementary Table S1 and Figures S1 and S2.  247 

 248 
Table 1. Baseline patient characteristics (N=10) 249 

Demographics 

 Age (mean [SD]) 53 [15] 

 Female Sex no. (%) 8 (80%) 

Hospitalized no. (%) 5 (50%) 

Days in hospital (mean [SD])* 41.0 [21.1] 

ICU stay no. (%) 4 (40%) 

Ventilator no. (%) 4 (40%) 

Number of days in ESD (mean [SD]) 58 [117] 

 Home oxygen (%) 1 (10%) 

Comorbidities per patient (mean [SD]) 0.8 [0.8] 

Medications per patient (mean [SD]) 4.4 [3.1] 

Familiarity with Technology 

Already own a smartwatch (%) 4 (40%) 

Technology comfort (7-items, mean score [0-5]) 3.6 [1.4] 
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Health Literacy (4-items, mean score [0-5]) 3.7 [1.1] 

Physical symptoms (mean score [0-4]) 

Constitutional (6 symptoms) 1.43 [0.83] 

Gastrointestinal (3 symptoms) 0.31 [0.55] 

Neurological (3 symptoms) 0.61 [0.62] 

Respiratory (4 symptoms) 0.90 [0.55] 

Cardiovascular (2 symptoms) 0.68 [0.90] 

Mental health symptoms (mean score [SD]) 

General Anxiety Disorder-7 (out of 21) 15.7 [1.3] 

Patient Health Questionnaire-9 (out of 27) 14.8 [1.3] 

 Perceived Stress Scale (out of 40) 22.7 [1.4] 

* hospitalized patients (N=5) 250 

 251 

 252 

Descriptive analysis: 253 

Table 2 summarizes descriptive statistics for primary adherence outcomes (group aggregate). 254 

Overall, 575 patient days of patient monitoring occurred across 10 patients, patients were 255 

observed for 58 days on average and half (N=5) were monitored for 8 weeks or more. For the 256 

primary outcome (adherence), heart rate data was available for 91.3% of study hours and 257 

physical and mental symptom surveys were completed 82.1% and 78.7% of the time, 258 

respectively. Overall physical symptom burden was generally mild with an average overall rating 259 

of 0.8/4; constitutional and respiratory symptoms being the most frequent. Average group 260 
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activity, sleep duration and quality (proportion time in deep sleep) were highest in weeks 4-8. 261 

Average resting heart rate was relatively constant over time. To test for within-subject effects, 262 

we compared weeks 1-4 and weeks 8+ for those patients staying longer than 8 weeks (Table S2). 263 

Except for respiratory symptoms (mean difference -0.23, p=0.03), temporal changes did not 264 

reach statistical significance. 265 

 266 

Table 2. Reported health parameters and survey outcomes across the clinical course.  267 

Category Weeks 1-4 (N= 10) 

Average [SD] 

Weeks 4-8 (N= 9) 

Average [SD] 

Weeks 8+ (N= 5) 

Average [SD] 

% Wear time 

(minutes with 

heart rate data) 

91.5 [5.4] 92.9 [4.4] 88.1 [5.7] 

Sleep (hours) 5.7 [2.3] 7.0 [2.0] 5.6 [3.2] 

Deep sleep (%) 13.3 [10.0] 17.4 [7.5] 15.9 [8.2] 

Resting heart rate 68.7 [7.6] 66.1 [9.5] 66.7 [8.9] 

% Completion for surveys 

Physical 82.8 [12.3] 81.1 [18.1] 82.5 [11.2] 

Mental  92.1 [15.3] 81.0 [23.1] 47.9 [36.1] 

Physical symptoms (mean [SD]; range 0-4) 

All 0.8 [0.6] 0.7 [0.5] 0.7 [0.4] 

Constitutional 1.0 [0.8] 0.9 [0.8] 1.1 [0.7] 

Neuro 0.6 [0.6] 0.6 [0.6] 0.8 [0.8] 

