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Abstract 

Background 

Conventional approaches to analysing electrocardiograms (ECG) in fragmented 

parameters (such as the PR interval) ignored the high dimensionality of data which 

might result in omission of subtle information content relevant the cardiac biology. 

Deep representation learning of ECG may reveal novel insights. 

Methods 

We finetuned an unsupervised variational auto-encoder (VAE), originally trained on 

over 1.1 million 12-lead ECG, to learn the underlying distributions of the median beat 

ECG morphology of 41,927 UK Biobank participants. We explored the relationship 

between the latent representations (latent factors) and traditional ECG parameters, 

cardiac magnetic resonance (CMR)-derived structural and functional phenotypes. 

We assessed the association of the latent factors with various cardiac and 

cardiometabolic diseases and further investigated their predictive value for 

cardiovascular mortality. Finally, we studied genetic components of the latent factors 

by genome wide association study (GWAS).  

Results 

The latent factors showed differential correlation patterns with conventional ECG 

parameters with the highest correlations observed in factor 8 and PR interval 

(r=0.76). Multivariable analyses of the ECG latent factors recapitulated CMR-derived 

parameters with a better performance for the left ventricle than the right. We saw 

higher performance in models for structural parameters than functional parameters 

and observed the highest adjusted R2 of 0.488 for left ventricular LV end-diastolic 
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mass (LVEDM). The latent factors showed strong association with cardiac diseases. 

This included bundle branch block and latent factor 28 (OR= 2.72 [95% confidence 

interval CI,2.46-3.01] per standard deviation, SD change); per SD change of latent 

factor 27 was associated with cardiomyopathy (OR=2.38, 95%CI 1.97-2.89) and 

heart failure (OR=1.94, 95%CI 1.71-2.21). In the GWAS of the latent factors, we 

identified 170 genetic loci with 29 not previously associated with electrocardiographic 

traits.  Following up with bioinformatic analyses, we found the genetic signals 

involved in cardiac development, contractility and electrophysiology. 

Conclusions 

Deep representation learning of 12-lead ECG provided not only clinically meaningful 

but also novel insights into cardiac biology and cardiovascular health. 
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Introduction 

The electrocardiogram (ECG) is a non-invasive test that registers the electrical 

activity of the heart muscle cells (cardiomyocytes) allowing the evaluation of its 

function and detection of disorders. Clinical interpretation of the ECG is a pattern 

comparison task anchored to predefined features, namely the waveforms (such as 

P-wave and T wave) and intervals (the QRS complex). To date, large scale genome 

wide association studies of these predefined features have yielded hundreds of 

genetic loci linked to cardiac electric functions1–3. While these well-defined features 

are clinically robust, they may not fully capture the information content contained in 

the ECG as there may exist morphologies informative to the cardiac 

electrophysiology not measured in such features or even obscure to human eyes. To 

this end, we demonstrated in a previous study that a high-dimensional analysis of 

the complete ECG provided additional biological insights4.  

Variational autoencoder (VAE) is an artificial neural network architecture for 

unsupervised representation learning5. While VAE is similar architecturally to a 

classical autoencoder (both with an encoder which maps input to latent 

representation and a decoder component to map the latent space to input), VAE 

learns the underlying probability distributions of the data. We hypothesized that VAE 

could be utilized for uncovering additional insights from the ECG beyond traditional 

descriptors and that genetic study of the latent representation of the ECG would 

expand our knowledge of genetic factors linked to the cardiac conduction system. In 

the current study, we employed β-VAE6, a variant of VAE for improved 

disentanglement of the latent representation, to learn the disentangled latent 

representation of the 12-lead ECG. We finetuned a β-VAE model, pretrained on 

1,144,331 12-lead ECGs7, to generate 32 latent factors from the 12-lead ECG of 
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40,185 UK Biobank participants. We investigated the associations between these 

disentangled ECG factors and structural and functional parameters of the heart 

derived from cardiac magnetic resonance (CMR) as well as cardiovascular risk 

factors and diseases. We then performed genome wide association studies on these 

factors with the aim to identify additional genetic variants associated with ECG 

morphologies. To inform the biological context, we further characterize our genetic 

findings by gene-set clustering analyses. Finally, we exploited the decoder 

component of the β-VAE model to visualize the genetics associations to the ECG 

morphologies.  
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Methods 

Study Population 

The UK Biobank study is a population-based prospective cohort in the United 

Kingdom in which approximately 500,000 individuals aged between 40 and 69 years 

were included between 2006-2010. All participants have given informed consent for 

this study. The UK Biobank has ethical approval from North West - Haydock 

Research Ethics Committee (REC reference: 16/NW/0274). Details of the UK 

Biobank study has been described in detail previously8. This research has been 

conducted using the UK Biobank Resource under Application Number 74395. 

