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Abstract 
Large-cohort studies using cardiovascular imaging and diagnostic datasets have assessed cardiac 

anatomy, function, and outcomes, but typically do not reveal underlying biological mechanisms. 

Cardiac digital twins (CDTs) provide personalized physics- and physiology- constrained in-silico 

representations, enabling inference of multi-scale properties tied to these mechanisms.   

We constructed 3464 anatomically-accurate CDTs using cardiac magnetic resonance images from UK 

biobank and personalised their myocardial conduction velocities (CVs) from electrocardiograms 

(ECG), through an automated framework.   
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We found well-known sex-specific differences in QRS duration were fully explained by myocardial 

anatomy, as CV remained consistent across sexes. Conversely, significant associations of CV with 

ageing and increased BMI suggest myocardial tissue remodelling. Novel associations were observed 

with left ventricular ejection fraction and mental-health phenotypes, through a phenome-wide 

association study, and CV was also linked with adverse clinical outcomes. 

Our study highlights the utility of population-based CDTs in assessing intersubject variability and 

uncovering strong links with mental health. 

  

 

 

Introduction  
Large cohort multi-modality cardiovascular imaging and diagnostic data sets are increasingly 

available and are being used to link heart anatomy and function with physiological, lifestyle, and 

clinical outcomes1–3. While providing hypothesis-generating correlations, they have been less 

successful at identifying the underlying mechanisms that drive these correlations. This is in part 

because they are restricted to the analysis of observed attributes and do not identify the underlying 

physiology that may explain the observed correlations.  

A strategy to alleviate this limitation is the personalization of Cardiac Digital Twins (CDTs)4–6. CDTs 

provide physics- and physiology- constrained in-silico representations of specific individuals. They 

are personalized by integrating multimodal data, enabling multi-scale structure and function to be 

inferred from clinical measurements. The model parameters that explain the data become the 

attributes that describe the underlying physiology. Early forms of CDTs have shown great potential in 

supporting clinical decision-making and providing tailored therapies as in prospective studies of 

ventricular tachycardia7, atrial fibrillation8 and cardiomyopathy9.  

However, creation of CDTs is associated with challenges. Complex data processing and specialist 

methodology and requirement of large computational resources are required, which limit their 

broad adoption in both industrial and clinical settings. Presently, studies are constrained to working 

with small patient cohorts with at most 100 patients10, limiting their application and scalability to 

large population datasets. 

The creation of CDTs involves two crucial steps. First is the construction of the anatomical twin, the 

computational replica of the anatomical structures of each subject’s heart from medical images. 

Previously, semi-automatic workflows of heart mesh generation have been developed11,12, 

demanding substantial computational resources and considerable manual interventions by trained 

experts. The second is to build the functional twin, i.e. identifying bespoke electrophysiological 

parameters that replicate clinical measurements, for example, electrocardiograms (ECGs). This step 

is often more challenging, requiring numerous computationally intensive simulations to calibrate the 

multi-scale parameters, based on the specific biophysical fidelity needed. Parameter personalization 

remains an ongoing challenge, with the majority of modelling studies relying on ‘average’ 

parameters derived from the literature7,13,14.   

The feasibility of generating CDTs at scale hinges on the development of a computationally and time-

efficient automated workflow for both CDT creation steps. Recent advances in image segmentation, 
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including nnU-Net15 and Atlas-based approaches16 provide robust and precise 3D anatomical 

structures within abbreviated timeframes, facilitating the rapid creation of anatomical meshes from 

medical images. The emergence of surrogate models as novel statistics and machine learning tools, 

for example, Gaussian Process Emulators (GPE)17, provide a low-cost statistical representation of 

computationally expensive models. Such surrogate models enable global sensitivity analysis to 

identify important model parameters and therefore constrain the viable parameter space, which can 

reduce the number of simulations necessary for model calibration. 

In this study, we developed a methodology that integrates multi-modality data from the UK 

biobank18 within a CDT framework and first demonstrated the feasibility of CDT creation at scale. 

Within this framework, we inferred a key myocardial tissue electrical property, myocardial 

conduction velocity (CV), for each CDT. We then reported how CV varies across sex, body mass index 

and age, together with imaging and ECG-derived phenotypes (biventricular myocardial mass and 

QRS duration (QRSd) respectively). We also conducted a phenome-wide association study to explore 

their relationships with other phenotypes reported in the UK Biobank, followed by assessing their 

ability to independently predict clinical outcomes.   

Results 
Anatomical and functional CDT generation workflow 

The CDTs were built from UK Biobank magnetic resonance imaging (MRI) and ECG data sets as 

depicted in Fig. 1. Each CDT replicates the ECG QRSd and consists of a model of the heart anatomy, 

the preferred myocyte orientation or fibre structure, a fast endocardial conducting layer, the 

location of the activating Purkinje fascicles, the activation timing, the tissue conductivity, the degree 

of anisotropy, and the location of the virtual ECG electrodes.  The personalization involved the 

generation of the bespoke bi-ventricular anatomy from MRI and the inference of the CV that 

replicates the ECG QRSd. The anatomical personalization of a CDT, the first step in the pipeline, took 

5 minutes to be built from MRI images (avg mesh resolution 0.9mm) on a desktop with 16 cores. 