Gastrointestinal 0.3 [0.6] 0.2 [0.5] 0.3 [0.5] 
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Respiratory 0.9 [0.6] 0.8 [0.6] 0.8 [0.5] 

Cardiovascular 0.7 [0.9] 0.6 [0.9] 0.3 [0.6] 

Mental health symptoms 

Mood (out of 27) 20.0 [8.0] 19.3 [9.0] 16.4 [7.8] 

Anxiety (out of 

21) 

16.2 [6.8] 15.8 [6.8] 12.4 [6.4] 

 

Stress (out of 40) 30.5 [6.1] 28.5 [4.9] 26.6 [5.5] 

Activity: Steps 

Daily count 3042 [1606] 4330 [3338] 3284 [2249] 

Activity: Intensity (minutes/day) 

Low  

 

127.3 [30.2] 156.6 [71.7] 121.6 [74.3] 

Moderate  6.4 [6.6] 12.6 [16.9] 12.4 [20.3] 

High  4.8 [6.2] 5.2 [6.6] 5.6 [6.1] 

 268 

Group-level associations: 269 

Survey response rates were correlated with device wear time (r=0.67, p=0.03), however there 270 

were no statistically significant associations between wear-time and other patient characteristics 271 

(e.g. demographics, symptoms, previous technology experience or time under observation; Table 272 

S3).  Table 3 shows group-level associations between biosensor metrics (weekly aggregate). 273 

Resting heart rate was positively correlated with stress (r=0.360, p<0.01); step count was 274 

correlated with anxiety (r=0.289, p<0.01) and stress (r=0.335, p<0.01). Correlations for sleep 275 

time were not statistically significant, however trends suggested negative correlations with 276 
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physical symptoms (r=-0.211, p=0.05)) and anxiety (r=-0.186, p=0.09)) and a positive 277 

correlation with stress (r=0.208, p0.06)).  278 

 279 
Table 3. Correlation coefficients between FitBit data outputs and patient symptoms.  280 

Survey parameter Resting Heart 

Rate 

Steps Sleep Time 

Physical Symptoms 0.011 (P=0.920) 0.116 (P=0.30) -0.211 (P=0.05) 

Anxiety (GAD-7) 0.205 (P=0.070) 0.289 (P<0.01) -0.186 (P=0.09) 

Mood (PHQ-9) 0.148 (P=0.189) 0.183 (P=0.10) 0.004 (P=0.97) 

Stress (PSS) 0.360 (P<0.01) 0.335 (P<0.01) 0.208 (P=0.06) 

 281 
 282 

Individual sensor data: case examples 283 

Figure 2 shows data for two patients, illustrating the complexity and heterogeneity of individual 284 

data. At enrollment, Patient A experienced marked physical symptoms, a high resting heart rate 285 

(79-83 bpm) and low daily step counts (approx. 1km). Over time, their physical symptoms 286 

improved, resting heart rate decreased, and daily activity increased. In contrast, Patient B’s 287 

physical symptoms remained prominent throughout observation. Their resting heart rate was 288 

lower than Patient A (46-54 bpm) and didn’t significantly change over time. Their activity levels 289 

didn’t show a clear temporal change. Mental health symptoms were prominent in both patients. 290 

 291 

 292 

 293 

 294 

 295 

 296 

 297 

 298 

 299 

 300 

 301 

 302 
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 303 
Figure 2. Sample longitudinal data for Patient A (left) and B (right), including results from 304 

symptom surveys, heart rate and total daily number of steps. 305 

 306 

 307 

Surveys results:  308 

Figures 2 and 3 display survey results; additional survey data is presented in supplementary 309 

materials (Figure S1). Proportions herein represent overall levels of agreement (agree or strongly 310 
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agree) vs. disagreement (disagree or strongly disagree). Of those who responded, the majority 311 

liked using the FitBit system (5/8 [63%]), found it easy to learn (6/8 [86%]) and simple to use 312 