Disease outcomes were captured based on a composite source of data from 

interview with a trained nurse at the visit to assessment centres (self-report) and 

linked electronic health records including hospital inpatient episode data and primary 

care data processed using the R package ukbpheno9. The last follow-up dates were 

30 September 2021 for English participants, 31 July 2021 for Scottish participants 

and 28 February 2018 for Welsh participants.  

 

ECG processing  

A subset of the UK Biobank participants was invited for the imaging visit. During the 

imaging visit, each participant received a 10-second 12-lead ECG measurement at 

rest in a lying position. The ECGs were acquired at 500Hz and converted to median 

beats using the GE Cardiosoft system and were recorded in XML format (Data-Field 

20205 in the UK Biobank resource). Traditional ECG descriptors including ventricular 

rate, P interval, QRS duration, QT interval, P axis, R axis and T axis were derived for 

each ECG using the GE system. 
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CMR-derived structural and functional parameters 

CMR was acquired at the same visit during which the 12-lead ECG was acquired.  

Short-axis and 2- and 4-chamber long-axis cine CMR images were acquired using a 

clinical wide bore 1.5 Tesla scanner (MAGNETOM Aera, Syngo Platform VD13A, 

Siemens Healthcare, Erlangen, Germany) in the absence of a pharmacological 

stressor or contrast agent10. We applied a validated DL-based pipeline to derive the 

structural and functional parameters of the heart from the CMR images11. The 

structural parameters including end-systolic volume (ESV), stroke volume (SV) of the 

left ventricle (LV) and right ventricle (RV) respectively as well as LV end-diastolic 

mass (EDM) and mean global myocardial wall thickness were estimated. We 

indexed the volume and mass estimates by body surface area (BSA) to correct for 

overall body size and we additionally computed LV mass-to-volume ratio by dividing 

LVEDM by LVESV. Functional parameters including LV / RV peak ejection rate, 

peak filling rate and ejection fraction as well as LV mitral annular plane systolic 

excursion (MAPSE) and RV tricuspid annular plane systolic excursion (TAPSE) were 

estimated. In addition to the quality control steps of the DL-based pipeline11, we 

removed outliers which were defined as values 3 interquartile ranges below the first 

or above the third quartile in the current study. 

 

Unsupervised representation learning of ECG  

We applied an artificial neural network β-VAE to learn factors from the median beat 

ECG in an unsupervised manner. Briefly, a VAE is a generative model with an 

encoder-decoder architecture. The encoder transforms input, here the original 12-

lead median beat ECG, to the latent factors which follow Gaussian distributions, 
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whereas the latent factors could be mapped back to the input space by the decoder 

resulting in a reconstructed ECG.  β-VAE is a VAE variant that is encouraged to 

learn factorised latent factors through weighing (β-value) of the loss term during the 

training process.  As a result, β-VAE models tend to produce better disentangled 

(statistically orthogonal) latent representation following the multivariate Gaussian 

distributions.  

In the current study, we finetuned a β-VAE model with a latent space of 32 

dimensions pretrained on 1,144,331 ECGs recorded on a GE MAC 5500 (GE 

Healthcare, Chicago, IL) from 251,473 patients primarily of Dutch origins7 on the 

ECGs of 41,927 UK Biobank participants. The median beat ECGs are computed by 

the GE system were resampled to 500Hz and a 1st order polynomial was substracted 

to remove baseline wander. During training, a weight of 10 was applied to the 

samples in the QRS complex. Data was split in a 90:10 manner and the epoch with 

the lowest loss in the validation dataset was chosen. To validate the quality of the 

reconstructions, we calculated a Pearson correlation coefficient for the orginal and 

reconstructed median beat ECGs. All ECGs with a correlation below 0.7 were 

excluded. The standardized latent factors from the finetuned model were taken 

forward for downstream analyses. A detailed description of the model architecture 

and loss can be found in a previous study.7 

The influence of the individual ECG factor on the median beat ECG morphology was 

visualized using factor traversals. These were derived by varying the values of the 

factors individually between -3 and 3, while generating the median beat ECG using 

the decoder. As the other factors are kept constant, the individual influence of that 

factor on the ECG morphology can be visualized. 
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Ascertainment of health outcomes 

We interrogated the associations of the ECG latent factors with various 

cardiovascular, metabolic as well as rhythm disorders listed in the Table S1. 

Ascertainment of these diseases in the UK Biobank was based on a combination of 

hospital inpatient records, primary care records and self-reported records during an 

interview with a trained staff. Mortality including cause (coded by ICD-10) and date of 

death were captured from death registries12. Definitions of the health outcomes are 

presented in (Table S1).  Participant follow-up started at the date of imaging visit 

(where the 12-lead ECG and CMR were performed) and ended at date of event, 

death or last recorded follow-up, whichever occurred first. Participant follow‐up was 

censored on September 30, 2021 for participants from England / Wales and October 

30, 2021 for participants from Scotland respectively. Health outcome data was 

processed and extracted using the ukbpheno v1.0 package in R9. 