 

Fig. 1: The automated anatomical and functional (Electrophysiological) CDT generation workflow. The anatomical models 
are personalised finite element meshes with physiological-detailed myocardial fibres constructed from the short-axis and 
long-axis heart images in the UK biobank following the steps of segmentations, surface meshes and volumetric meshes 
construction as well as myocardial fibre generation. The functional CDT workflow is to replicate the electrophysiological 
activities within the anatomical models to match the QRS duration from the clinically measured 12-lead ECGs.   
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The functional personalization required a preliminary analysis to determine which parameters could 

be inferred from the available data and which needed to be set to reference prior values. Thus, we 

performed two global sensitivity analyses. In 10 representative cases sampled across sex, BMI, and 

age, we calculated the sensitivity of the QRSd prediction to 20 tissue-level physiological parameters 

(Fig. 2a and Supplementary Table 2) or 30 ECG electrode positions combined with the most 

important tissue-level property (Fig. 2b; Supplementary table 3). Notably, the first analysis revealed 

that CV has the dominant effect on QRSd, accounting for 72.7 ± 3.2 % the sensitivity, across all 

electrophysiological parameters, see Fig. 2. The second analysis then studied the potential impact of 

ECG electrode positions, finding that CV affects the QRSd the most (67.2 ± 10.4 %).  

Given CV was identified as the only key parameter that explains most of the variation in QRSd, we 

chose to calibrate the models by applying a computational-efficient bisection method to search for 

the personalized CV (constrained by physiological measurements in literature 19,20) to match with 

measured QRSd from the 12-lead ECGs at rest during sinus rhythm. The CDT calibration process 

assumed all other parameters were set to reference prior values taken from the literature, 

introducing an estimated uncertainty of -13% to +15.6% around the ‘true’ CV (Supplementary Figure 

2). The personalised CV parameter was inferred in 8 minutes on a desktop with 16 cores.  

 

Fig. 2: Global sensitivity analysis. The total effects of input EP parameters explain the variance of output QRS duration in 10 
subjects sampled from the cohort based on sex, age and BMI. a is for only tissue-level EP parameters and b is for the 30 ECG 
electrodes’ location parameters combining with the most important tissue-level parameter from a. 

We used the 4,329 first participants from the UK biobank that had adequate geometrical 

information16 and reported QRSd, sex, age, BMI/weight and height information. Of these, 3945 

(91.1%) and 3464 (80%) were successfully processed through the anatomical and functional 

personalization workflows. Summary participant characteristics are shown in Supplementary Table 

1. 

Model validation  

To validate the CDT workflow, we compared the QRS morphology in simulated ECGs against the 

measured ECGs in the 10 representative subjects. As the ECGs were simulated from a reference 

torso and heart location, we do not expect perfect matches in all leads. We have adopted a lead-to-

lead comparison approach used to compare ECGs clinically21. To quantify the ability of the model to 

replicate the ECG morphology, we plotted the simulated 12 lead ECGs (filtered, scaled, and 

temporally aligned) against measured ECG and correlation coefficients (𝑟) were calculated. 

Supplementary Figure 3 shows the comparison, with plots ordered in descending order of the 

correlation coefficients. 56% of ECG leads in all subjects matched with the recordings well (𝑟 > 0.5). 

Supplementary Figure 4 shows the averaged 𝑟 of the best correlated ECG leads as the number of 
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leads considered increases. The maximum average 𝑟 considering only the best correlated ECG leads 

was 0.95, while its value dropped to 0.79 when considering the top 6 ECG leads.  

To further validate our modelling approach, we investigated whether subjects with pathologically 

slow conduction, for instance, caused by fascicular block or heart failure, can be differentiated 

through their personalized CVs. Those subjects were identified using the summary diagnoses for 

hospital inpatients in the UK Biobank with the specific disease types as shown in Supplementary 

Table 5. Fig. 3 shows that subjects with fascicular block (N=46) had 16.8% lower CV (0.482± 0.11 vs 

0.579±0.08 m/s, 𝑃 = 1.1 × 10−14), and 23.3% longer QRSd (108.4±26.0 vs 87.9±12.6ms, 𝑃 =

2.2 × 10−26), comparing to their counterparts. Similarly, we also observed 5.2% slower CV (0.548± 

0.10 vs 0.578±0.08m/s, 𝑃 = 6.6 × 10−3) and 10.7% longer QRSd (97.6±20.8 vs 88.1±12.8ms, 𝑃 =

2.1 × 10−8) in subjects with heart failure (N=60), comparing to their counterparts. 

 

Fig. 3: Boxplots of QRS duration (red) and conduction velocity (yellow) for comparing groups of participants afflicted with 
fascicular block and non-afflicted counterparts. The green dots indicate the mean. The corresponding P values are from the 
student’s t-test. *P<0.05; **P<0.01; ***P<0.001; ****P<0.0001. 

Comparison for different sex, BMI and age groups 

We compared QRSd, CV and biventricular myocardial mass, categorized into different groups of sex, 

BMI and age as shown in Fig. 4. The QRSd was 9.4% longer in males (92.9±13.2 vs 84.2±11.5 ms, 𝑃 =

2.5 × 10−89). This is consistent with males tending to have larger hearts (male: 180.9±28.5g vs 

131.1±18.9g, 𝑃 = 0). However, CVs were the same in men and women (0.576±0.09 vs 

0.579±0.08m/s, P=0.25).  

QRSd was longer for overweight and obese (25 ≤ 𝐵𝑀𝐼 ≤ 30 and 𝐵𝑀𝐼 ≥ 30) compared to healthy 

(𝐵𝑀𝐼 ≤ 25) groups (overweight: 88.6±12.9 and obese: 89.1±13.0, vs healthy: 87.5±13.2ms, P=0.03 

and 0.01). Again, this increase in QRSd with BMI was reflected with a corresponding increase in heart 

size (healthy: 141.4±29.2, overweight: 158.7±33.5, obese: 170.5±36.9g, all 𝑃 < 1 × 10−13). In 

contrast with sex, this increase in QRSd was also associated with a progressive increase in CVs 

(healthy: 0.569±0.08m/s vs overweight and obese: 0.582±0.08 and 0.587±0.09m/s, 𝑃 =

1.8 × 10−5 and 7 × 10−6), which suggests the compensatory mechanism for the increment of heart 

size (i.e. CV is increased as a mechanism to reduce QRSd when the heart needs to grow to meet the 

larger demand of an increased BMI).  