(7/7 [100%]); no patients found the device interfered with their lifestyle and only one (13%) 313 

found the device uncomfortable. Three-quarters (6/8 [75%]) of the patients found that wearing a 314 

device made them feel safer and 4/8 (50%) felt it helped them to better understand their disease. 315 

A minority (2/8 [25%]) used the device to help decide when to seek medical care and no patients 316 

(0/8) reported that the devices caused anxiety. 317 

 318 

 319 
* 7 out of 10 participants responded 320 
** 8 out of 10 participants responded  321 
 322 

Figure 3. Survey results for questions pertaining to device acceptability with answers ranging 323 

from strongly disagree to strongly agree.   324 

 325 

 326 

 327 
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 328 
Figure 4 Survey Results for questions pertaining to psychological impact and clinical use with 329 

answers ranging from strongly disagree to strongly agree.  330 

 331 

Theme analysis of interview transcripts: 332 

Two male and five female patients completed exit interviews. Key themes are summarized 333 

below, and representative quotes are presented in Table 4.  334 

 335 

Support in isolated environments: Most felt that wearable devices are likely to improve 336 

medical safety for rural communities in the future, possibly through symptom, activity, and vital 337 

sign data transmission to clinical teams, family members and caregivers.  338 

 339 

Gaining disease insights: Some patients spontaneously use device data (mostly heart rate) to 340 

help them interpret physical symptoms, even without medical guidance. The impacts of 341 
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biosensor data on mental health were varied. Some found that normal heart rate readings 342 

reassured them while others found that elevated heart rates worsened anxiety about their disease. 343 

 344 

Concerns around privacy: Few were concerned data privacy and security. One participant was 345 

hesitant to share their data with for-profit device companies, specifically.  346 

 347 

Potential for research: Almost universally, participants felt wearable devices held great promise 348 

as tools for clinical research and expressed a willingness to contribute their data to the research 349 

community. Participants were motivated by a desire to see advancements in understanding and 350 

treatment of post-COVID conditions.351 
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Table 4. Qualitative analysis of exit interviews with sample quotes from participants.  

Common 

themes of 

interviews 

# Of 

quotes 

# Of 

participants 

Sample participant narratives 

Examples of device use addressing needs 

of patient 

Examples of device unable to address 

needs of patient 

Support in 

isolated or 

rural 

environments 

5 3 “Well, it was good because I knew that if I was 

[inputting information], and somebody at the other 

end was seeing that something was really wrong 

they would have notified the girls in Camrose and 

would have notified medical assistance 

immediately. So, it was kind of another area of 

peace of mind…yeah, we don’t have next door 

neighbors. We can’t run for help. You know, we’re 

sort of isolated out here, so like I say, we’re on our 

own. You kind of just grasp at things, and you 

watch for signs. But you’re not always fully aware, 

maybe, of what’s happening until it’s too late” 

 

[2/7 participants]  

“I don’t know, I didn’t get a full view on what all 

[the device] could do, simply because it was kind of 

one-sided. I knew the information was going out, 

but I didn’t necessarily know what was happening 

with it. I’m not having that feedback from a medical 

professional. I feel like it would be a really 

important piece if this is being used in the future.” 

 

 

 

 

 

 

 

 

[1/7 participants] 

Improved 

insight into 

symptoms 

25 7 “...I felt like I’ve gone crazy for a long time, and it 

just helps me, even if it’s not my heart rate, and it’s 

something else. It’s just a peace of mind that it, you 

know, it’s not my heart.” 

“I quite like the monitoring aspect from home, just 

because it gives me a bit more of an insight of what 

my heart rate is and what it’s doing; just a better 

overall understanding.” 

 

[6/7 participants] 

“I think, because I was having so many problems 

with my heart rate, and then I was tracking it so 

closely, it did make me hyper-aware of my heart 

rate a little bit…because now I was really closely 

monitoring, and it wasn’t going well. So then, I was 

really concerned about that.  