 

Phenotypic characterization of the latent factors 

We first assessed the Pearson correlations between the latent factors and traditional 

ECG descriptors in order to explore the information captured by the factors. We 

further investigated whether cardiac structure and functions could be inferred from 

the latent factors derived from the 12-lead ECG. More specifically, we regressed 

each CMR-derived structural and functional parameter on all 32 latent factors. Finally, 

we performed association analyses with health outcomes using logistic regression as 

well as mortality (all-cause mortality and cardiovascular mortality) prediction using 
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Cox proportional hazards models. We included age and sex as covariates in all 

regression models.  

 

Genome wide association study and candidate genes 

We conducted genome wide association study (GWAS) on participants with 

genotyping data available. Two custom Affymetrix AxiomTM (UK Biobank Lung 

Exome Variant Evaluation or UK Biobank) genotyping arrays with >95% common 

content were used. Imputation was performed using Haplotype Reference 

Consortium as the primary reference panel with addition of merged UK10K and 1000 

Genome phase 3 reference panels. Quality control of samples and variants, as well 

as of the imputation was performed by the Wellcome Trust Centre for Human 

Genetics8. The current study was performed on the imputed data supplied by the UK 

Biobank. Individuals with overall missingness >5% or excessive heterozygosity, and 

individuals whose genetically inferred sex did not match with the reported sex, were 

excluded from the analyses. Additionally, variants with a minor allele frequency 

smaller than 0.5% or an INFO-score smaller than 0.3 were excluded.  

We first performed GWAS of autosomes for individual latent factors using BOLT-

LMM v2.3.113. A linear mixed model was fitted for each of the z-transformed latent 

representation. GWAS analyses were adjusted for age at the time of the imaging 

visit, sex, genotyping array and the first 30 principal components (provided by UK 

Biobank) to adjust for population stratification. Individuals with missing information on 

any of the covariates were excluded from the GWAS analyses. The nearest protein 

coding gene and any additional gene within 10kb of each of all independent lead 

variant (with P<5×10-8 and with LD r2>0.005) were annotated as candidate causal 

genes. We defined the region ±500KB around the independent lead variant as a 
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genetic locus. To identify novel associations, we cross-referenced our findings with 

7,464 significant associations for electrocardiography (EFO_0004327) including all 

child traits in the GWAS catalog (record downloaded on 27-06-2023). To take into 

account of multiple testing, we estimated the number of effective independent tests 

for the 32 latent factors using an eigenvalue ratio measure14,15. With 23 effective 

independent tests, a more stringent p-value of 2.17×10-9 (5×10-8/23) was taken as 

Bonferroni corrected genome wide significance.  

To further refine the signals detected in GWAS, we applied statistical fine-mapping 

on all loci identified to prioritize putative causal variants. Bayesian fine-mapping was 

performed on summary statistics using FINEMAP (v1.4)16. A shotgun stochastic 

search method was used to produce 95% credible sets under the assumption of a 

number of causal variants (k) from 1 up to 5, each with estimated posterior 

probabilities which jointly summed up to 1. We considered the variants in the top 

causal configuration under k with the highest posterior probabilities as the likely 

causal variants. For each likely causal variant, we searched for coding variants in 

high LD (R2�>�0.8) with dbNSFP (v.4.2)17. 

Genetic correlations between the latent factors were estimate using LD score 

regression18. Given the higher genetic correlations observed in factors with small 

phenotypic variance, we performed meta-analyses on all factors with significant 

genetic correlations rg>0.4 after Bonferroni correction (p<0.05/496=1.01 ×10-4) using 

Multi-Trait Analysis of GWAS (MTAG)19 with the objective of identifying additional 

genetic signals embedded in the ECG. MTAG is a tool for analysis of multiple GWAS 

summary statistics which applies a generalized inverse-variance-weighted meta-

analysis that allows for sample overlap. In MTAG analyses we considered common 

variants with minor allele frequency larger than 0.01 and INFO-score larger than 0.3.  
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Tissue specificity and gene-set analysis  

To further interpret the genetic composition of the latent factors, we applied Multi-

marker Analysis for GenoMic Annotation (MAGMA) tool for gene property analysis 

and gene-set analysis20. MAGMA analysis was done via the platform Functional 

Mapping and Annotation of Genome-Wide Association Studies (FUMA) v1.4.0 with 

MAGMA v1.08, using default settings. Briefly, gene-based test statistics were first 

obtained with a SNP-wide mean model which were then converted to Z scores. To 

identify tissue specificity of the GWAS associations, these gene-based Z scores was 

submitted to gene property analysis in which the Z scores were regressed against 

expression data set GTEx v8 which including 52 tissues and two cell lines across 30 

general tissue types. 