QRSd increased with ageing, which was significant when comparing the 𝐴𝑔𝑒 ≤ 60 group 

(87.3±11.6ms) with 𝐴𝑔𝑒 ≥ 65 (87.9±12.0ms, P=0.03) and 60 ≤ 𝐴𝑔𝑒 ≤ 65 (89.3±14.8ms, 

𝑃 = 1.1 × 10−4). This QRS increase is consistent with an observed CV decrease (𝐴𝑔𝑒 ≤ 60: 

0.586±0.08 vs 60 ≤ 𝐴𝑔𝑒 ≤ 65: 0.578±0.08 vs 𝐴𝑔𝑒 ≥ 65: 0.569±0.09m/s, all P<0.02), and myocardial 
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mass increase (141.4±29.2 vs 158.7±33.5 vs 170.5±36.9g, all 𝑃 < 1 × 10−13). By inferring CV, it is 

possible to determine when changes in QRSd with age, sex or BMI are caused by changes in cardiac 

anatomy or biological material properties.  

 

Fig. 4: Boxplots of QRS duration (red), conduction velocity (yellow) and myocardial mass(purple) for different groups of sex, 
BMI and age. The green dots indicate the mean. The corresponding P values are from the student’s t-test. *P<0.05; 
**P<0.01; ***P<0.001; ****P<0.0001. 

Phenome-wide association study 

We performed a phenome-wide association study (PheWAS) to explore the correlations between 

the multimodal and CDT-derived phenotypes and 473 UKBB reported phenotypes in categories: 

pulse wave analysis, LV size & function (automatically derived from heart MRIs), abdominal 

composition, medication (medical treatment received), primary demographics, early-life 

information, self-reported medical conditions, lifestyle diet, alcohol, smoking, physical activity, 

physical measures, education and employment, mental health, and clinical outcomes of seven 

common diseases categorized from summary diagnoses in UKBB (Supplementary Table 5).  
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Fig. 5: Manhattan plot showing the −𝑙𝑜𝑔10𝑃 (two-sided t-test) for correlations between the QRS duration, CV and 
myocardial mass, and UKBB reported phenotypes. The size of the dots indicates the absolute Pearson’s correlation 
coefficient. The dashed horizontal lines are the Bonferroni threshold (Bonf) and the false-discovery rate (fdr) (α = 0.05). Note 
the plot is clipped at 17 for better visualization for QRS duration and CV. The complete plot is in the Supplementary Figure 5.  

Fig. 5 shows the Manhattan plot of the univariate correlation P values (two-sided) between M = 3 

multimodal phenotypes (myocardial mass, QRSd and inferred CV) and N = 473 UKBB phenotypes for 

M × N = 1419 times, with 87 correlations reaching the Bonferroni threshold for multiple comparisons 

(𝑃𝑏𝑜𝑛𝑓 = 3.5 × 10−5 for α = 0.05) and 146 correlations reaching the false-discovery rate (FDR) 

threshold (𝑃𝑓𝑑𝑟 = 0.005 for α = 0.05). For the correlation coefficients in the Manhattan plot see 

Supplementary Figure 6. 

The QRSd was significantly associated with seven cardiac structural and functional phenotypes 

including LV end-diastolic, end-systolic and stoke volumes, cardiac output, pulse/heart rate 

(−𝑙𝑜𝑔10𝑃 ≥ 2.4, |𝑟| ≥ 0.05) as well as LV ejection fraction (−𝑙𝑜𝑔10𝑃 = 3.2, r=-0.06). In contrast, CV 

was only significantly associated with LV ejection fraction (−𝑙𝑜𝑔10𝑃 = 3.5, r=0.06). The biventricular 

myocardial mass was significantly associated with all phenotypes mentioned above (−𝑙𝑜𝑔10𝑃 > 9.6, 

|𝑟| ≥ 0.16) where higher correlations were seen for structural phenotypes such as LV stroke, end 

diastolic and end-systolic volumes (−𝑙𝑜𝑔10𝑃 > 68.8, |𝑟| > 0.3). 

Interestingly, the three phenotypes were all significantly associated with mental health-related 

phenotypes. Both QRSd and CV were significantly associated with ‘the longest period of depression’ 

(both: −𝑙𝑜𝑔10𝑃 = 7.5; QRSd: r=0.15, CV: r=-0.15) and ‘Seen doctor (GP) for nerves, anxiety, tension 

or depression’ (QRSd:−𝑙𝑜𝑔10𝑃 = 2.5, r=0.05; CV: −𝑙𝑜𝑔10𝑃 = 3.3, r=-0.06). CV and myocardial mass 

were significantly associated with ‘Seen a psychiatrist for nerves, anxiety, tension or depression’ (CV: 

−𝑙𝑜𝑔10𝑃 = 3.5, r=-0.06; myocardial mass: −𝑙𝑜𝑔10𝑃 = 2.6, r=-0.05).  Consistent with previous 

studies1, we find that myocardial mass was solely associated with the Neuroticism score, Frequency 

of depressed mood in the last 2 weeks, and Happiness (2.6 < −𝑙𝑜𝑔10𝑃 < 3.9, r: [-0.1, -0.05]). 

