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Abstract 24 

Development of innovative non-invasive neuroimaging methods and biomarkers are critical for 25 

studying brain disease. In this work, we have developed a methodology to characterize the frequency 26 

responses and spatial localization of oscillations and movements of cerebrospinal fluid (CSF) flow in the 27 

human brain. Using 7 Tesla human MRI and ultrafast echo-planar imaging (EPI), in-vivo images were 28 

obtained to capture CSF oscillations and movements. Physiological data was simultaneously collected and 29 

correlated with the 7T MR data. The primary components of CSF oscillations were identified using spectral 30 

analysis (with frequency bands identified around 0.3Hz, 1.2Hz and 2.4Hz) and were mapped spatially and 31 

temporally onto the MR image domain and temporally onto the physiological domain. The developed 32 

methodology shows a good consistency and repeatability (standard deviation of 0.052 and 0.078 for 0.3Hz 33 

and 1.2Hz bands respectively) in-vivo for potential brain dynamics and CSF flow and clearance studies. 34 
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1. Introduction 36 

Clearance and exchange of brain fluids promote brain health by removing neurotoxic metabolic 37 

byproducts from the brain such as amyloid beta and tau (Nedergaard, 2013; Xie et al., 2013). Clearance of 38 

brain fluids is driven by pulsations of the perivascular space from autonomic nervous system (ANS) 39 

activity, which may vary as a function of brain states such as sleep and wakefulness (Hauglund et al., 2020; 40 

Herculano-Houzel, 2013; Xie et al., 2013) as well as brain diseases such as Alzheimer’s disease (Peng et 41 

al., 2016; Ramanathan et al., 2015) and major depressive disorder(Hock et al., 1998; Pomara et al., 2012). 42 

The lymphatic draining system of the brain tissue, also known as the glymphatic system, is described as 43 

convection of cerebrospinal fluid (CSF) between the peri-arterial and peri-venous spaces. This convective 44 

flow is partially due to the cardiac-induced blood flow pulsations along the arteries (Adolph et al., 1967; 45 

Iliff et al., 2013; Martin et al., 2012; Schroth & Klose, 1992). Water is propelled by the arterial pulsations 46 

through aquaporin channels and supports solute transport from extracellular interstitial spaces, through 47 

perivascular spaces, and into CSF spaces. CSF and waste products from the brain are then pushed from 48 

parenchyma to subarachnoid spaces and eventually cleared via arachnoid granulations and dural and nasal 49 

lymphatic vessels (Iliff et al., 2013; Kiviniemi et al., 2016; Leon et al., 2017; Rennels et al., 1990). 50 

Development of quantitative CSF imaging methods is critical to understand factors that influence 51 

brain fluid clearance. T1-weighted magnetic resonance imaging (MRI) with intrathecal injection of a 52 

gadolinium (Gd)-based contrast agent has been used to characterize CSF flow in human participants with 53 

idiopathic normal pressure hydrocephalus (iNPH) and dementia (Eide & Ringstad, 2019; Ringstad et al., 54 

2017, 2018). This technique has afforded fully quantitative, high-resolution imaging of CSF and interstitial 55 

fluid (ISF) flow throughout the whole head but is highly invasive due to necessary lumbar puncture. Gd 56 

may also deposit in the brain, inhibiting longitudinal study (Gulani et al., 2017). 57 

Fast acquisition functional magnetic resonance imaging (fMRI) paradigms have also been used to 58 

characterize CSF dynamics in iNPH and Alzheimer’s disease (AD) patients and during sleep (Fultz et al., 59 

