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ABSTRACT

The genetic architecture of human diseases and complex traits has been extensively studied, but little is known about the
relationship of causal disease effect sizes between proximal SNPs, which have largely been assumed to be independent. We
introduce a new method, LD SNP-pair effect correlation regression (LDSPEC), to estimate the correlation of causal disease
effect sizes of derived alleles between proximal SNPs, depending on their allele frequencies, LD, and functional annotations;
LDSPEC produced robust estimates in simulations across various genetic architectures. We applied LDSPEC to 70 diseases
and complex traits from the UK Biobank (average N=306K), meta-analyzing results across diseases/traits. We detected
significantly nonzero effect correlations for proximal SNP pairs (e.g., −0.37±0.09 for low-frequency positive-LD 0-100bp SNP
pairs) that decayed with distance (e.g., −0.07±0.01 for low-frequency positive-LD 1-10kb), varied with allele frequency (e.g.,
−0.15±0.04 for common positive-LD 0-100bp), and varied with LD between SNPs (e.g., +0.12±0.05 for common negative-LD
0-100bp) (because we consider derived alleles, positive-LD and negative-LD SNP pairs may yield very different results).
We further determined that SNP pairs with shared functions had stronger effect correlations that spanned longer genomic
distances, e.g., −0.37±0.08 for low-frequency positive-LD same-gene promoter SNP pairs (average genomic distance of
47kb (due to alternative splicing)) and −0.32±0.04 for low-frequency positive-LD H3K27ac 0-1kb SNP pairs. Consequently,
SNP-heritability estimates were substantially smaller than estimates of the sum of causal effect size variances across all SNPs
(ratio of 0.87±0.02 across diseases/traits), particularly for certain functional annotations (e.g., 0.78±0.01 for common Super
enhancer SNPs)—even though these quantities are widely assumed to be equal. We recapitulated our findings via forward
simulations with an evolutionary model involving stabilizing selection, implicating the action of linkage masking, whereby
haplotypes containing linked SNPs with opposite effects on disease have reduced effects on fitness and escape negative
selection.
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Introduction
Inferring the genome-wide distribution of causal genetic effects has yielded rich insights into the polygenic architecture of
human diseases and complex traits1–21. However, virtually all published studies of disease and complex trait architectures
assume that nearby SNPs have independent causal effects on disease1–21—an assumption that warrants careful scrutiny.
Correlated effects may arise due to natural selection22–28, e.g., due to linkage masking, whereby haplotypes containing linked
SNPs with opposite effects on disease have a reduced aggregate effect on fitness and escape negative selection23, 28; correlated
effects have also been reported in studies of rare coding variants (concordant effects29–34) and model organisms (concordant35

or opposite35, 36 effects). Despite these findings, SNP-pair effect correlations have yet to be systematically investigated in
genome-wide data.

Here, we propose a method, linkage disequilibrium SNP-pair effect correlation regression (LDSPEC), to estimate corre-
lations of standardized derived allele causal disease effect sizes for pairs of proximal SNPs, depending on their minor allele
frequency (MAF), LD, and functional annotations. Roughly, LDSPEC determines that a SNP-pair annotation has positive
(resp. negative) correlation of causal effect sizes (of derived alleles) if SNPs with concordant signed LD to pairs of SNPs in the
SNP-pair annotation have higher (resp. lower) χ2 statistics than SNPs with discordant signed LD. We performed extensive
simulations with real genotypes to show that LDSPEC is well-calibrated in null simulations and produces attenuated estimates
of nonzero SNP-pair effect correlations in causal simulations. We applied LDSPEC to 70 UK Biobank diseases and complex
traits37 (N=306K), estimating effect correlations for common (MAF≥5%) positive-LD, common negative-LD, low-frequency
(0.5%≤MAF<5%) positive-LD, and low-frequency negative-LD SNP pairs depending on their functional annotations. We
note that because we consider derived alleles, positive-LD and negative-LD SNP pairs differ in a way that is not arbitrary and
may yield very different results. We recapitulated our findings via forward simulations with an evolutionary model involving
stabilizing selection38, 39.

We note that this study expands upon an unpublished preprint40, which contained key ideas and derivations and detected
SNP-pair effect correlations for extremely-short-range SNP pairs (0-100bp) that varied with LD; here, we introduce improved
methodology, analyze functional SNP-pair annotations, identify SNP-pair effect correlations at longer distances, and perform
evolutionary forward simulations to interpret our findings.

Results
Overview of methods
LDSPEC estimates the signed correlation of standardized derived allele causal disease effect sizes across SNP pairs in a given
SNP-pair annotation, e.g., set of 0-100bp SNP pairs. The method adopts and improves upon key ideas and derivations from a
recent preprint40 (see Discussion). In detail, for a SNP-pair annotation defined by a set of SNP pairs G, LDSPEC estimates the
SNP-pair effect correlation

ξ =
∑(i, j)∈G Cov(βi,β j)

∑(i, j)∈G
√

Var(βi)Var(β j)
, (1)

where βi,β j denote standardized derived allele causal disease effect sizes of SNPs i, j (i.e., number of standard deviations
increase in phenotype per 1 standard deviation increase in genotype) under a random-effects model, Var(βi),Var(β j) denote
expected per-SNP heritabilities, and Cov(βi,β j) denotes expected per-SNP-pair effect covariance. We note that previous
work has broadly assumed that causal effects are independent1–21 (implying ξ = 0), but LDSPEC challenges this assumption.
To assess correlations specific to the SNP-pair annotation, LDSPEC also estimates the excess SNP-pair effect correlation
ξ ∗, defined as the difference between ξ and its expected value across distance-matched SNP pairs. To assess the impact of
SNP-pair effect correlations on SNP-heritability, LDSPEC separately estimates genome-wide SNP-heritability and the sum of
causal effect size variances across SNPs (SCV = ∑i Var(βi)); the two quantities may be different when causal effects are not
independent (as assumed in previous work1–21).