Enrichment of association was tested with 15,485 predefined gene-sets from 

MsigDB v7.021. The database contains 5,497 curated gene sets from 9 pathway 

databases including BioCarta, Kyoto encyclopaedia of gene (KEGG), Reactome, 

WikiPathways, Matrisome Project, Pathway Interaction Database, SigmaAldrich 

database, Signaling Gateway database and SuperArray SABiosciences database, 

as well as 9,988 Gene Ontology (GO) terms organized in three categories, namely 

biological processes (BP), cellular components (CC) and molecular functions (MF). 

Gene-sets that reached statistical significance after Bonferroni correction (P= 

3.23×10-6) were then put forward for clustering analysis using R package 

simplifyEnrichment (v1.1.5)22. Semantic similarity between GO terms per categories,  

namely BP, MF and CC, were measured by relative relevance23 while similarity 

between non-GO curated gene-sets were measured by kappa coefficients24. 

Clustering of the gene sets was performed using the binary cut algorithm, which 

recursively divides terms into 2 groups by medoids22. Based on the resulting 
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functional clusters, we visualized the enriched gene-sets in Voronoi treemaps25. 

Voronoi treemap is a variant of treemap consists of polygonal cells instead of 

rectangular ones. We set the size of the cell to be proportional to the binary 

logarithm of the inverse of the p-value in MAGMA association test while darker 

shade of the cell reflects larger relative effect size of the gene-set within the cluster. 

We generated Voronoi treemaps for all latent representation with significant gene-

sets using the R package WeightedTreemaps.  

 

Morphological manifestations of the genetic components and associations 

with clinical outcomes  

To visualize morphological effects of the genetic variants, we modified each latent 

representation by the effect size associated for the target variant in GWAS and then 

reconstruct the ECG by submitting the modified latent factors the decoder of the VAE 

model. More specifically, we transformed all effect sizes of these associations back 

to original scale and used them to modify the average latent factors in an additive 

manner. We considered associations with suggestive p-value <1×10-5 only to reduce 

noise by potentially spurious associations in this visualization task. We made an 

interactive tool to visualize the morphological effects of the genetic variants which is 

available online via https://genetics.ecgx.ai/. 

We estimated genetic correlations between the latent factors and a range 

cardiometabolic as well as rhythm disorders (Table S2) in order to investigate the 

shared genetic components using linkage disequilibrium score regression (LDSC) 

v1.0.118. Genetic associations of the diseases were done within the subset of 

unrelated UK Biobank participants without 12-lead rest ECG. To obtain reliable 
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genetic correlation estimates, we included the phenotypes if all three criteria were 

met in the SNP heritability analysis: the Z-score is 1.5 or above, the mean Chi-

square of the test statistics is larger than 1.02 and the intercept is between 0.9 and 

1.126. 
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Results 

Clinical characteristics and AI-derived phenotypes 

Out of 502,408 UK Biobank participants, 12-lead ECG data was available for 41,927 

participants in the current analysis. Clinical characteristics of these participants are 

shown in Table S3. The mean age of these participants at the time of visit was 64.6 

(standard deviation 7.73 years) and 51.6% were female. We took the median beat of 

ECG passing quality control (QC) from 41,581 UK Biobank participants to finetune 

the β-VAE model originally trained on 1,144,331 ECGs from 251�473 patients. 

Reconstruction of the ECG using the finetuned model achieved a Pearson 

correlation of 0.963.  We then transformed the ECG into 32 latent factors using the 

encoder of the trained model for downstream analyses. Kernel density estimate plots 

of each latent factors over age by sex can be found in Figure S1. Factor traversals 

for visualizing the effect of individual ECG factors on the ECG morphology can 

be found in Figure S2. Disentanglement was successful between 21 latent factors 

with variance close to one while higher phenotypic correlations were observed for 

the 11 latent factors of subtle morphologies (with variance <0.001), namely factor 2, 

factor 3, factor 4, factor 7, factor 14, factor 18, factor 20, factor 21, factor 24, factor 

28 and factor 29 (Figure S3 and Table S4).    

CMR phenotypes derived from the respective AI-based pipeline were available for 

34,021 participants who also had latent factors from ECG available. Table S5 

reports the summary statistics of these phenotypes by sex.  

 

Association between latent factors and traditional ECG parameters 
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To demonstrate that the latent factors also capture electrophysiological information 

contained the traditional ECG parameters, we performed Pearson correlation 

analyses between the latent factors and the traditional ECG parameters (Figure 1). 