2019; Shanks et al., 2019; Yamada et al., 2020; Yang et al., 2022). While non-invasive, these sequences 60 
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have relatively poor signal-to-noise ratio and spatial resolution and have been limited to narrow fields of 61 

view encompassing only the 4th ventricular or cerebral aqueduct.  62 

The bulk changes in blood volume at the capillary level could cause widespread fluctuations of 63 

measured signal intensity with the cardiac cycle. Furthermore, large vessel pulsatility may cause tissue 64 

movement and production of an influx of unsaturated blood into the slice of interest affecting the measured 65 

signal intensity in the areas adjacent to the vessels. This leads to a signal variation when using T2* echo-66 

planar imaging (EPI) acquisitions (Dagli et al., 1999). Hence, fMRI and other techniques have been used 67 

to characterize different sources of pulsations in the brain (Biswal et al., 1995; Dagli et al., 1999; Kiviniemi 68 

et al., 2000; Poncelet et al., 1992; Purdon & Weisskoff, 1998). Thus, using MRI of CSF dynamics can 69 

highly inform the study of brain diseases and the role of sleep-wake states (Fultz et al., 2019; Xie et al., 70 

2013). 71 

Ultra-high field MRI (≥ 7 Tesla) provides a major advantage of increased signal-to-noise ratio 72 

(SNR). The enhanced SNR can be used either to increase the resolution of the images or to decrease the 73 

scanning time (with the use of higher acceleration factors). Other advantages of 7 Tesla (T) field strength 74 

are the higher sensitivity to blood-oxygen-level-dependent (BOLD) signal and better vasculature 75 

conspicuity (Moser et al., 2012; Santini, Wood, et al., 2021). The high signal-to-noise ratio (SNR) and fast 76 

acquisitions of 7T MRI scanners allow studies to perform analysis of blood and cerebrospinal fluid (CSF) 77 

flow within the brain (Scouten & Constable, 2008). 78 

This work revolves around the creation of a method of acquisition and analysis that can be used as 79 

biomarker for study of central nervous system functioning and brain diseases. Using fast EPI and 80 

physiological acquisitions, we viewed and analyzed the CSF MR signal in real-time. We report CSF 81 

oscillation patterns through spectral analysis and apply the same methodology across different datasets to 82 

validate the observed results. 83 

 84 
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2. Methods 85 

The overall design of this study is based on two main steps: in-vivo 7T image acquisition, 86 

concurrent with physiology measurements, and image processing with spectral analysis. The processing 87 

and analysis of the power-frequency spectrum and its corresponding spatial mappings were fine tuned for 88 

the processing parameters such as detection bandwidth and peak span, thresholding levels for masks and 89 

smoothing degrees for filtering. 90 

The volunteers scanned for this work provided informed consent as part of an approved study by 91 

the University of Pittsburgh’s Institutional Review Board (identification number PRO17030036). For CSF 92 

flow data collection, five healthy volunteers (all females, age range 21-25 years old) were scanned to obtain 93 

EPI data from the whole brain, including the cerebellum. For comparison between physiological and MRI 94 

data, one additional healthy volunteer (male, age range 26-30 years old) was scanned and had physiological 95 

data collected simultaneously. 96 

2.1 Image Acquisition 97 

Images were acquired using a whole-body 7T MRI system (Siemens 7T MAGNETON) and with 98 

the human-connectome EPI multiband MR sequence (Moeller et al., 2010; Uğurbil et al., 2013). The 99 

sequence is capable of achieving fast acquisitions, high contrast to the CSF flow, and high sensitivity to 100 

BOLD signal, thus making it a good candidate for studies of sleep and neurodegenerative and psychological 101 

disorders. The imaging was done with an in-house developed and fabricated 16-channel Tic-Tac-Toe 102 

transmit array with a 32-channel receive head coil (Krishnamurthy et al., 2019; Santini et al., 2018; Santini, 103 

Wood, et al., 2021) that is load insensitive (Ibrahim et al., 2008; Kim et al., 2016; Santini, Wood, et al., 104 

2021) and capable of whole brain homogenous imaging at 7T (Ibrahim et al., 2013). By using this coil 105 

design, we were able to acquire signal from the entire brain with minimal regions of significant excitation 106 

losses using the single transmit mode of the 7T scanner.  107 

The acquired EPI images yield a real-time visualization of the CSF flow in the brain. The sequence 108 

was optimized to perform fast brain imaging. The main data acquisition was done with echo time (TE) of 109 
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20 ms (carefully chosen for future potential BOLD analysis), repetition time (TR) of 155ms, isotropic 110 

resolution of 2mm, and acceleration factor of 2. The field of view (FOV) was 192 mm x 192 mm x 6 mm. 111 