LDSPEC relies on the fact that the χ2 association statistic for a given SNP includes the effects of all SNPs tagged by that
SNP4, 41. Methods for analyzing single-SNP annotations5 determine that a single-SNP annotation is enriched for heritability if
SNPs with higher LD to SNPs in the single-SNP annotation have higher χ2 statistics than SNPs with low LD to SNPs in the
single-SNP annotation. LDSPEC further determines that a SNP-pair annotation has a positive (resp. negative) correlation of
causal effect sizes (of derived alleles) if SNPs with concordant signed LD to SNP pairs in the SNP-pair annotation have higher
(resp. lower) χ2 statistics than SNPs with discordant signed LD to SNP pairs in the SNP-pair annotation.

In detail, under a polygenic model1, the expected χ2 of SNP i can be written as

E
[
χ

2
i
]
= N ∑

c
l(i,c)τc +N ∑

k
d(i,k)ωk +(1−h2), (2)
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where N is the GWAS sample size, l(i,c) is the LD score of SNP i and single-SNP annotation c (ref.5, 8) (defined as
l(i,c) = ∑ j ac( j)r2

i j, where ac( j) is the value of single-SNP annotation c for SNP j and ri j is the signed LD between SNPs i, j),
τc denotes the contribution of single-SNP annotation c to per-SNP heritability (ref.5, 8), d(i,k) is the directional LD score of
SNP i and SNP-pair annotation k (defined as d(i,k) = ∑ j, j′∈Gk

ri jri j′ where Gk is the set of SNP pairs in SNP-pair annotation
k), ωk denotes the contribution of SNP-pair annotation k to per-SNP-pair effect covariance, and h2 denotes disease/trait
SNP-heritability. The last term (1−h2) is different from 1 in the analogous LDSC equation4, 5 because LDSC uses an external
LD reference panel while our method uses in-sample LD to avoid challenges that arise from the use of inaccurate LD reference
panels11, 42, 43 (Methods); we also use a larger 10Mb LD window compared to the 1Mb window commonly used in LDSC4, 5.
Equation (2) allows us to estimate τc and ωk via multivariate linear regression of χ2

i on l(i,c) and d(i,k), and we can further
estimate quantities such as ξ and ξ ∗ based on estimates of τc and ωk. We employ regression weights to account for dependency
between regression SNPs and heteroskedasticity, and estimate standard errors via genomic block-jackknife, analogous to
previous work4, 5. Further details are provided in the Methods section and Supplementary Note; we have publicly released
open-source software implementing LDSPEC (see Code availability).

We applied LDSPEC to 70 well-powered diseases and complex traits from the UK Biobank37 (z-score >5 for nonzero
SNP-heritability; average N=305,646 unrelated “in.white.British.ancestry.subset” individuals, a previously-defined subset of
UK Biobank participants who self-reported White British ethnicity and had very similar genetic ancestry based on principal
component analysis), including 29 independent diseases/traits (r2

g<0.1, average N=298,430) (Supplementary Table 1; see
Data availability). We considered 14,820,648 imputed SNPs (version “imp_v3” from ref.37, MAF ≥ 0.1%, INFO score44

≥ 0.6, ref.11, 43). We analyzed 165 single-SNP annotations, including 163 baseline-LF annotations11 and 2 annotations for
deleterious coding SNPs (common and low-frequency SNPs with CADD pathogenicity score45 >20, resp.) (Supplementary
Tables 2,3). We refer to the heritability model defined by the 165 single-SNP annotations as the “baseline” model. We
further constructed a “baseline-SP” model including, in addition to the 165 single-SNP annotations, 136 SNP-pair annotations
obtained by stratifying 34 main SNP-pair annotations by MAF (common or low-frequency) and LD (positive or negative): 3
proximity-based annotations (0-100bp, 100bp-1kb, 1-10kb), 5 gene-based annotations (e.g., same-gene promoter SNP pairs), 7
functional 0-100bp annotations, and 19 functional 0-1kb annotations (e.g., pairs of H3K27ac SNPs with distances 0-100bp)
(Table 1, Supplementary Tables 4,5). The functional SNP-pair annotations were constructed from 38 binary baseline single-SNP
functional annotations, subject to a requirement to yield at least 1 million SNP pairs (this requirement is more difficult to
satisfy for 0-100bp annotations, implying a smaller number of functional 0-100bp annotations retained). We excluded SNP-pair
annotations involving one common SNP and one low-frequency SNP, because these SNP pairs had low levels of LD, limiting
the informativeness of directional LD scores (Methods). We have publicly released all SNP annotations and LDSPEC output
from this study (see Data availability).