Association with clinical diagnoses 

We investigated the associations of the multimodal and CDT-derived phenotypes with seven 

common diseases, categorized using the summary diagnoses for hospital inpatients. We trained a 

logistic regression model on QRSd, myocardial mass and CDT-derived CV to predict disease 

occurrence, adjusted with demographics/anthropometrics factors including sex, age BMI, age*BMI 

and sex*age. Fig. 6 and Supplementary Table 6 presents the odd ratios (ORs) derived from the 

regression coefficients (represented as 𝑣𝑎𝑙𝑢𝑒[95% 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙]) and the corresponding P 

values.  

Smaller CV and greater myocardial mass were associated with a high risk of Fascicular block 

(ORs=0.43[0.37,0.51] and 1.72[1.54,1.92], both 𝑃 < 1 × 10−16). In contrast, both greater QRSd and 

myocardial mass were associated with a higher risk of heart failure (ORs=1.38[1.20,1.58] and 1.66[1.50,1.83], 

𝑃 = 3 × 10−6 𝑎𝑛𝑑 𝑃 < 1 × 10−16). Ischaemic diseases were more likely to develop with greater 

QRSd (ORs=1.34[1.19,1.52], 𝑃 = 4 × 10−6 ), while diabetes was more likely to develop with smaller CV 

(ORs=0.75[0.66,0.86], 𝑃 = 3.6 × 10−5). Reduced CV was a better predictor than QRSd for both neurotic 

and mood disorders, (CV: ORs=0.65[0.57,0.73] and 0.62[0.54,0.72], 𝑃 < 1.07 × 10−11 vs QRSd: ORs= 
0.77[0.68,0.88] and 0.76[0.66,0.87] 𝑃 < 1.27 × 10−4). The extended analysis (Supplementary Figure 7) 

shows CV was significantly lower in participants having mood disorders than their counterparts 

(0.564±0.085 vs 0.578± 0.085m/s, P=0.03), while QRSd and myocardial mass did not (QRSd: 88.8± 

14.2 vs 88.2±13.0ms, P=0.57 and vol: 142.3± 30.5 vs 147± 32.9g, P=0.07). Hypertension was solely 

associated with greater myocardial mass (OR=1.33[1.18,1.49], 𝑃 = 1.26 × 10−6). 
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Fig. 6: Association of CV, QRS duration and myocardial mass with common diseases. (1) Odd ratios for phenotypes as input 
risk factors for common diseases as the outcomes. Sex, age, BMI, age*BMI and sex*age were included in the logistic 
regression analysis (N=3464). (2) The corresponding P values (two-sided t-test) for odd ratios. *Result reaches Bonferroni 
threshold (𝑃𝐵𝑜𝑛𝑓 = 6.9 × 10−4 for 𝛼=0.05).   

Discussion 
This study makes three major contributions. First, we have developed a fully automated CDT 

generation workflow including both patient-specific anatomical and electrophysiological models, 

using multimodal data including both medical imaging and clinically measured ECGs. This workflow is 

the first of its kind to construct biophysically detailed CDTs at a large scale, benefiting from using 

statistical and AI tools that allow global sensitivity analysis on all known model parameters. 

Second, we have showcased the capacity of utilizing the quantitative CDT-derived phenotype to 

unveil the underlying biological mechanisms and elucidate the variability in observable attributes 

such as imaging and ECG phenotypes among different populations according to sex, age and BMI. 

Specifically, we show that well-known sex-specific differences in QRSd can be fully explained by 

myocardial anatomy and that CV is the same in men and women, and that myocardial remodeling 

leads to changes in CV associated with ageing and increased BMI. 

Third, we performed a large-scale PheWAS study and found more significant associations of the CDT-

derived phenotype with cardiac and mental-health phenotypes relating to neurological disorders, 

including depression, compared against known ECG and imaging phenotypes. Furthermore, we 

found a stronger association between the decreased CV and a higher risk of neurotic and mood 

disorders, compared to the myocardial mass and QRSd.  

These results demonstrate the usefulness of generating CDT-derived phenotypes, even from the UK 

biobank where the majority of participants identified as healthy. The ability to identify the 

electrophysiological biomarkers: myocardial CV at scale could help identify potential therapeutic 

targets and evaluate the therapeutic potential (or side effects) of existing drugs and heart disease 

medications for mental health and neurodegenerative disorders.     

CDTs are rapidly advancing in recent decades, leveraging their capacity to guide, inform, monitor, 

diagnose and prognose therapies and surgical interventions in many current prospective clinical 

studies22, paving the way for moving into industrial and clinical settings4. This shift requires a step 

change in the speed, robustness, validation, and uncertainty quantification in both anatomical and 

functional model creation workflow.  
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To date, a wide range of automated anatomical model creation workflows based on machine 

learning have been proposed allowing large-scale population analysis such as on the UK Biobank 

dataset1,23,24, however, these models only account for surfaces depicting the overall heart structure, 

but not high-quality volumetric meshes. There are also volumetric mesh creation workflows existing 

for atria25,26, ventricles12 and whole hearts11,27, but these have only been applied to smaller datasets 

(<100) due to the high computational costs and manual steps required. Here we reported a fully 

automated volumetric mesh generation workflow that can create personalized anatomical meshes 

at scale within clinical timescales (~5 minutes/CDT). 

Aside from anatomical model personalization, functional model personalization is more challenging, 

where most current modelling studies were developed using ‘average’ material property values from 

broader physiological studies with limited personalization28,29. Recent developments in high fidelity 

biological and physiological electrophysiological CDT frameworks incorporated detailed features like 

the His-Purkinje fascicles to replicate detailed QRS complex morphology 12,30. However, only a subset 

of parameters underwent personalization, yet still demanding significant computation resources and 

time. Alternative computationally efficient approaches based on machine learning and statistical 

methods were reported but often fall short in capturing all anatomical/functional details and 

struggle to generalize effectively31,32.   