The strongest correlation was observed between factor 10 and ventricular rate 

(r=0.71). PR interval was strongly correlated with factor 8 (r=0.76) while QRS was 

most correlated with factor 25 (r=--.66) and QT interval with factor 30 (r= -0.7). Other 

strong correlations were observed for factor 31 with R-axis (r= -0.52) and T-axis (-

0.53) respectively. 

 

Recapitulation of CMR parameters by ECG latent factors 

We built multivariable linear regression models of each CMR parameter againset 

age at imaging, sex and all 32 latent factors and assessed the goodness of fit using 

the adjusted R2. The variations accounted for in the models for structural CMR 

parameters, namely LVEDM (adjusted R2 = 0.488) and LV mean global myocardial 

wall thickness (adjusted R2 = 0.470) were higher,  as compared with functional 

parameters (Figure 2). Considering the effect sizes, factor 32 and 18 were the 

strongest predictors positively associated with both structural parameters while factor 

29 and 26 were negatively associated. Consistently factor 26 and 32 were also 

strongly associated with LV functional parameters including LVSV, LVPER and 

LVPFR. Associations of RV parameters with ECG latent factors were weaker 

compared with LV counterparts (Figure 2). Latent factors 16, 11 and 15 were 

strongly associated with RV functions. Notably, factor 30 was negatively associated 

with both stroke volume estimates while factor 20 was positively associated with both 

LV/RV ejection fraction estimates. It was worth to note that LVEF, an important 
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clinical measure of LV systolic function, as well as its surrogate measure MAPSE 

were only weakly explained by the ECG latent factors with an adjusted R2 of 0.14 

and 0.069 respectively. 

 

Association with cardiometabolic outcomes  

We then explored the relationship between latent factors and selected health 

outcomes. Table S6 reports the significant associations of each factor for the health 

outcomes in a logistic regression model adjusted for age and sex. We found the 

strongest associations for conduction disorder bundle branch block but also strong 

association for rhythm disorders like atrial fibrillation as well as structural heart 

disease like cardiomyopathy. Compared with the conduction and rhythmic disorders 

in which information was captured by few specific latent factors as two distinct 

clusters (Figure 3), we observed more moderate but scattered associations for 

cardiometabolic diseases such as hypertension, coronary artery disease and 

hyperlipidemia.          

 

CVD mortality prediction  

During the median follow-up of 3.4 (interquartile range 2.5 - 4.9) years, 187 

participants died of CVD. Six out of 32 latent factors, namely factor 8, 9, 10, 14, 20, 

21 and 28 were associated with CVD mortality with p<0.002 (Figure S4). After 

adjustment for age and sex, factor 8 and factor 10 were the strongest predictors 

positively associated with mortality with hazard ratio, HR of 1.35 (95% confidence 

interval, CI 1.17 - 1.56) and 1.34 (95% CI 1.18 - 1.53) respectively; this was 

contrasted by factor 20 and 21 which were negatively associated with mortality with 
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a HR of 0.75 (95% CI 0.65 - 0.87) and 0.76 (95% CI 0.67 - 0.86) respectively. For 

comparison we tested the association with z-transformed values of the traditional 

ECG parameters (Figure S5). Ventricular rate was the strongest predictor with a HR 

of 1.28 (95% CI 1.13 – 1.45) and this was followed by corrected QT interval with HR 

of 1.25 (95% CI 1.14 – 1.36) and QRS duration with HR of 1.22 (95% CI 1.10 – 1.36). 

 

GWAS and MTAG analysis 

Genetic data were available for 40,815 participants at the time of analysis. We 

identified 164 independent lead variants at p<5×10-8, 104 of which with p<2.17×10-9, 

in the GWAS on the 32 latent factors (Figure 4A and Table S7). Notably 73 of them 

were identified in the 11 latent factors of subtle morphologies (Table S4). 

Comparison with records in the GWAS catalog revealed that the majority of the loci, 

namely 141 loci, in the current GWAS had been reported for ECG morphologies in 

previous studies (Table S7). Among 23 novel loci with lead variants reaching p < 5× 

10-8, six (nearest coding genes EFEMP1, ERBB4, MAP9, SNCAIP and GPR126) 

passed the more stringent p<2.17×10-9. Regional association plots for the novel loci 

are presented in Figure S6. We visualized the effects of lead genetic variants on the 

ECG morphologies via the decoder model of the VAE which is available at 

https://genetics.ecgx.ai/ (Figure S7). 

Considering the significant genetic correlations for 11 latent factors with other latent 

factors (Figure S3), we performed joint analyses of these factors with genetically 

correlated factors (rg ≥0.4) using MTAG19. We identified 6 additional novel loci close 

to PTP4A2, HNRNPLL, ST5, GPC6, SELENOV and C20orf187 respectively at 
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p<5×10-8 (Table S8). GWAS results including the joint analyses with novel loci can 

be explored online in https://my.locuszoom.org/.   