Simulations assessing calibration and power
We performed null simulations (heritable traits with zero SNP-pair effect correlations) and causal simulations (heritable traits
with nonzero SNP-pair effect correlations). We used the same UK Biobank genotype data (N=337,426) and restricted to
chromosome 1 SNPs (M=1,161,341) for computational tractability (analogous to ref.8, 11). In our primary simulations, SCV
was set to 0.5 (similar to previous work11; SNP-heritability was slightly different from SCV when SNP-pair effect correlations
were nonzero), causal SNP proportion was set to 0.2 (similar to previous work11), LD-dependent and MAF-dependent genetic
architectures were specified based on previous work8, 11, and functional enrichment was simulated by assigning a positive
τ to the common Super enhancer (Hnisz) single-SNP annotation; other settings were also evaluated. True simulated values
of nonzero SNP-pair effect correlations for SNP-pair annotations in causal simulations are described below, and generative
model parameters for all simulations are provided in Supplementary Table 7. Results were obtained by running LDSPEC
with the baseline-SP model. We assessed bias (in null and causal simulations) and power (in causal simulations) using mean
estimates and empirical SEs across 50 simulation replicates (empirical SE = empirical SD /

√
50), and assessed calibration (in

null and causal simulations) by comparing average jackknife SE (across 50 simulation replicates) to empirical SD; we note that
aggregating 50 simulation replicates reduces the empirical SE, analogous to meta-analyzing 29 independent diseases/traits in
real data. Further details are provided in the Methods section.

We first performed null simulations, simulating heritable traits with functional enrichment but zero SNP-pair effect
correlations for all SNP-pair annotations. We reached 6 main conclusions. First, estimates of SNP-pair effect correlation
(ξ ) were approximately unbiased, with no significant bias for all 136 SNP-pair annotations (P>0.05/136) (Figure 1a and
Supplementary Table 8); furthermore, we did not observe a trend towards negative ξ for positive-LD SNP pairs or positive
ξ for negative-LD SNP pairs. Second, estimates of excess SNP-pair effect correlation (ξ ∗) were approximately unbiased,
with no significant bias for all 136 SNP-pair annotations (P>0.05/136) (Supplementary Figure 1a). Third, estimates of the
contribution of a SNP-pair annotation to per-SNP-pair effect covariance (ω) were approximately unbiased, with no significant
bias for all 136 SNP-pair annotations (P>0.05/136) (Supplementary Figure 1a). Fourth, estimates of the contribution of a
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single-SNP annotation to per-SNP heritability (τ), total SNP-heritability, and heritability enrichment were approximately
unbiased, analogous to previous work5, 8, 11 (Supplementary Figure 2a). Fifth, distinct from estimates of total SNP-heritability,
estimates of the sum of causal effect size variances across all SNPs (total SCV), as well as total heritability shrinkage (total
SCV divided by total SNP-heritability) were approximately unbiased (Supplementary Figure 2a). Sixth, jackknife standard
errors for all quantities were well-calibrated (Supplementary Figure 3a).

We next performed causal simulations, simulating heritable traits with functional enrichment and nonzero SNP-pair effect
correlation for a subset of SNP-pair annotations. To mimic results in real data (see below), we specified negative contributions to
per-SNP-pair effect covariance (ω) for 6 positive-LD SNP-pair annotations (common and low-frequency 0-100bp, 100bp-1kb,
and super-enhancer 0-1kb; zero ω for the 6 corresponding negative-LD SNP-pair annotations; Supplementary Table 7); other
SNP-pair annotations that overlap the 6 causal SNP-pair annotations are expected to have nonzero SNP-pair effect correlation
(ξ ). We reached 6 main conclusions. First, estimates of SNP-pair effect correlation (ξ ) were significantly negative for all 3
causal common positive-LD SNP-pair annotations (P<0.05/136), non-significantly negative for all 3 causal low-frequency
positive-LD SNP-pair annotations (P>0.05/136), and attenuated towards 0 for all 6 causal SNP-pair annotations (Figure 1b and
Supplementary Table 9); estimates were non-significant for the 6 corresponding negative-LD SNP-pair annotations (P>0.05/136),
consistent with their zero simulated ξ . 10 of the remaining 62 non-causal positive-LD SNP-pair annotations had significantly
negative estimates (P<0.05/136), as expected due to overlap with the 6 causal positive-LD SNP-pair annotations (Supplementary
Figure 1b). 1 negative-LD SNP-pair annotations had a slightly but significantly positive estimate (common negative-LD 1-10kb,
0.016±0.004) (P<0.05/136) (Supplementary Figure 1b), suggesting a slight bias (perhaps due to collinearity of directional LD
scores between SNP-pair annotations (Supplementary Table 6)); we believe that this should not impact our interpretation of
results in real data, as the magnitude of ξ estimates was much larger in real data (see below) and LDSPEC produced unbiased
estimates in null simulations. Second, estimates of excess SNP-pair effect correlation (ξ ∗) were significantly negative for the
two SNP-pair annotations that were simulated to have negative ξ ∗ (common and low-frequency positive-LD super-enhancer
0-1kb) (P<0.05/136) (Supplementary Figure 1b). 4 other positive-LD functional SNP-pair annotations also had significantly
negative ξ ∗ estimates (P<0.05/136), as expected due to overlap with the causal SNP-pair annotations (Supplementary Figure
1b). 1 negative-LD functional SNP-pair annotation had a slightly but significantly positive estimate (common negative-LD
intron 0-1kb, 0.061±0.014) (P<0.05/136) (Supplementary Figure 1b), suggesting a slight bias (perhaps due to collinearity
of directional LD scores between SNP-pair annotations (Supplementary Table 6), analogous to the ξ estimates above); we
believe that this should not impact our interpretation of results in real data, as we detected substantially more significantly
positive ξ ∗ estimates for negative-LD functional SNP-pair annotations with larger magnitudes in real data (see below) and
LDSPEC produced unbiased estimates in null simulations. Third, estimates of the contribution of a SNP-pair annotation to
per-SNP-pair effect covariance (ω) were significantly negative for 1 of 6 causal SNP-pair annotations (common Super enhancer
0-1kb) (P<0.05/136) but non-significant and attenuated towards 0 for the other 5 (P>0.05/136) (Supplementary Figure 1b). 4 of
the 130 non-causal SNP-pair annotations also had significantly nonzero estimates (low-frequency positive-LD 1-10kb, common
negative-LD 1-10kb, common positive-LD intron 0-1kb, common negative-LD intron 0-1kb) (P<0.05/136) (Supplementary
Figure 1b) (perhaps due to the collinearity of directional LD scores between SNP-pair annotations (Supplementary Table
6), analogous to the ξ estimates above); we believe that this should not impact our interpretation of results in real data,
as analyses of real data primarily focused on ξ estimates (see below) and LDSPEC produced unbiased ω estimates in null
simulations. Fourth, estimates of the contribution of a single-SNP annotation to per-SNP heritability (τ) were attenuated towards
0 (7.4×10−7±4.3×10−8, true value 1.9×10−6 for the common Super enhancer (Hnisz) single-SNP annotation), analogous
to the attenuated ξ estimates (running LDSPEC or S-LDSC5 using the baseline model without SNP-pair annotations produced
more attenuated τ estimates of 5.2×10−7±2.8×10−8 and 5.0×10−7±2.5×10−8, respectively, suggesting that modeling
SNP-pair annotations could partially mitigate the attenuation in these simulations; Supplementary Figure 2); estimates of
total SNP-heritability and heritability enrichment were approximately unbiased, analogous to null simulations (Supplementary
Figure 2b, Supplementary Table 9). Fifth, distinct from estimates of total SNP-heritability, estimates of total heritability
shrinkage (total SCV divided by total SNP-heritability) were significantly smaller than 1 but attenuated towards 1 (0.80±0.01,
true value 0.56), consistent with the attenuation of ξ estimates (Supplementary Figure 2b, Supplementary Table 9). Sixth,
jackknife standard errors for all quantities were well-calibrated, analogous to null simulations (Supplementary Figure 3b).