To move to population-level studies, it is of critical importance to balance biophysical fidelity, 

parameter inference and computational cost. In this work, instead of making CDTs to replicate 

recorded ECG morphologies that are more likely to be afflicted by subject-specific noises, we 

constructed feature-specific CDTs to replicate the QRSd which can be extracted from models 

robustly and computationally-efficiently33. Similar to previous biophysical-detailed frameworks12, our 

CDT EP framework incorporates parameters encapsulating knowledge derived from physiological 

and histological/anatomical experiments in the past. Our sensitivity analysis suggests that an optimal 

trade-off between model fidelity and parameter identifiability is to restrict the EP personalization to 

one single parameter, CV, showing a dominating effect on QRSd (>67.2%), ensuring its 

computational efficiency (~8 mins/CDT).  

To truly realize the predictive capability of developed CDTs, it is important to determine the bounds 

of fidelity and validity of our CDTs (i.e. which aspects of the real-world system are sufficiently 

recapitulated?). We have conducted two model validations. First, we compared how well our 

simulated 12-lead ECGs reproduce the recordings lead-wisely by conducting correlation tests on the 

10 representative subjects.  We found good correlations in 56% of lead ECGs (𝑟 > 0.5) from all 

subjects, as we expected. We have standardized the ECG electrode locations due to data 

unavailability, where such information has been previously shown to be the main driver of QRS 

complex morphological difference, but not for QRSd29,34. Therefore, we can conclude our CDT 

framework is still reliable with good accuracy for QRSd. Second, our CDT approach was tested to 

identify the CVs of subjects afflicted with fascicular block or heart failure. These are two conditions 

with known slow cardiac conduction substrates, and we found that their CV was indeed significantly 

slower than the counterparts by 16.8% and 5.2% (Fig. 3), given we used a unified healthy conduction 

system in our personalized QRSd calibration process. An additional positive validation result is the 

fact that the separate association test on clinical outcomes identified that lower CV is associated 

with a much higher risk of fascicular block (Fig. 6). Further, in a verification test, we quantified the 

uncertainty of the inferred CVs to be <15.6% variation around the ‘true’ value, considering the 

uncertainty in assuming all other parameters (electrophysiology and ECG electrodes positioning) as 

reference prior values, which further increases the credibility of our approach.  
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By building CDTs, we have been able to separate the impact of conduction velocity and heart 

anatomy on QRSd and quantitatively assess their relative changes across populations of different 

sex, BMI and age, which unveils mechanistic insights about the underlying biological process. 

Consistent with previous studies35–38, we found that men have longer QRSd and larger myocardial 

mass in comparison to women. This change in QRSd can be entirely explained by the change in 

anatomy, with no discernible disparity in CVs between the sexes, suggesting no significant biological 

differences in myocardium that modulate the ventricular depolarization wave propagation. 

Accordingly, clinical guidelines that use QRSd as criteria for elective therapy, such as cardiac 

resynchronization therapy, can develop sex-specific thresholds of decision based on heart size 

differences and disregard the potential impact of CV variations. This result brings additional 

evidence to support the proposal of reducing the threshold for CRT in female subjects by 9-13 ms39.   

Similar to sex, longer QRSds are observed in overweight and obese groups compared to healthy 

groups, consistent with literature37, which are primarily attributed to the increased myocardial mass. 

Increased myocardial mass implies an increased length of the pathway for the ventricular activation 

wave to travel through, resulting in longer QRSd, which is consistent with previous studies showing 

obesity, as a common risk factor of cardiovascular diseases, can lead to structural remodelling, for 

example, left ventricular hypertrophy40. Obesity may also lead to electrical remodeling including 

conduction slowing and conduction heterogeneity, which is often observed in diseased clinical 

cohorts41,42. We have extended our knowledge of obesity-related electrical remodelling based on a 

relatively healthy cohort from the UK biobank. In contrast to earlier findings from clinical cohorts, we 

have observed a concurrent small but significant elevation in CVs corresponding to the increase in 

BMI. This suggests a potential adaptive response by the heart, possibly compensating for the effects 

of heightened myocardial mass on QRSd within obese groups. This novel insight, initially identified in 

our study, warrants further investigations to delve deeper into this adaptive mechanism and its 

implications. 

We also observed longer QRSd in the elderly groups, which is attributed jointly to a decreased CV 

and an increased myocardial mass. This finding reaffirms previous research highlighting age-related 

changes including both structural changes such as increased LV wall mass43, possibly driven by 

cardiomyocyte hypertrophy and functional changes such as the decline in diastolic function24,44. This 

decline in the CV may be driven by well-established age-related cellular and tissue level remodelling 

including impaired sodium channel function44 (potentially though loss-of-function genetic mutations 

such as SCN5A as identified in previous ECG age-delta GWAS45 and experimental studies46) and the 

development of myocardial fibrosis24,47. It may also be affected by gap junction decoupling such as 

connexin 43 downregulation which is a known pathological remodelling in patients with ventricular 

hypertrophy and ischaemic heart diseases48. 

PheWAS is a data-driven method to generate new hypotheses based on the identification of 

correlations between exposure like genetic and environmental factors and phenotypes like diseases 

and clinical outcomes. Unlike previous PheWAS studies focusing on either MRI-derived or genetic 

phenotypes1,24,44, our PheWAS study is the first to include an inferred tissue-level phenotype: CV, 

uniquely estimated with our CDT approach, which can form a bridge between research findings on 

the genetic, molecular/cellular level to tissue and the whole organ level.  