 

Candidate causal variants 

To refine the signals identified in GWAS, we first performed statistical fine-mapping 

to prioritize candidate causal variants. The candidate causal configurations with the 

highest posterior probabilities for each of the loci are reported in Table S7 and S8. 

The lead variant remained the candidate causal signal selected by FINEMAP in most 

of the loci. Notably, the GWAS of factor 23 FINEMAP identified an additional signal 

rs2061770 (intronic of SNX24) at SNCAIP locus, a locus associated with heart rate 

response to exercise27. Two additional signals rs78656993 and rs1411924 were 

identified within NRP1 gene from GWAS of factor 27; of note, rs78656993 is in an 

enhancer region (Ensembl regulatory feature ID: ENSR00000026629) while 

rs1411924 is located at a transcriptional factor binding site (ENSR00000400533).  At 

the DPP6 locus from GWAS of factor 3 an additional signal rs113687675 was 

identified and it is located at approximately 2,175 base pairs upstream of 

rs606231226, the variant reported for familial paroxysmal ventricular fibrillation in a 

Dutch family28. FINEMAP revealed n missense variant of SEPTIN3 at the NFAM1 

locus from the GWAS of factor 28.   

We next queried dbNSFP for all the candidate causal variants as well as their LD 

buddies (R2>0.8) to identify nonsynonymous coding variants (Table S9). We found 

coding variants in known cardiomyopathies associated genes29 including TNNT 

(rs764862951), TTN (rs9808377, rs3829746, rs2042996, rs1560221, rs1001238, 

rs2042995, rs12693164, rs13390491, rs16866465 and rs12693166), BAG3 
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(rs2234962), JUP (rs41283425) and MYBPC3 (rs3729989) as well as in known 

rhythm disorders associated genes30 KCNE1 (rs1805128). Among the novel loci 

identified in this current study with p < 5× 10-8, we observed missense variants for 

AFAP1 (rs28406288), ST5 (rs3794153), SUGP1 (rs17751061) and HAUS5 

(rs71353000). Variant rs28406288 and rs17751061 had CADD scores above 20 

(22.8 and 31 respectively) and were predicted to be pathogenic by several variant 

pathogenicity prediction tools including SIFT, Polyphen2 and Mutation Taster except 

for PrimateAI (Table S9).  

 

Tissue specificity and gene-set analyses 

Using the GTEx dataset, we observed the strongest enrichment in heart tissues in 

both general tissue types and specific types. (Figure 4B, Table S10 and Table S11).  

A total of 11 latent factors were associated with heart tissue with p<0.0017 and 15 

latent factors were associated with at least one of the heart specific tissue types arial 

appendage or left ventricle with p<9.6 ×10-4 after Bonferroni correction. Beside the 

heart, muscle and blood vessels were among the top enriched tissues with the 

strongest association observed for factor 24 (p = 5.18× 10-6) and factor 29 (p = 2.90× 

10-4) respectively (Table S11).  

To summarize the genetic signals associated with the latent factors into biological 

processes, we performed MAGMA gene-set enrichment analysis. A total of 191 

gene-sets passed Bonferroni corrected significance threshold for 24 latent factors 

(Table S12). Latent factors with the most associations included factor 1 (ngene_set= 38) 

and factor 30 (ngene_set= 29), while 5 latent factors (factor 3, factor 4, factor 16, factor 

28 and factor 31) were significantly associated with one gene-set. Clustering 
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analysis of the gene-sets resulted in 12 functional groups (Figure S8) belonging to 

three main aspects of cardiac electrophysiology, namely cardiac development, 

muscle contraction and membrane de/repolarization (Figure 4C). Most latent factors 

were associated with gene-sets of multiple functional groups with some exceptions. 

Latent factors strongly enriched for development or tissue regeneration of the heart 

included factor 17, factor 24 and factor 26. This contrasted with factor 3, factor 16 

and factor 31 which captured cell signalling of the His-Purkinje system.  