We performed 5 secondary analyses. First, we performed null and causal simulations at a lower value of SCV (0.2 instead
of 0.5). Analogous to our primary simulations, LDSPEC produced approximately unbiased estimates of ω , ξ , and ξ ∗ in null
simulations, and produced significantly negative but attenuated estimates of ω , ξ , and ξ ∗ for a subset of causal SNP-pair
annotations in causal simulations (slightly biased estimates of ω , ξ , ξ ∗ for other SNP-pair annotations) (Supplementary Figure
4). Second, we performed null and causal simulations at a lower value of causal SNP proportion (0.1 instead of 0.2). Analogous
to our primary simulations, LDSPEC produced approximately unbiased estimates of ξ and ξ ∗ in null simulations (though
estimates of ω were slightly biased), and produced significantly negative but attenuated estimates of ω , ξ , and ξ ∗ for a subset
of causal SNP-pair annotations in causal simulations (Supplementary Figure 5). Third, we performed causal simulations
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where we specified negative ω values for both the 6 causal positive-LD SNP-pair annotations (as in primary simulations)
and the 6 corresponding negative-LD SNP-pair annotations (vs. zero ω in primary simulations). Analogous to our primary
causal simulations, LDSPEC produced significantly negative and slightly attenuated estimates of ω , ξ , and ξ ∗ for a subset
of causal SNP-pair annotations (with slightly biased estimates of ω and ξ for other SNP-pair annotations); the estimates
were less attenuated, suggesting that LDSPEC was more effective when the positive-LD and negative-LD strata of the same
SNP-pair annotation had the same ω (Supplementary Figure 6a). Fourth, we performed causal simulations where we specified
positive ω values for both the 6 causal positive-LD SNP-pair annotations (vs. negative ω in primary simulations) and the
6 corresponding negative-LD SNP-pair annotations (vs. zero ω in primary simulations). Analogous to our primary causal
simulations, LDSPEC produced significantly positive and slightly attenuated estimates of ω , ξ , and ξ ∗ for a subset of causal
SNP-pair annotations; once again, the estimates were less attenuated, suggesting that LDSPEC was more effective when the
positive-LD and negative-LD strata of the same SNP-pair annotation had the same ω (Supplementary Figure 6b). Fifth, we
applied LDSPEC to the primary null and causal simulation data using LD scores and directional LD scores that were computed
with smaller window sizes (1Mb, 3Mb, 5Mb, instead of 10Mb). LDSPEC produced more biased estimates of ξ , heritability,
and heritability enrichment as the window size decreased (Supplementary Figure 7).

We conclude that LDSPEC is well-calibrated in null simulations and produces attenuated estimates of nonzero SNP-pair
effect correlations in causal simulations.

Analysis of 70 diseases and complex traits
We applied LDSPEC with the baseline-SP model to publicly available summary statistics and in-sample LD of 70 diseases and
complex traits (29 independent diseases/traits) from the UK Biobank37 (Supplementary Table 1; see Data availability), analyzing
136 SNP-pair annotations (Table 1). For each SNP-pair annotation, estimates were meta-analyzed across the 29 independent
diseases/traits using random-effects meta-analysis, analogous to previous studies5, 8 (Methods). Statistical significance was
assessed via a Bonferroni p-value threshold, correcting for the number of hypotheses tested. Analysis of each UK Biobank
disease/trait required roughly 12 hours for a single-core CPU, and required roughly 128GB of memory (Methods).