Despite a relatively smaller sample size (N=3464), we found that biventricular myocardial mass was 

highly associated with multiple structural phenotypes such as LV stroke, end diastolic and end 

systolic volumes, as found in previously 1. Interestingly, we found that compared to the QRSd 

association with seven MRI-derived phenotypes, CV was only positively associated with LV ejection 

fraction, clinically used as a metric of functional performance particularly in the diagnosis of heart 
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failure and post-myocardial infarction. Thus, CV may be used as a new biomarker for disease 

evaluation and also as a potential therapeutic target for guiding the development of new drugs. 

Furthermore, we also identified notable correlations with multiple mental-health factors. The 

strongest correlations were observed between CV and QRSd with ‘the longest period of depression’ 

(QRSd: r=0.15 and CV:r=-0.15). Interestingly, this was not significantly associated with myocardial 

mass, although myocardial mass shows relatively weaker correlations with several other mental 

health factors (|𝑟| < 0.1). Furthermore, in the separate association test on clinical outcomes, we 

found that reduced CV is more closely associated with an increased risk of both neurotic and mood 

disorders, in contrast to QRSd, while no significant results were observed for myocardial mass. 

Previous research has established a bidirectional relationship between depression and 

cardiovascular diseases, while a recent study specifically shows the association between low 

depression frequency with decreased risk of cardiometabolic disease using the UK Biobank data49.  

Increased evidence has linked psychological disorders with altered cardiac morphology and 

functions, for example, reduced LV mass, increased myocardial fibrosis and 50,51, which were also 

observed as changes in ECG metrics such as heart rate, QT interval, QRSd but not in all52–54. Our 

results reaffirmed these previous findings on myocardial mass and extend existing knowledge by 

identifying novel changes in CV and QRSd associated with neurotic and mood disorders (i.e. anxiety 

and depression etc).  

Overall, the CDT-derived CVs exhibit greater sensitivity to functional alternations, compared to 

anatomical factors such as myocardial mass and ECG-derived metrics such as QRSd. This heightened 

sensitivity could be attributed to the fact that CV is directly modulated by the physical properties of 

cardiac myocytes and their interconnections. Therefore, the changes in CV may more accurately 

reflect cardiac remodelling such as fibrotic alterations resulting from the decoupling of cell-cell 

connections and coupling of myocytes with fibroblasts55.  

In conclusion, we provide a proof-of-concept cross-sectional study that demonstrates the potential 

for applying a CDT workflow to larger cohorts. This approach may yield deeper insights into the 

biological connections between changes in cardiac morphology and function with neurological 

disorders. Further validation can be pursued through longitudinal studies utilizing resources such as 

the UK Biobank's repeat imaging, and causal relationships can be established through large-scale 

genetic studies, such as the emerging area of heart-brain connection56. 
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Methods 
Cardiac digital twin creation  

The data used in this study is from the UK biobank, an open-access resource, under Application 

Number 88878.  Ethical approval is obtained from the Northwest Research Ethics Committee (REC 

reference: 11/ NW/0382) and written consent is obtained from all participants. The full heart MRI 

protocol is described previously1. The present study was performed on the 4,329 first participants 

from the UK biobank who had adequate geometrical information2 and reported QRS duration 

(QRSd), sex, age, BMI/weight and height information. The details of the selection of population 

sample size and quality control were described previously2,3. The CDT creation workflow includes 

anatomical mesh construction and electrophysiological model calibration, and Supplementary Table 

1 shows the summary participant characteristics for subjects who successfully went through both 

steps with existing QRSd, sex, age, BMI/weight, and height information reported in UKBB.  

Anatomical mesh generation 

We used a nnU-net based architecture4 for automatic segmentation of the LV and RV blood pools 

and LV myocardium, trained based on manual segmentations on short-axis heart images3. The end-

diastolic (ED) phase was selected as the first phase of acquisition. The contours and landmarks of LV 

and RV derived from the segmentations on the ED frame, were fed to an atlas-based pipeline 

(previously validated)2 to construct personalized biventricular surface meshes. The RV epicardium 

was estimated by extending the RV endocardium points normal to the surfaces by 3 mm consistent 

with experimental measurements5,6. The surface meshes were used to construct tetrahedral finite 

element meshes using Meshtool7 including regions of LV myocardium, RV myocardium, aortic, 

tricuspid, pulmonary and mitral valves. The biventricular myocardial mass was computed from the 

myocardial volume using a density of 1.05 𝑔/𝑚𝐿.  

To enable automated computation for CDTs, a morphological coordinate system, known as universal 

ventricular coordinates (UVCs), was introduced for describing positions within ventricles based on 

the apical-basal (𝑍), transmural (𝜌) (from endocardium to epicardium), rotational (𝜑) (anterior, 

anteroseptal, inferior, inferolateral, anterolateral) and chamber-wise (left ventricle and right 

ventricle) coordinates. Biventricular myocardial fibre structure was implemented using a rule-based 

approach with a transmural variation of angle 𝛼 as from 60° to -60° in longitudinal fibre directions 

and angle 𝛽 as from −65° to 25° in transverse fibre directions from endocardium to epicardium. 

Electrophysiological (EP) model framework 

The electrophysiological simulations are performed using the cardiac arrhythmia research package 

(CARP)8. We used a reaction-eikonal model without diffusion to compute the sinus ventricular 

activation times and transmembrane potential transient over time9. The activation wavefront 

propagation in the myocardium Ω is described as:  

{
√∇𝑡𝑎

𝑇 𝐕 ∇ 𝑡𝑎 = 1 𝑖𝑛 Ω

𝑡𝑎 = 𝑡0 𝑖𝑛 Γ
   

where 𝑡𝑎 is the local activation time at any location in the myocardium, 𝑡0 are the instants of initial 

activation at locations Γ and the tense field 𝐕 encodes the spatially heterogeneous orthotropic 

squared conduction velocity (CV). The ventricular myocardium was treated as transversely isotropic 
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conductors. The ten Tusscher ionic model was used to simulate electrophysiological dynamics in the 

ventricular myocytes10. The ventricular depolarization during sinus rhythm is initiated by the His-

Purkinje system (HPS). As direct measurement of the HPS in the cohort is not available, a fascicular-

based model was used to represent the emergent physiological features of the HPS11. Overall, the 

electrophysiological framework consists of 20 EP parameters with uncertainty as shown in Extended 

Fig. 1 and Supplementary Table 2. 