The acquisition was broken into 19 slabs of 3 axial slices each for a total of 57 slices, which is enough to 112 

have whole-brain coverage. A total of 600 volumes were sequentially acquired per slab in a single sequence 113 

run for an acquisition time of 1 minute and 36 seconds per slab. 114 

During the development of the protocol, the EPI acquisition on the Volunteer 1 was done using TR 115 

of 152ms but only 15 slabs for a total of 45 axial slices. Another EPI acquisition on the same volunteer was 116 

also performed using TR of 51ms and a single slice. 117 

Two spin-echo echo-planar images were also acquired for B0 field distortion correction with the 118 

same phase encoding (PE) direction of the EPI acquisition (PA) and with the opposite PE direction (AP). 119 

These acquisitions were performed for 57 slices, TE of 39.4ms, TR of 6000ms with matched parameters as 120 

the EPI sequence in terms of field of view, resolution, number of slices, echo spacing, and position. 121 

A T1-weighted imaging (MPRAGE) sequence was used for proper localization of the EPI field of 122 

view and as a structural scan for the image processing. This acquisition was done using 0.75mm isotropic 123 

resolution, TR of 3000ms, TE of 2.17ms, and 256 slices for a coverage of 240 mm x 173 mm x 192 mm in 124 

total time of acquisition of ~5 minutes. 125 

2.2 Physiological Measurements 126 

Electrocardiogram (ECG) and respiration signals were collected from a consented volunteer inside 127 

the MR scanner using MR compatible ECG leads and an expansion belt attached to the chest to track 128 

inflation and deflation of the chest during respiration. Acquisition was digitalized using BIOPAC system 129 

(“ECG,” n.d.; “Respiration Transducer for MRI | TSD221-MRI | Research | BIOPAC,” n.d.). The 130 

simultaneously collected data allows temporal signal analysis of both MR and physiologic signals. The 131 

imaging data acquired in conjunction with the physiological data used TR of 75ms, TE of 28ms, and slice 132 

thickness of 4 mm. 133 
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2.3 Image Processing 134 

The processing pipeline was developed based on MATLAB (MATLAB - MathWorks, n.d.), ANTs 135 

(Avants et al., 2009), and FSL (Jenkinson et al., 2012) software. It consists of denoising, distortion 136 

correction, bias correction, and skull stripping of each dataset volume. The initial step was loading the slabs 137 

and merging them into a single dataset. Next, denoising was performed using a noise estimation tool with 138 

variance stabilization transformation (VST) for Rician-distributed noise (Foi, 2011). The Rician 139 

heteroscedastic noise is converted to a homoscedastic noise after the forward VST. The block-matching 4D 140 

(BM4D) denoising algorithm (Maggioni et al., 2013) can then be applied and the denoised image is obtained 141 

after the inverse VST. This tool has been used for other MRI applications(Santini, Koo, et al., 2021) and 142 

yields a good result when applied to EPI data. Distortion correction was done using the estimated B0 maps 143 

derived from the spin-echo sequence using topup tool (Andersson et al., 2003) from FSL software package. 144 

The generated map was used for correction of the EPI data. Then, the images were bias corrected using the 145 

N4(Tustison et al., 2010) tool from the ANTs software package with spline distance parameter of 200. The 146 

final skull stripping was performed using the FSL brain extraction tool (BET). 147 

2.4 Spectral Analysis 148 

The frequency analysis was performed for each dataset individually and resulted in both a 149 

frequency power spectrum and a mask for brain localization of specific frequency bands. A frequency 150 

spectrum was calculated for selected points for validation of the findings across different brain regions. 151 