 

Shared genetic components with health outcomes 

To explore the genetic overlap between the latent factors and health outcomes, we 

performed GWAS on the health outcomes in 446,014 UK Biobank participants who 

did not have 12-lead ECG recorded. We estimated the genetic correlations between 

17 health outcomes and the latent factors with LD score regression. A total of 30 

latent factors showed moderate genetic correlations with one or more 

cardiometabolic outcomes with p<0.05, among which 16 had correlations with a 

more stringent p<9.19×10-5 (Figure S9 and Table S13). The strongest genetic 

correlation was observed between factor 25 and bundle branch block rg = -0.69 

(P=1.14×10-9). Factor 18 showed strong genetic correlation with bundle branch block 

as well, although in the opposite direction rg = 0.39 (P=3.43×10-5). We also observed 

strong genetic correlation for other conduction disorders with factor 8 rg = 0.46 

(P=1.46×10-10), factor 25 rg = -0.42 (P=3.55×10-7) and factor 21 rg = -0.41 

(P=1.82×10-8). In contrast, strong genetic correlations (|rg |>0.3) were observed for 

non-alcoholic liver disease with factor 30, factor 24 and factor 10; genetic 
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correlations with vascular diseases including aneurysm, hypertension and peripheral 

artery disease was observed in factor 4. 

On a locus level, we found 146 loci which have been previously reported covering 

332 traits in studies documented in the GWAS catalog (Table S14). Besides 

electrocardiographic traits and rhythm disorders, which are most frequently reported, 

we observed great overlap in loci for physical measures including height (number of 

loci shared, n=34), Waist-to-hip ratio / waist circumference (n=19), blood pressure 

traits (n=32) and heel bone mineral density (n=10). Four of the novel loci, namely 

MECOM, AFAP1, CCDC92/ZNF664/FAM101A and SNCAIP have been associated 

with non-electrographic cardiac traits (Figure S10); the HIST1H3G/ HIST1H2BI 

locus has been associated with primarily lipid traits while the MAP9 locus has been 

associated with vascular traits. 
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Discussion 

In this large study, we described the full 12-lead ECG waveforms in a latent space of 

32 joint distributions and demonstrated the unique opportunities for both clinical 

utilities and biological insights provided by these representations, or latent factors. 

We performed an in-depth investigation on the latent factors with deep phenome 

data of the UK Biobank. First, we explored the relationship between the ECG latent 

factors and CMR by studying the participants who had both 12-lead ECG and CMR 

acquired at the same visit. We showed that both cardiac structures and functions 

estimated from the CMR, which is a more resource-intensive and less available 

modality, could be inferred from latent factors of the readily accessible ECG. 

Additionally, not only the latent factors were associated with risk of a wide range of 

cardiometabolic diseases in a cross-sectional analysis but were also predictive of 

CVD mortality in a median 3.4 years of follow-up.  

We further explored the genetics of the latent factors by GWAS followed by a series 

of bioinformatic analyses to functionally characterize the genetic signals. We 

identified a total of 170 genetic loci reaching the genome wide significance (p < 5× 

10-8). The replication of many loci already associated with classical ECG descriptors 

demonstrated the utility of the deep representation learning in capturing biologically 

relevant information. More importantly, we identified 29 novel loci in the current study 

with our latent factors in around 40,000 participants. The number of genetic loci 

discovered in current study was on par with recent large scale meta-analyses on the 

individual ECG fragments with >250,000 individuals2,3. Of note, a substantial 

proportion of the genetic signals including 13 novel loci were discovered through the 

latent factors with subtle morphology (small phenotypic variance). Our findings 

highlighted the strength of deep learning in harnessing information from high 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 7, 2023. ; https://doi.org/10.1101/2023.12.05.23299459doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.05.23299459
http://creativecommons.org/licenses/by/4.0/


dimensional data such as complete ECG which might otherwise be omitted in the 

segmented ECG parameters.  

Tissue expression analyses of the genetic signals showed strong enrichment in the 

heart, muscle and vascular tissues, corroborating the most prominent genetic loci 

identified in the GWAS. For instance, we identified SCN5A, KCND3, KCNQ1 and 

KCNE1, genes with well-established associations to various arrhythmic disorders30,31 

along with cardiomyopathy genes including DPT, TTN, PLN (at the SLC35F1 locus), 

BAG3 and MYH7B 32.  Gene-set analyses revealed that the genetic signals could be 

parcellated into interlinked aspects of cardiac physiology namely, development, 

contractility and electrophysiology. Considering the novel, recent studies reported 

CDH18 to be a cardiac development gene specifically expressed in the fetal 

epicardium33; ERBB4, MECOM, GPR126 and NRP1 have been implicated in 

cardiovascular development . The actin filament-associated protein 1 and kalirin, 

encoded by  AFAP1 and KALRN respectively, are mechanosensing proteins34–42. 

AKIP1 in the ST5 locus has been found to promote cardiomyocyte hypertrophy in 

response to stress43,44. We identified DPP6, a gene implicated in familial form 

idiopathic ventricular fibrillation in Dutch population and was associated with QT 

interval albeit at a suggestive level (P=1.66×10-6 ) in the GWAS of African Americans 

45,46. DPP6 encodes an auxiliary subunit that modulates the voltage-gated potassium 

channel Kv4.3 responsible for transient outward potassium current (Ito)  in the heart47.  