 

 

 

[2/7 participants] 

Concern for 

privacy 

7 7 “None whatsoever. Like I said, I want to figure out 

what’s going on, and I don’t want somebody else to 

have to go through what I’m already dealing with. 

They might as well use me to figure out what we 

can do for others, right? So, I have no concerns with 

it whatsoever.” 

 

 

 

[6/7 participants] 

“It would again come down to what the 

requirements were for [data sharing]. 

… or at the very least had some transparency about 

what they were doing with it…my information is 

out and I don’t know what it’s taking off of my 

phone. What sort of data it’s gathering on me. So 

that’s something that I see as a limitation of health 

monitoring.”  

 

[1/7 participants] 

Research 

potential of 

devices 

8 6 “Well, I think it was helpful for whoever was 

tracking to get a better insight into what the 

aftereffects of COVID does, everybody’s different. 

It’s a very needed program and when you have 

somebody who went through what [my spouse] did, 

it’s really helpful. Maybe it’ll help someone else in 

[the ESD program]. I think the program is very 

much needed.” 

 

[5/7 participants] 

“I’ve heard of studies where because of where the 

money is coming from, there’s a risk of results in 

the data being made to fit the needs of the 

corporation or person or group or whatever. If the 

data is being used by people who are motivated 

financially rather than scientifically, and not with 

the goals of the health of individuals and people.” 

 

 
 
 

[1/7 participants] 
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Discussion 

 

We report excellent feasibility characteristics for wrist-worn fitness trackers in post-COVID 

disease monitoring in rural areas, including hypothesis generating associations suggesting that 

biosensor data can deliver disease insights at the individual level. Biosensor data was complex 

and heterogenous, highlighting the need for machine learning techniques to separate signal from 

noise. Our qualitative work illustrated a unique lived experience for rural patients with 

technology and unmet needs for remote monitoring tools that integrate with existing clinical care 

models to ease transitions from hospital to home.  

 

Compared to existing studies, we observed high levels of protocol adherence. For common 

disease targets like COPD and CHF, RPM protocol adherence is typically low and decreases 

over time (Singhal & Cowie, 2020; Stehlik et al., 2020; Wu et al., 2021). Our post-COVID 

population was younger than most existing RPM cohorts, had relatively few comorbidities and 

were generally comfortable with technology, perhaps explaining our favorable result. Also, most 

existing studies RPM protocols use medical-grade devices, which are often unfamiliar to patients 

and challenging to operate. Consumer choice in technology is key driver of success for RPM and 

consumer-grade devices that offer non-medical applications present an opportunistic substrate 

for building scalable RPM platforms (Curry, 2023). The drawback of consumer-grade biosensors 

is that sensor accuracy is often unknown and cannot be assumed clinical grade (Bent et al., 

2020). However, as sensor accuracy and signal detection algorithms improve for longitudinal 

patient data, we will be able to better compensate for imperfection in underlying discrete data. 

Learning to process data from consumer-grade biosensors is foundational for just-in-time 
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medical decision making, especially in relatively healthy patient populations who haven’t been 

prescribed a medical grade device (Takahashi et al., 2022). Our study underscores the need to 

develop patient-centered technologies built with the non-medical consumer in mind. 

 

Our group level associations and individual case examples highlight the potential for 

smartwatches to deliver novel disease insights in scientific studies. In our post-COVID patients, 

anxiety and stress correlated with activity and resting heart rate while physical symptom 

correlated with sleep. This granular, continuous data paints a rich picture of disease at the 

individual level, forming a foundation for precision medicine and improving on traditional forms 

of episodic measurement. Given our small sample size, our observed group-level associations are 

hypothesis generating only. Subjectively, the heterogeneity seen across individual data supports 

the hypothesis that post-COVID conditions comprise a range of distinct phenotypes rather than a 

single entity (Lusczek et al., 2021; Osuchowski et al., 2021), a possibility that will hopefully be 

further elucidated in ongoing clinical trials that utilize wearable devices (Moore Vogel, 2023). 