 

Extended Fig. 1: Fascicular-based model illustration replicating the realistic ventricular activation modulating by the His-
Purkinje system. The SE layer (yellow) represents the fast conduction regions, where the fascicles are located, defined by 
apical-basal coordinate 𝑍 and transmural coordinate 𝜌, bounded by physiological measurements from literature as shown 
in Supplementary Table 2. There are also five early activation sites represented by disks with a thickness of 5% of the 
ventricular wall (𝛿𝑧 and 𝛿𝜌=0.05).) and having a fixed radius of 20𝜇𝑚 , representing ~25 cells. The disks are centred at root 

locations, defined by apical-basal coordinates 𝑍 and rotational coordinates 𝜑, which are activated at specific timings. Both 
coordinates and timings of the five sites are bounded by physiological measurements from literature as shown in 
Supplementary Table 2.  

Computing electrocardiograms (ECGs) requires information on the position of the heart within the 

torso, however, this information was not available. The heart models were therefore registered to a 

heart enclosed in an existing torso model12 using the UVCs. In this torso model, the locations of 

electrodes used in measuring 12-lead ECGs were identified the corresponding extracellular 

potentials were simulated, and the ECGs were computed. The QRSd was computed by finding the 

time points at which the spatial velocity exceeds 0.15 of the maximum spatial velocity in the 

reconstructed corresponding vectorcardiogram (VCG) from 12-lead ECGs, which fuse the 

information in all ECG traces12.  This approach introduced extra uncertainty regarding the relative 

locations of the ten ECG electrodes within the real torsos. To quantify this uncertainty, we 

introduced another 30 parameters (Supplementary Table 3) which describe the variation of the 

cartesian coordinates for the ten electrodes and assumed that each cartesian coordinate can vary 

± 5 𝑐𝑚, sufficiently to take account of all possible variations in electrode locations13.  
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In summary, the entire electrophysiological framework resulted in 50 parameters with uncertainty, 

including 20 tissue-level characteristics (Supplementary Table 2) and 30 additional parameters for 

the electrode locations (Supplementary Table 3).   

Gaussian process emulator and global sensitivity analysis  

To build personalized CDTs, we need to set 50 parameters. However, the clinical measurements 

needed to constrain these parameters are not available and classical calibration techniques are 

prohibitive due to the massive computational costs required per case and the number of cases that 

we need to calibrate. We use Gaussian process emulators (GPEs) as surrogate models to accelerate 

the evaluation of the effect of the input parameters on the model output of interest: QRSd. This 

allows us to (1) gain important mechanistic knowledge about the input-output interactions and (2) 

through a GSA exclude the parameters that have little/no effects on the output, speeding up the 

personalization pipeline.  

To investigate the effects of input parameters on QRSds in the cohort, we generated 10 

representative samples by Latin hypercube sampling on basic characteristics including sex, age and 

BMI and identifying the 10 cases, who have the closest information to those samples, as 

representative subjects. Then we trained Gaussian processes emulators (GPEs) for each subject with 

the output as QRSd and performed a global sensitivity analysis (GSA) using the trained GPEs, to 

identify the key input parameters explaining the majority variation in the output QRSd. We train 

GPEs and perform GSA, firstly on the 20 tissue-level EP parameters to exclude parameters having 

small effects on the output QRSd. Then we combined the key input parameters with the other 30 

parameters of ECG electrodes’ locations to identify the key input parameters in the whole EP 

framework, explaining the majority of variation in the output QRSd. 

The training of GPEs is described previously14 by maximizing the model log-marginal likelihood using 

the GPErks emulation tool (http://github.com/stelong/GPErks). We evaluated the accuracy of GPEs 

using both coefficient of determination 𝑅2 and independent standard error 𝐼𝑆𝐸 as: 

𝑅2 = 1 −
∑ (𝑦𝑖

𝑡𝑟𝑢𝑒 − 𝑦𝑖
𝑚𝑒𝑎𝑛)2

𝑖=1

∑ (𝑦𝑖
𝑡𝑟𝑢𝑒 − �̅�)2

𝑖=1

 

𝐼𝑆𝐸: =
100

𝑛
∙ ∑(

|𝑦𝑖
𝑡𝑟𝑢𝑒 − 𝑦𝑖

𝑚𝑒𝑎𝑛|

√𝑦𝑖
𝑣𝑎𝑟

< 2)

𝑖=1

 

where 𝑦𝑖
𝑡𝑟𝑢𝑒 is the true output, �̅� is the mean of true outputs, 𝑦𝑖

𝑚𝑒𝑎𝑛 and 𝑦𝑖
𝑣𝑎𝑟 is the predicted 

posterior mean and variance of emulator outputs. The 𝑅2 evaluates the error between the 

predictions and the observations with close to 1 indicating a lower error. The 𝐼𝑆𝐸 accounts for the 

distance between predictions to the true values and quantifies the GPE uncertainty. If 𝐼𝑆𝐸 is close to 

100%, it means that the true values are falling in the region of the predictions within 2 standard 

deviations. The 𝑅2 and 𝐼𝑆𝐸 of trained GPEs for the 10 subjects were shown in Supplementary Table 

4.   