We first discuss results for the 3 proximity-based SNP-pair annotations (12 annotations when stratified by MAF and
LD; Table 1). Results are reported in Figure 2 and Supplementary Table 14. First, for low-frequency positive-LD SNP-pair
annotations, we detected strongly and significantly negative (P<0.05/136) SNP-pair effect correlations (ξ ) for 0-100bp and
1-10kb SNP-pair annotations (−0.37±0.09 and−0.07±0.01; negative but non-significant estimate for 100bp-1kb). The negative
ξ between positive-LD SNP pairs can potentially be explained by linkage masking23 (also see ref.28), whereby haplotypes
containing linked SNPs with opposite effects on disease escape negative selection. Specifically, a haplotype harboring two
SNPs with opposite effects on disease/trait may have a reduced aggregate effect on fitness in individuals carrying that haplotype,
e.g., under stabilizing selection38, 39, 46, 47. The more strongly negative ξ for SNP pairs at closer genomic distances may be
partly because the magnitude of LD slightly decays with distance (e.g., average r of 0.69, 0.64, 0.55 for common positive-LD
0-100bp, 100-1kb, 1-10kb, resp., Supplementary Table 4), reducing linkage masking effects, but predominantly because
nearby SNPs are more likely to have shared functional roles (e.g., median of 541bp for mean segment length across functional
annotations in Supplementary Table 1 of ref.5); SNP pairs with similar functional roles and opposite effects on a given disease
are likely to also have opposite effects on pleiotropic traits underlying pleiotropic selection38 (but this is less likely for SNP
pairs with different functional roles). Second, for common positive-LD SNP-pair annotations, our estimate of ξ was negative
with suggestive significance (P=0.001 > 0.05/136) for the 0-100bp SNP-pair annotation (−0.15±0.04; non-significant estimates
for 100bp-1kb and 1-10kb). Common positive-LD SNP-pair annotations had less negative ξ estimates than their low-frequency
counterparts (significantly positive difference for 1-10kb, P<0.05/68; positive but non-significant differences for the remaining
2 comparisons; Supplementary Table 15), perhaps because common SNPs have smaller per-allele effects on disease and fitness
than low-frequency SNPs11, 13, 16, limiting the impact of linkage masking. Third, common and low-frequency negative-LD
SNP-pair annotations had less negative ξ estimates than their positive-LD counterparts (significantly positive differences for
common 0-100bp, P<0.05/68; positive but non-significant differences for the remaining 5 comparisons; Supplementary Table
15), consistent with linkage masking, which implicates a negative SNP-pair effect correlation for positive-LD SNP pairs and a
less negative or weakly positive SNP-pair effect correlation for negative-LD SNP pairs (see Forward simulations recapitulate
empirical findings.)

We next discuss results for the 5 gene-based SNP-pair annotations (20 annotations when stratified by MAF and LD; Table
1). Results are reported in Figure 2 and Supplementary Table 14. First, for low-frequency positive-LD SNP-pair annotations,
we detected strongly and significantly negative (P<0.05/136) SNP-pair effect correlations (ξ ) for same-exon, same-gene
exonic, same-gene promoter, and same-protein-domain SNP-pair annotations (−0.16±0.04, −0.13±0.02, −0.37±0.08, and
−0.17±0.04; estimates of excess SNP-pair effect correlation (ξ ∗) were very similar to estimates of ξ for these SNP-pair
annotations due to their large genomic distances (implying a close to zero expected value of ξ for distance-matched SNP pairs)
(Supplementary Table 13). The strongly negative ξ (and ξ ∗) estimates are consistent with shared functional roles for SNP
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pairs in these gene-based annotations; the same-gene promoter SNP-pair annotation had the most negative ξ estimate, perhaps
because promoter SNPs can either increase or decrease gene expression levels48, supporting masking effects on gene expression,
disease/trait, and fitness. Second, for common positive-LD SNP-pair annotations, ξ estimates were non-significant and less
negative than their low-frequency counterparts (significantly positive difference for same-gene promoter, P<0.05/68; positive but
non-significant differences for 4 of 5 comparisons; Supplementary Table 15), analogous to results for proximity-based SNP-pair
annotations. Third, common and low-frequency negative-LD SNP-pair annotations had less negative ξ estimates than their
positive-LD counterparts (significantly positive differences for 9 of 10 comparisons, P<0.05/68; positive but non-significant
difference for the remaining 1 comparison; Supplementary Table 15), analogous to results for proximity-based SNP-pair
annotations.