After processing each individual slab of the EPI data, the frequency processing and analysis were 152 

performed in MATLAB and Python. The time series of each voxel was used to generate a frequency 153 

spectrum using fast Fourier transform (FFT). With the 600 volumes of 155ms TR acquisition, the frequency 154 

resolution of the frequency spectrum is 0.011Hz and the maximum frequency is 3.23Hz. The same 155 

frequency analysis for the 51ms TR data produces a much larger frequency spectrum of up to 9.8Hz. 156 

Therefore, frequency components higher than 3Hz can be observed and analyzed. The analysis was done 157 

using both the average of the 3D space and individual points manually selected. 158 
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Spatial analysis was done by creating image masks based on the localization of voxels with 159 

significant signal in each frequency band. Each frequency band was defined with a bandwidth of 0.3Hz and 160 

was centered at the local maxima of the frequency spectrum amplitude with a minimum peak distance 161 

0.15Hz (0.5Hz was used for the dataset with 51ms TR). The power map of a given frequency band was 162 

determined voxel-wise by averaging respective power values within the frequency band. For better 163 

visualization, each power map was then binarized with a chosen threshold (75% of the peak amplitude of 164 

the corresponding frequency band) and spatially smoothed using a Gaussian filter (sigma of 1.6), generating 165 

the final masks for each frequency band. These masks were overlaid on the original EPI and T1 weighted 166 

acquisitions for anatomical reference. The T1 weighted image was registered with the average EPI image 167 

of the dataset using SPM12. 168 

3. Results 169 

A video was created based on the image series of the fast EPI data after acquisition and processing 170 

(Figure 1). The video visually indicates the presence of periodical signal from the CSF flow. To confirm 171 

the presence of physiological signals such as respiration and cardiac motion, CSF temporal data was aligned 172 

with measurements from the electrocardiogram and respiration belt for visual comparison of similarity 173 

between the physiological activities and the change in signal intensity from CSF regions (Figure 2a). The 174 

frequency spectrum of the datasets was also aligned following the same comparison as the time series data 175 

(Figure 2b). The two major signal bands were highlighted between the ECG and CSF data (around 1.1Hz) 176 

and the respiration belt and CSF data (around 0.3Hz).  177 

To verify that various points of the brain contribute differently on the frequency spectrum, Figure 3 178 

represents the frequency spectrum for 9 arbitrary points throughout the brain. The position of each point is 179 

described by the brain anatomy that it belongs to as shown on the top-right corner of each spectrum graph. 180 

Most of the points show frequencies around 1.2Hz. Depending on the position, the signal shows the 0.3Hz 181 

and/or the 2.4Hz bands. 182 
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A frequency analysis was obtained from the EPI data. For each participant, the frequency spectrum 183 

was calculated for the average of all voxels in the dataset to validate the observations (Figure 4). The most 184 

significant frequency bands were highlighted after identification of the center frequency using a local 185 

maxima approach (findpeaks implementation in Python). For all volunteers, bands with similar center 186 

frequencies of approximately 0.3Hz, 1.2Hz, and 2.4Hz can be identified. Table 1 shows the center 187 

frequency for the bands calculated for each volunteer. The frequency bands with centers at 0.3Hz and 1.2Hz 188 

closely approximate the respiration and cardiac frequencies of a human adult (around 18 breaths per minute 189 

and 72 heart beats per minute, respectively). These bands can be identified as Band 1 and Band 3 on Table 190 

1. The averages for all volunteers are 0.322Hz and 1.217Hz respectively with a standard deviation of 0.052 191 

and 0.078 respectively. 192 

The masks created per frequency band (Figure 5) show a spatial localization for the frequency band 193 

centered at lower frequencies, e.g., 0.40Hz (Figure 5a) overlapping with brain regions with larger volume 194 

of CSF (the main ventricles and the brain periphery). Frequency bands centered at heart rate frequencies, 195 

e.g., 1.18Hz (Figure 5c) can be found on the regions with a stream of CSF (the main cerebral aqueduct). 196 