As more studies using wearable biosensors emerge it will be important to create and adhere to 

standards in metric derivation and validation so that results are clinically applicable. 

 

Our patient interviews provided a rich context for interpreting quantitative data and brought to 

the fore a range of patient experiences that are key for understanding the future impacts of 

wearable devices in medicine. Continuous physiologic data can amplify or dampen anxiety 

around disease depending on the individual. In some instances, normal device data helped to 

reassure when symptoms were fluctuating unpredictably. For others, abnormal heart rate data 

worsened anxiety around mild or absent physical sensations. The potential impacts of 
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personalized biodata on mental health are poorly described in existing literature and for some it 

could contribute to excess healthcare utilization (Rosman et al., 2020). Our result highlights the 

need to better understand these impacts through further research and to improve medical support 

patients who choose to wear devices. Interestingly, concerns about data-sharing and privacy were 

infrequently raised by our patients but are known to be major determinants of success for 

wearable devices in healthcare, overall (Banerjee et al., 2018; Cilliers, 2020).  

 

Patients unfamiliar with wrist-worn devices in our study required a significant amount of time 

and support during device set-up. For those who owned a device already, changing to a new one 

was unpopular, and some patients refused enrollment or withdrew consent as a result. Human 

factors like this are critical determinants of success for RPM platforms. Shin et al. (2019) found 

that wearables are best accepted by patients who are motivated to monitor a chronic condition. 

Yin et al. (2022) reported that convenience, social influence, and expectation of improved health 

are important for uptake, while cost and perceived risk are less so. In rural settings, such as ours, 

perceived benefits for wearable technologies might be elevated as in-person services are often 

inaccessible (reviewed in Brahmbhatt et al., 2022). In future work using smartwatches rather 

than fitness trackers would likely yield even stronger feasibility data given the attractiveness of 

their non-medical applications like text messaging, music, and social networking, all of which 

encourage wear-time. Indeed, many patients in our study were particularly reluctant to use a 

fitness tracker if they already owned a smartwatch. 

 

Limitations: 

Our study has several limitations. Most notably, our sample size was small, and it is unclear if 

our findings can be replicated a larger population. As conditions changed during our study 
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(vaccines emerged and prevalent viral strains shifted) we observed that the post-COVID 

phenotype also changed. In the early stages of our work, we observed more severe respiratory 

symptoms and most patients had been hospitalized, often recovering from a period of mechanical 

ventilation. In the later stages, patients were often referred from community clinics with more 

mild respiratory disease but more severe constitutional symptoms (ex. fatigue or poor sleep). The 

shifting disease phenotype makes it challenging to infer similar results for future endemic states 

for COVID. Importantly, in this setting our patients were visited near-daily in their homes or via 

telemedicine by therapists, which could have artificially increased protocol adherence, and 

critically, a relatively low recruitment rate (60 percent) suggests that population-level impacts for 

wearable technologies remains uncertain. 

 

Conclusions: 

We find promising feasible characteristics for wrist-worn devices in remote disease tracking for 

post-COVID conditions in rural communities. Our data are foundational for future testing of 

consumer-grade devices in the medical sphere, highlighting the need for co-created RPM 

platforms designed with patient/consumer technology preference in mind. Such innovations have 

great potential to improve healthcare access and safety for otherwise isolated populations. 
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Supplementary Materials 

 

Table S1. Patient characteristics – complications for hospitalized patients (N=5), comorbid 

conditions captured with administrative data diagnostic codes (N=10), medications in the year 

prior to COVID-19 diagnosis generated by WHO ATC coding system, and symptom scores by 

body system.  