Finally, we discuss results for the 7 functional 0-100bp and 19 functional 0-1kb SNP-pair annotations (e.g., pairs of H3K27ac
SNPs with distance 0-100bp; 104 annotations when stratified by MAF and LD; Table 1). We primarily focus on excess SNP-pair
effect correlations (ξ ∗) to assess information specific to these functional annotations. ξ ∗ estimates are reported in Figure 3
and Supplementary Table 16; corresponding ξ estimates are reported in Supplementary Figure 8 and Supplementary Table 13.
First, for low-frequency positive-LD SNP-pair annotations, we detected strongly and significantly negative (P<0.05/136) ξ ∗ for
9 of 19 functional 0-1kb SNP-pair annotations (e.g., −0.24±0.02 for H3K27ac 0-1kb; significantly positive for Repressed
0-1kb, 0.21±0.10, P<0.05/136; non-significant for the remaining 9 functional 0-1kb and all 7 functional 0-100bp). SNP pairs
in these SNP-pair annotations have stronger effects on disease5 and are likely to have similar functional roles, thus are expected
to be more strongly impacted by linkage masking (exception: the significantly positive ξ ∗ estimate for the low-frequency
positive-LD Repressed 0-1kb SNP-pair annotation (corresponding ξ estimate non-significant) is likely because SNP pairs
in this annotation have weaker effects on disease5 and are likely to have weaker effects on fitness, thus expected to be less
strongly impacted by linkage masking). Interestingly, low-frequency positive-LD functional 0-100bp SNP-pair annotations had
less negative ξ ∗ estimates than the corresponding functional 0-1kb SNP-pair annotations (significantly positive differences
for H3K27ac and Transcribed, P<0.05/7; non-significant for the remaining 5; Supplementary Table 17); SNP pairs at very
short genomic distances may generally have shared functional roles supporting linkage masking regardless of functional
annotation, limiting the difference in ξ between functional SNP pairs and other distance-matched SNP pairs. Second, for
common positive-LD SNP-pair annotations, we detected significantly negative (P<0.05/136) ξ ∗ for only 4 of 19 functional
0-1kb SNP-pair annotations (e.g., −0.05±0.01 for H3K27ac 0-1kb; non-significant for the remaining 15 functional 0-1kb
and all 7 functional 0-100bp). Common positive-LD functional SNP-pair annotations had less negative ξ ∗ estimates than
their low-frequency counterparts (significantly positive differences for 12 out of 26 comparisons, P<0.05/68; Supplementary
Table 17), analogous to results for proximity-based SNP-pair annotations. Third, common and low-frequency negative-LD
functional SNP-pair annotations had less negative ξ ∗ estimates than their positive-LD counterparts (significantly positive
differences for 36 of 38 functional 0-1kb (and 0 of 14 functional 0-100bp), significantly negative difference for common
Repressed 0-1kb, P<0.05/68; Supplementary Table 17), analogous to results for proximity-based SNP-pair annotations; 5 of 19
common negative-LD functional 0-1kb SNP-pair annotations had weakly but significantly positive (P<0.05/136) ξ estimates
(Supplementary Figure 8), perhaps because SNP pairs with concordant effects are more likely to be on different haplotypes to
have a smaller aggregate impact on fitness under stabilizing selection.

We investigated whether excess SNP-pair effect correlations (ξ ∗) were larger for functional SNP-pair annotations with
larger disease heritability enrichments for the underlying functional single-SNP annotations; we hypothesized that this might
be the case, because pairs of SNPs with more strongly enriched heritability and shared functional roles are expected to be
more strongly impacted by linkage masking. Results are reported in Figure 4, Supplementary Figure 9, and Supplementary
Table 18. For positive-LD functional SNP-pair annotations, we observed significantly more negative (P<0.05/4) ξ ∗ estimates
for functional annotations with higher disease heritability enrichments, with a stronger effect for low-frequency SNP-pair
annotations (e.g., regression slope of −0.179±0.031 for low-frequency positive-LD 0-1kb vs. −0.024±0.009 for common
positive-LD 0-1kb). For negative-LD functional SNP-pair annotations, we observed significantly more positive (P<0.05/4)
ξ ∗ estimates for functional annotations with higher disease heritability enrichments (e.g., regression slope of 0.036±0.010
for common negative-LD 0-1kb; non-significant slope of -0.041±0.029 for low-frequency negative-LD 0-1kb). These results
support our hypothesis that functional annotations that are more enriched for disease heritability are more impacted by linkage
masking.

Although most of our results reflect a meta-analysis across diseases/traits, an assessment of results for individual dis-
eases/traits is also important. For individual diseases/traits, we detected 12 significantly nonzero (P<0.05/136) SNP-pair effect
correlations (ξ ), spanning 10 diseases/traits and 9 SNP-pair annotations (Supplementary Table 11); this suggests that LDSPEC
can detect nonzero ξ for individual diseases/traits, but has limited power to do so. These findings included a significantly
negative ξ estimate of the common positive-LD H3K4me3 0-1kb SNP-pair annotation for Monocyte Count (-0.19±0.05)
and a significantly positive ξ estimate of the common negative-LD 0-1kb H3K4me1 SNP-pair annotation for Forced Vital
Capacity (0.21±0.05). We assessed the heterogeneity of ξ estimates across 29 independent diseases/traits by computing a
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statistic quantifying relative excess cross-trait variance as compared to within-trait variance (Methods). Results are reported
in Supplementary Table 19. The medium relative excess cross-trait variance was 4.0% across all 136 SNP-pair annotations
(17.3% when restricting to the 12 proximity-based SNP-pair annotations), implying a low level of heterogeneity. We detected
significant heterogeneity (P<0.05/136) for 1 SNP-pair annotation, the low-frequency positive-LD Repressed 0-1kb SNP-pair
annotation (P=3.5×10−4).

We compared LDSPEC results obtained using the baseline-SP model to results obtained using other heritability models,
including the baseline-SP-proximity model (165 single-SNP annotations + 12 proximity-based SNP-pair annotations only),
the baseline-SP-gene model (165 single-SNP annotations + 20 gene-based SNP-pair annotations only), and the baseline-SP-
functional model (165 single-SNP annotations + 104 functional SNP-pair annotations only). We determined that each of these
models produced similar ξ estimates as the baseline-SP model for SNP-pair annotations shared between the models (correlation
of 0.96 across 136 SNP-pair correlations; non-significant difference (P>0.05/136) for all 136 comparisons; Supplementary
Figure 10).

We conclude that positive-LD SNP pairs tend to have strongly negative SNP-pair effect correlations of disease effects,
negative-LD SNP pairs tend to have less negative or weakly positive SNP-pair effect correlations, low-frequency SNP pairs
tend to have stronger SNP-pair effect correlations than common SNP pairs, and SNP pairs in shared functional annotations tend
to have much stronger SNP-pair effect correlations.

Impact of SNP-pair effect correlations on SNP-heritability
We assessed the impact of SNP-pair effect correlation on SNP-heritability by estimating and comparing two closely related
quantities: SNP-heritability and sum of causal effect size variances (SCV) (Methods); the two quantities may be different when
causal effects are not independent (as assumed in previous work1–21). SNP-heritability quantifies the aggregate impact of SNPs
on disease and may be more relevant to applications such as polygenic risk scores (PRS)49, 50, whereas SCV pertains to the
impact of individual SNPs on disease and may be more relevant to applications such as fine-mapping51.