Similar patterns were observed for all volunteers as shown in Figure 6 as the mask for the heart rate band 197 

is demonstrated in each of the volunteer’s data. 198 

For the larger frequency spectrum (dataset with TR of 51ms), extra bands can be identified, and the 199 

center frequency of the most prominent band was calculated at 3.5Hz (Figure 7). 200 

4. Discussion 201 

We demonstrated a method to analyze the CSF motion in the human brain in-vivo using ultrafast 202 

7T EPI acquisitions. The raw visualization of the real-time signal (Figure 1) shows in-vivo CSF motion. 203 

The flow of CSF within the ventricles and in the subarachnoid space can be clearly visualized with changes 204 

in signal intensity. The time series and the frequency spectrum comparison between the collected 205 

physiological data and the EPI data (Figure 2) shows a direct alignment between the two types of data 206 
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where the cardiac and respiration cycles can be observed in the EPI MRI data. The frequency analysis also 207 

shows consistent results across multiple volunteers, with similar frequency spectrums are observed. 208 

Compared to previous studies (Fultz et al., 2019; Shanks et al., 2019; Yamada et al., 2020; Yang et 209 

al., 2022), we were able to achieve a greater frequency range and improved frequency resolution. This was 210 

made possible by utilizing ultrafast acquisition times (ranging from 51ms to 150ms), which allowed for 211 

whole-brain spectral analysis up to 9.8Hz. Additionally, we employed high SNR and homogeneous images 212 

by using a 7T MRI with a customized RF coil system(Krishnamurthy et al., 2019; Santini et al., 2018; 213 

Santini, Wood, et al., 2021). To optimize sequence parameters, we tailored the flip-angle to maximize the 214 

signal of the CSF flow and adjusted other parameters to minimize susceptibility-related distortions. We also 215 

selected a TE that could potentially capture the BOLD signal if functional connectivity data are warranted. 216 

The creation of frequency masks allowed for an analysis of the spatial localization of each 217 

frequency band. The presence of lower frequencies responses (respiration band – 0.4Hz) in the brain 218 

periphery suggests a less turbulent fluid flow in regions with more space for fluid flow. Furthermore, the 219 

presence of heart rate frequencies (1.2Hz) in the ventricles further validates the analysis as the arterial pulse 220 

wave in the choroid plexus, for instance, is known to influence the CSF motion(Bilston et al., 2010; Iliff et 221 

al., 2013; Martin et al., 2012). Additionally, the presence of high frequencies (over 2Hz) responses can 222 

suggest a more turbulent flow that also aligns with regions of the main cerebral aqueduct. 223 

This work provides a basis for potentially identifying new biomarkers for brain fluid dynamics. For 224 

example, the frequency spectrum can be analyzed for different brain diseases. The lower frequency bands 225 

(below 1Hz) contain physiological signals that corelate with the heart rate and breathing, so brain conditions 226 

that affect those variables can be analyzed directly from the MRI data. The magnitude of each band may 227 

also provide insights into the coupling between the heart and breathing rates with the CSF movement, which 228 

may indicate lower clearance rate. On the other hand, the higher frequency bands (above 1.8Hz), can be 229 

correlated with sleep cycles and potential sleep studies (Xie et al., 2013). 230 

 231 
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5. Conclusion 232 

The development of non-invasive neuroimaging methods and biomarkers is essential for studying 233 

brain diseases. This work presented a novel methodology to characterize the frequency spectrum and spatial 234 

localization of CSF oscillations and movements in the human brain. The use of ultrafast EPI in conjunction 235 

with 7T human MRI and simultaneous collection of physiological data enabled the identification of primary 236 

components of CSF oscillations and their mapping spatially and temporally onto the MR image and 237 

physiological domains. The methodology showed good consistency and repeatability in-vivo, making it a 238 

promising tool for potential brain dynamics and CSF flow/clearance studies. These findings may have 239 

significant implications in the diagnosis and treatment of brain diseases, and further research is necessary 240 

to explore the potential of this methodology in clinical studies. 241 
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 423 