 

Complications for Hospitalized Patients Frequency 

Cardiovascular (ex. acute MI, atrial fibrillation, pulmonary 

embolism) 

5 

Infectious (non-respiratory) (ex. urinary tract infection, 

sepsis) 

3 

Excretory (ex. acute kidney injury) 2 

Metabolic (alkalosis, hypokalemia) 2 

Hematologic (ex. bleeding) 2 

Medical comorbidities Frequency 

Arrhythmia 1 

Pulmonary Circulation Disease 2 

Hypertension 2 

Chronic Pulmonary Disease 1 

Peptic Ulcer Disease 1 

Fluid and Electrolyte Diseases 1 

Medications Frequency 

Number of Medications 4.3 [SD=3.1] 

Alimentary Tract  3 

Blood and blood forming 0 

Cardiovascular  4 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 6, 2023. ; https://doi.org/10.1101/2023.12.05.23299499doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.05.23299499
http://creativecommons.org/licenses/by/4.0/


 30 

Dermatologic 0 

Genitourinary 3 

Hormonal 5 

Anti-Infective 6 

Antineoplastic  0 

Musculoskeletal 2 

Nervous system 8 

Antiparasitic  0 

 Respiratory 5 

Sensory  0 

 Various (i.e. others) 0 

Physical Symptoms (Score 0-4, [SD]) 

Constitutional (6 symptoms) 1.43[0.83] 

Fatigue 2.46 [1.18] 

Aches and pains 1.45 [1.32] 

Muscle weakness 1.32 [1.02] 

Poor sleep 1.72 [0.98] 

Fever 0.04 [0.09] 

Feeling Generally Unwell 1.60 [1.52] 

Gastrointestinal (3 symptoms) 0.31[0.55] 

Nausea and Vomiting 0.34 [0.62] 

Diarrhea 0.12 [0.28] 

Abdominal Pain 0.47 [0.88] 

Neurological (3 symptoms) 0.61[0.62] 

Headache 1.50 [1.37] 

Loss of taste 0.17 [0.47] 

Loss of smell 0.16 [0.51] 
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Respiratory (4 symptoms) 0.90[0.55] 

Cough 0.92 [0.96] 

Shortness of Breath 1.70 [1.12] 

Runny Nose 0.54 [0.54] 

Sore Throat 0.47 [0.69] 

Cardiovascular (2 symptoms) 0.68[0.90] 

Chest Pain 0.83 [1.12] 

Palpitations 0.54 [0.75] 

Mental health Symptoms 

General Anxiety Disorder-7 (out of 21) 16.3 [7.0] 

Patient Health Questionnaire-9 (out of 27) 20.2 [8.2] 

 Perceived Stress Scale (out of 40) 29.7 [5.3] 

Baseline technology and health literacy scores 

Tech comfort (7-items, avg score [0-5]) 3.59 

Health Literacy (4-items, avg score [0-5]) 3.68 

 

 

Table S2. Mean difference in average symptoms scores for weeks 1-4 vs. 8+ for patients 

participating for more than 8 weeks (N=5). 

Symptom Mean difference after 8 weeks P-value 

Constitutional 0.18 0.63 

Neuro 0.20 0.37 

Gastrointestinal -0.03 0.17 

Respiratory -0.23 0.03 

Cardiovascular -0.39 0.09 

Mood -2.81 0.66 

Anxiety -2.96 0.86 

Stress -4.36 0.45 

Total Steps  -108.4 0.18 
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Resting Heart Rate (bpm) -4.31 0.32 

Average Heart Rate (bpm) -5.99 0.10 

 

 

Table S3: Correlation coefficients between device wear-time (pooled weekly) and patient 

characteristics, symptom severity, technology acceptance and time under observation (N=10). 

Factor Correlation P-value 

Age -0.27 0.46 

Admission Length -0.38 0.28 

Symptoms Survey Response Rate 0.67 0.03 

Mental Health Survey Response Rate 0.53 0.11 

Tech Readiness Scores 0.38 0.28 

All Symptoms -0.43 0.21 

Generalized Anxiety Disorder-7 -0.59 0.07 

Patient Health Questionnaire 9 -0.52 0.13 

Perceived Stress Scale  -0.61 0.06 
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Figure S1. Baseline technology comfort survey responses (N=10). 
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Figure S2. Baseline health literacy survey responses (N=10) 
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