Results are reported in Figure 5 and Supplementary Table 20. First, SNP-heritability was substantially smaller than SCV,
with a regression slope of 0.89±0.01; accordingly, heritability shrinkage, defined as the ratio between SNP-heritability and
SCV, was equal to 0.87±0.02 (average across 29 independent diseases/traits). This implies that the phenomenon of negative
SNP-pair effect correlations for positive-LD SNP pairs (and less negative or weakly positive SNP-pair effect correlations for
negative-LD SNP pairs) can substantially impact SNP-heritability. Second, average heritability shrinkage was even stronger for
certain functional annotations, e.g., 0.79±0.01 for common Super enhancer (Hnisz) SNPs; average of 0.83±0.01 across the 6
common functional annotations that had enriched heritability (heritability enrichment >1) and were large enough to be included
in both 0-100bp and 0-1kb SNP-pair annotations (implying more accurate modeling of heritability shrinkage) and 0.84±0.01
across the corresponding 6 low-frequency functional annotations.

We performed 3 secondary analyses. First, we assessed the impact of modeling SNP-pair effect correlations on genome-wide
SNP-heritability estimates; we determined that modeling SNP-pair effect correlations had a limited impact, as models that do
not account for SNP-pair effect correlations produced similar estimates (Supplementary Figure 11a). Second, we assessed the
impact of modeling SNP-pair effect correlations on estimates of heritability enrichment for single-SNP annotations; again, we
determined that modeling SNP-pair effect correlations had a limited impact, as models that do not account for SNP-pair effect
correlations produced similar estimates (Supplementary Figure 11b). Third, we confirmed that LDSPEC and S-LDSC5, 8 (using
the baseline model without SNP-pair annotations) produced similar estimates of each single-SNP annotation’s contribution to
per-SNP heritability (τ), as well as genome-wide SNP-heritability (Supplementary Figure 11c,d).

We conclude that SNP-heritability is systematically smaller than SCV across diseases/traits, and that this heritability
shrinkage is stronger for functionally important annotations.

Forward simulations under stabilizing selection recapitulate empirical findings
Our finding that positive-LD SNP pairs tend to have negative SNP-pair effect correlations can potentially be explained by
linkage masking, whereby haplotypes containing linked SNPs with opposite effects on disease have reduced effects on fitness
and escape negative selection23, 28. To test this hypothesis, we performed forward simulations of a quantitative trait under
stabilizing selection, in which alleles that either increase or decrease the value of the phenotype are selected against38, 39. In our
primary simulations, we assumed a constant population size with 10,000 diploid individuals, mutation rate µ = 1×10−8, and
fitness function (defined as the relationship between fitness and trait effect size of an allele) consistent with strong stabilizing
selection (width of fitness function = 2; Supplementary Figure 12a); other settings were also evaluated. We assessed the (true)
SNP-pair effect correlations (ξ ) of SNP-pair annotations stratified by MAF and LD at different distances. Further details of the
forward simulation framework are provided in the Methods section.

Results are reported in Figure 6 and Supplementary Table 21. We determined that positive-LD 0-100bp, 100bp-1kb, and
1-10kb SNP pairs had substantially negative SNP-pair effect correlations whereas negative-LD 0-100bp, 100bp-1kb, and
1-10kb SNP pairs had weakly positive SNP-pair effect correlations, which is consistent with linkage masking and qualitatively
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consistent with results for real diseases/traits (Figure 2). We did not observe a sharp decay of ξ with distance as in real data
(Figure 2), perhaps because we did not simulate more proximal SNPs to have shared functional roles, which is the case in real
data (Supplementary Table 1 of ref.5). Under stabilizing selection, SNP pairs with discordant effects on the trait (for derived
alleles) will have strongly positive LD, because haplotypes containing both derived alleles or both ancestral alleles are less
susceptible to selection (than haplotypes containing one derived allele and one ancestral allele). On the other hand, SNP pairs
with concordant effects on the trait (for derived alleles) will have weakly negative LD, because haplotypes containing both
derived alleles are more susceptible to selection but haplotypes containing both ancestral alleles are less susceptible to selection
(than haplotypes containing one derived allele and one ancestral allele). These consequences are consistent with the “Bulmer
effect”, in which stabilizing selection reduces the phenotypic variance in each generation by weeding out extreme deviations
from the norm46, 47.

Accordingly, we determined that SNP pairs with opposite trait effects (for derived alleles) tended to be in strongly positive
LD, and SNP pairs with concordant trait effects (for derived alleles) tended to be in weakly negative LD (Supplementary Figure
12b). The level of LD was relatively low when the disease/trait effects were either very small or very large, perhaps because
small-effect SNPs are less impacted by stabilizing selection, and large-effect SNPs are efficiently removed from the population
before the emergence of a second SNP masking the first SNP’s trait effect. LD was not significantly different from zero for
neutral SNP pairs with at least one zero-effect SNP (Supplementary Figure 12b), consistent with the hypothesis that negative
ξ arises only under selection. We also performed simulations with other selection strengths (width of the fitness function: 4
for moderate selection and 1×106 for no selection, instead of 2 for strong selection in primary simulation). Results were
similar for moderate selection vs. strong selection, but the LD between SNP pairs with correlated effects disappeared under no
selection, consistent with our expectation (Supplementary Figure 12b).

In summary, our results suggest that a model of stabilizing selection on a complex trait can potentially explain the patterns
we observe in real data, providing an evolutionary explanation for our findings.