We then performed a variance-based global sensitivity analysis (GSA)15 on the trained GPEs to 

quantify the total effect for each input parameter (𝑆𝑇) on QRSd. The total effect consists of the first-

order effect and the higher-order interactions, which are computed using the Saltelli method15 with 

the SALib Python library by taking N=1000 samples from the posterior distribution of trained GPEs. 

This allowed us to account for the effect of GPE uncertainty on the sensitivity indices. From the GSA, 

we ranked the total effects (𝑆𝑇) of the input parameters to identify the key parameters explaining 
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the majority variation in the output QRSd. To train each GPE, we used Latin hypercube sampling to 

obtain 300 samples, and we ran EP simulations for those samples to build the training dataset. The 

impact of training data set size on the GSA was tested in the supplementary Figure 1. 

Personalised QRS duration calibration 

To facilitate the replication of the clinically measured QRSd in the UK biobank across populations, a 

calibration workflow without any manual intervention is preferred. The GSA performed above 

enables us to identify the key input parameters responsible for the variation of QRSd, and allows us 

to reduce the number of input parameters required for the calibration process. Here we choose to 

only vary the most important parameter identified in the GSA for QRSd calibration, therefore 

allowing a computationally efficient bisection method to search for the subject-specific parameter 

(constrained by physiological measurements in literature) to match the corresponding QRSd.  

To quantify the uncertainty brought by only varying the most important parameter to QRSd, we 

have computed confidence intervals for the inferred parameter for the 10 subjects used in GPE 

training. First, we randomly sampled (N=300) the other 49 parameters, assuming they are from a 

normal distribution with a mean equal to the median of the physiological bounds and the upper and 

lower bounds set at mean plus or minus three standard deviations (encompassing 99.72% of the 

data). Then, we performed simulations using the 300 samples combined with the subject-specific 

fitted parameter, to estimate the potential range of the output QRSd in each subject given the 

uncertainty in the uncalibrated 49 parameters. We then used the 5th and 95th percentiles of the 

output QRSd as the targets, to refit the key input parameter and then calculate their deviations from 

the original subject-specific fitted parameters which represents the confidence interval of the 

inferred parameter, considering the variation of other 49 parameters as in the Supplementary Figure 

2. 

12 lead ECGs comparison between the simulations and the recordings 

in UKBB 

To assess the approximate errors of the simulated subject-specific 12 lead ECGs due to using a 

standard torso and fixed electrode locations in the personalized QRSd calibration, we compared the 

simulated 12 lead ECGs of 10 representative subjects across sex, age and BMI with their recorded 

ECGs in UKBB. The simulated 12 lead ECGs were first filtered by the same filters as used in processed 

recorded ECGs in the UKBB. It includes a low pass filter at 100 Hz, a high pass filter at 50 Hz and a 

notch filter at 50 Hz. Then, each lead of simulated ECGs was temporally aligned to the corresponding 

recorded lead ECG by matching the time points that the maximum energy was achieved (𝑉2) and 

was also scaled in amplitude to obtain the same maximum absolute values as in the recorded ECG. 

Each lead of the recorded ECG was also cropped to have the same length as the aligned and scaled 

simulated lead ECG. Finally, each pair of simulated and recorded lead ECGs were compared by 

computing the Pearson correlation coefficient (𝑟). For each subject, the 12-lead ECGs were ranked 

by 𝑟 and the average 𝑟 were calculated by considering different numbers of ranked ECG leads. 

Statistical analysis  

Statistical analysis was performed using the Python Statsmodels library. The results were presented 

as mean ± a standard deviation unless specified. The body mass index (BMI) was calculated from 

height and weight measures taken at the time of the MRI being taken. Codes for the UK Biobank 

fields are included in brackets. Age was computed using the year of birth (34), month of birth (52) 

and date of attending the assessment centre (53) to get the actual age when imaging occurred. The 
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Student t-test was used to compare two different groups. In the phenome-wide association 

(PheWAS) study, we used a similar approach as in16. Before computing univariate cross-correlation, 

effects such as age, sex, weight, and height were regressed out of the multimodal phenotypes, as 

they may confound with many phenotypes. The phenotypes from UKBB were normalized and then 

univariate cross-correlation was applied between the de-confounded multimodal phenotypes and 

the UKBB phenotypes. The UKBB phenotypes were categorized into 15 groups, including pulse wave 

analysis (128), LV size and function (133), abdominal composition (149), primary demographics 

(1001), early life (1002), self-reported medical conditions (1003), lifestyle diet (1004), physical 

measures (1006), education employment (1007), mental health (1018), summary diagnosis derived 

from summary diagnoses for hospital inpatient (41270), lifestyle alcohol (100051), physical activity 

(100054), smoking (100058), and medication. The self-reported medical condition and summary 

diagnosis were processed to have each column representing one disease code sorted in ascending 

order, before using in PheWAS. The medications group consists of all phenotypes relating to 

medications being used summarized from UKBB with codes including 20003, 22170, 22172, 22179, 

22167, 22174, 22169, 22171, 22168, 22176, 22166, 22175, 22180, 22181, 22173, 22178, 22177, 

6177, 6153, 10004, 6154, 20504, 20551, 20076, 20549, 20546, 2492. We cleaned the data before 

performing PheWAS by discarding phenotypes with more than 90% missing data and if two highly 

correlated phenotypes with correlation coefficient>0.9999, only one phenotype was kept.  

Data availability  
The imaging data and non-imaging participant phenotypes and clinical outcomes are available from 

UK Biobank via a standard application procedure at http://www.ukbiobank.ac.uk/register-apply. The 

model generation are performed using open-sourced software: OpenCarp, available at 

https://opencarp.org/.  
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