Tables 424 
Table 1 - Values of the calculated center frequency responses for each identified frequency band. 425 

 Band 1 Band 2 Band 3 Band 4 Band 5 
Volunteer 1 0.329 0.811 1.173 2.325 3.037 
Volunteer 2 0.290 - 1.344 1.968 2.656 
Volunteer 3 0.398 0.763 1.183 1.957 2.366 
Volunteer 4 0.333 - 1.151 2.269 3.043 
Volunteer 5 0.258 0.548 1.237 2.516 2.806 

 426 
  427 
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Figures 428 

 429 

430 

Figure 1: Fast EPI acquisition (TR=100ms) showing signal changes due to CSF flow; axial slices with a 431 

spatial resolution of 1.53 x 1.53 x 3mm and a sagittal slice with spatial resolution of 1.5 x 1.5 x 4.4mm. 432 

The blue arrows point to regions of large variation in signal over time. A video showing these oscillations 433 

in real time is available at https://doi.org/10.6084/m9.figshare.24022932 434 

435 
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 436 
Figure 2: Data acquisition along the cardiac cycle. Echo-planar imaging acquisition performed 437 

with concurrent physiological measurement of electrocardiogram in the 7T scanner. a) Time series of ECG, 438 

respiration belt, and EPI signals. The EPI signal was temporally aligned with the physiological data using 439 

an external trigger signal from the scanner. The red lines represent the R-peaks of the ECG. B) Frequency 440 

spectrum of the ECG, respiration belt, and EPI signals. The purple region highlights the common frequency 441 
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band between the respiration and EPI signals, and the orange region highlights the common frequency band 442 

between the ECG and EPI signals. 443 
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 445 

Figure 3: Frequency spectrum for 9 selected points (a-i) throughout the brain for volunteer 1. Some 446 

points show higher intensity on the 1.2Hz and 2.4Hz bands (points a, b, e, f, g, h, and i) whereas other show 447 

more on the 0.3Hz band (points c, d, and g). The labels describe the brain anatomy where the data was 448 

obtained. 449 

  450 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 6, 2023. ; https://doi.org/10.1101/2023.12.05.23299452doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.05.23299452
http://creativecommons.org/licenses/by-nc-nd/4.0/


 451 

Figure 4: Frequency spectrum of the average signal intensity within the brain for 5 subjects. 452 

Regions of 0.3Hz around each peak frequency were highlighted to denote the bandwidth used for spatial 453 

mask creation. 454 
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 456 

Figure 5: Frequency spectrum of volunteer 3 with spatial localization of the signal from 5 separate 457 

frequency bands. For each band, a spatial mask was applied to the T1 weighted image. The acquired data 458 

can be obtained from the inferior region of the brain (cerebellum) up to the middle of the brain. The 459 

bandwidth for each band is 0.3Hz. The center frequencies are a) 0.4Hz, b) 0.76Hz, c) 1.18Hz, d) 1.96Hz, 460 

and e) 2.37Hz. The acquisition was done using an EPI sequence with TR=155ms with 19 slabs of 3 slices 461 

each for a total of 57 slices. 462 
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 464 

Figure 6: Visualization of the mask created for each volunteer at approximately the same position 465 

in the brain (bottom of the brain and top of the cerebellum and at approximately the same frequency band; 466 

a) for volunteer 1 at 1.17Hz; b) for volunteer 2 at 1.34Hz; c) for volunteer 3 at 1.18Hz; d) for volunteer 4 467 

at 1.15Hz; and e) for volunteer 5 at 1.24Hz. 468 

469 
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 470 
Figure 7: Frequency spectrum for volunteer 1 done using an EPI sequence single slice with 471 

TR=51ms. Maximum frequency of 9.8Hz and frequency bands of 0.3Hz were highlighted for better 472 

visualization of the main frequencies shown in the spectrum. 473 

 474 

 475 
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