Our finding also demonstrated the uncoupling of the genetic and environmental 

components of the ECG. First, the latent factors are different in heritabilities 

indicating the different genetic loadings. For example, both factor 10 and factor 30 

captured phenotypic variation of the ventricular rate and the QT interval but genetic 

loading was higher for factor 30 which was reflected in higher SNP heritability as well 
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as higher number of genetic loci identified. Association patterns with the 

cardiometabolic diseases were also not identical between the phenotypic association 

and genetic correlation analysis. For example, factor 21, factor 25 and factor 28 

showed concordant associations with bundle branch block in both analyses but 

factor 18 was only correlated with the disease on the genetic level. Similarly, factor 4 

and factor 30 showed moderate genetic correlation with heart failure despite non-

significant phenotypic associations. We further explored this uncoupling by 

visualizing the effects of genetic variants on the ECG by leveraging the decoder of 

the VAE model. We additionally made both the decoder (https://genetics.ecgx.ai/) 

and encoders (https://encoder.ecgx.ai) available online to enable further exploration 

of current results as well as analysis of new data. 

Our findings are subject to several limitations. First, we modelled a high-dimensional 

electrocardiogram with a latent space of 32 dimension using the β -VAE which was 

optimized iteratively. We noted that higher dimensions could yield a better 

reconstruction but also at the potential cost of interpretability and model’s ability to 

interpolate. Capturing rare, subtle but clinically relevant differences in the ECG 

became a bigger challenge in a relatively healthy cohort such as the UK Biobank48. 

Finetuning of the model would be required to adapt the latent space to a new cohort 

from a different population. It is also important to point out that statistical 

independence between the latent factors did not reflect separation of biological 

functions. On the contrary, our analyses showed that the overlaps in biology, albeit in 

a different proportion, were captured by the latent factors. The cardiac parameters 

estimated from CMR were produced automatically by a validated DL-based pipeline 

which included a QC step to remove erroneous results; direct inspections were not 

performed. The participants in the UK Biobank are primarily Europeans which may 
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limit the applicability of our findings in other ethnic groups. We have prioritized the 

candidate causal variants and genes through the bioinformatic analyses only. 

Further experimental validations of these candidates are needed. 

In summary, we applied representation learning on full 12-lead ECG into 32 latent 

factors using a generative deep learning model. We showed these latent factors are 

interpretable and revealed novel insights.   
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Programming code to train and use the FactorECG model is available through: 

https://github.com/rutgervandeleur/ecgxai. An online tool to convert any ECG into its 

FactorECG is available through: https://encoder.ecgx.ai.  
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Figures 

 

Figure 1 ECG latent factors capture information represented in traditional ECG parameters 

Pearson correlation coefficients between electrocardiogram measures of PR interval, QRS duration, QT interval, Bazett corrected QT (QTc) 
interval, ventricular rate, P-axis, R-axis, and T-axis, and latent factors generated from the 12-lead ECG of 41,927 UK Biobank participants. 
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Figure 2 Association of ECG latent factors with CMR parameters 

 Regression coefficients of the latent factors in the multivariate linear regression on each CMR-
derived structural and functional parameter. The coefficient describes the effect per standard 
deviation change of the latent factor. Adjusted R2 indicates the goodness-of-fit of the linear regression 
model. 
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Figure 3 Associations of latent factors with cardiometabolic diseases. 

Dot plot shows the association of the latent factors as a risk factor for selected cardiometabolic disease. The colour of the dot indicates the c
logistic regression model. Coefficients were adjusted for age and sex. The size of dot reflects the p-value categories for the latent factor in th
logistic regression model; p=8.7 ×10-5 is the Bonferroni corrected p-value taking α=0.05. The bar plot shows the prevalence of the disease at
when the ECG was acquired. 
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Figure 4 Enrichment in cardiac tissue and pathways for genetic variants 
identified in genome wide association study of the latent factors 

(A) Manhattan plot of all latent factor (smallest p-value across latent factors is shown); variants in orange 
indicate those pass p<5×10-8 and the top loci have been annotated with their nearby genes. (B) Tissue 
specificity of the latent factors with GTEx datasets (v8). Results with p<0.05 in MAGMA tissue expression 
analysis are shown. Each dot represents one latent factor and dotted line indicate the Bonferroni corrected 
p-value. Left: general tissue types; right: specific tissue types. (C) Clustering of the gene sets associated 
with each latent factor visualized in Voronoi tree maps. Clustering was performed on Gene Ontology (GO) 
associated gene-sets by semantic similarity and for non-GO curated gene-sets by kappa coefficients. Each 
cell within the tree map represents one gene-set with cell size reflecting the relative significance and darker 
shade reflecting stronger effect size among all gene sets for that latent in the MAGMA gene-set analysis. 
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