Discussion
We have developed LDSPEC, a method that analyzes summary statistics and in-sample LD to estimate correlations of causal
disease effect sizes for pairs of nearby SNPs, depending on their functional annotations. We recommend applying LDSPEC
using the baseline-SP model, which contains 165 single-SNP annotations11 and 136 new SNP-pair annotations, including 12
proximity-based, 20 gene-based, and 104 functional SNP-pair annotations. We have shown that LDSPEC is approximately
unbiased and well-calibrated in null simulations and capable of detecting nonzero SNP-pair effect correlations (with attenuated
estimates) in causal simulations. Applying LDSPEC with the baseline-SP model to 70 UK Biobank diseases and complex
traits37, we detected strongly and significantly nonzero SNP-pair effect correlations for nearby SNP pairs that decayed with
distance. We determined that positive-LD SNP pairs had strongly negative disease-effect correlations, that negative-LD SNP
pairs had less negative or weakly positive disease-effect correlations, and that SNP pairs in shared functional annotations that
were enriched for disease heritability had stronger disease-effect correlations that spanned longer distances. As a consequence,
SNP-heritability is systematically smaller than the sum of causal effect size variances, particularly for certain functional
annotations. The negative SNP-pair effect correlations between positive-LD SNP pairs can potentially be explained by linkage
masking, whereby haplotypes containing linked SNPs with opposite effects on disease have a reduced aggregate effect on
fitness and escape negative selection. Forward simulations showed that our findings are consistent with an evolutionary model
involving stabilizing selection.

To our knowledge, no published study has systematically investigated SNP-pair effect correlations in genome-wide data.
Our work expands upon an unpublished preprint40, which contained key ideas and derivations and detected SNP-pair effect
correlations for extremely-short-range SNP pairs (0-100bp) that varied with LD. We note 4 important differences between our
work and ref.40. First, our work stratifies SNP pairs by MAF and functional annotations. Second, our work identifies SNP-pair
effect correlations at larger genomic distances (up to tens of kilobases). Third, our work performs evolutionary forward
simulations to interpret our findings. Fourth, our work introduces improved methodology: LDSPEC uses a more accurate
model15 for per-SNP heritability (165 baseline-LF single-SNP annotations11 vs. 26 MAF-and-LD single-SNP annotations
in ref.40); LDSPEC adopts a principled estimator for SNP-pair effect correlations, whereas ref.40 uses a two-step heuristic
assuming per-SNP heritability to be the same across SNPs; and LDSPEC more accurately computes LD scores and directional
LD scores using a much larger LD window (10Mb vs. 1Mb) (leveraging an efficient implementation).

Our findings have several implications for future work. First, our findings challenge the widespread assumption of
independent causal SNP-to-disease effects in studies of disease and complex trait architectures1–21. We have shown that
modeling SNP-pair effect correlations distinguishes total SNP-heritability from the sum of causal SNP-to-trait effect size
variances. Despite the limited impact of modeling SNP-pair effect correlations on estimates of SNP-heritability and heritability
enrichment, its impact on other genetic architecture parameters (e.g., parameters related to polygenicity13, 14, 17, 19 or selec-
tion11, 13, 16, 20) remains to be assessed. Second, our findings motivate further prioritization of joint association testing methods
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that increase statistical power in the presence of linkage masking23, 28, 52. Third, our findings motivate the development of
improved fine-mapping methods to disentangle linkage-masked SNPs by modeling SNP-pair effect correlations; incorporating
functional annotations43, 51–54 (including SNP-pair annotations) and analyzing data from diverse populations with different LD
patterns55–57 will likely remain valuable. Fourth, negative SNP-pair effect correlations may contribute to poor cross-population
transferability of polygenic risk scores (PRS)49, 50, 58–60, as linked SNPs with opposite effects in one population may not be
linkage-masked in a different population due to different LD patterns. Ongoing efforts to improve cross-population PRS61, 62

may benefit from modeling SNP-pair effect correlations.
We note several limitations of our work. First, LDSPEC produces attenuated estimates of SNP-pair effect correlations in

causal simulations, possibly because there is a high level of collinearity of directional LD scores between SNP-pair annotations,
and it is challenging to distinguish ξ between SNP-pair annotations with highly correlated directional LD scores; however,
LDSPEC is unbiased and well-calibrated in null simulations. Second, LDSPEC attains incomplete power in some settings,
including simulations (Figure 1b) and analyses of individual diseases/traits (Supplementary Tables 10,11); an important future
direction is to improve the power of LDSPEC, e.g., by incorporating products of z-scores of nearby SNPs. Third, we only
considered binary SNP-pair annotations in this work; an important future direction is to extend LDSPEC to incorporate
continuous SNP-pair annotations, analogous to incorporation of continuous single-SNP annotations in S-LDSC8. Fourth,
although we have shown via forward simulations that stabilizing selection can produce the negative SNP-pair effect correlations
observed in real data, we currently cannot exclude the possibility that this could be produced by other evolutionary mechanisms.
For example, Hill–Robertson interference8, 22 can create negative LD for pairs of deleterious SNPs (concordant effects on
fitness) and antagonistic epistasis can create positive LD between SNP pairs26. Stabilizing selection may be a more plausible
explanation, because Hill–Robertson interference is less relevant to SNP pairs with opposite effects and the impact of epistatis
on disease is hypothesized to be small63–65. Nonetheless, investigating the impact of a broad set of evolutionary models
on SNP-pair effect correlations is an important future direction. Fifth, we have estimated SNP-pair effect correlations for
low-frequency and common variants, but not for rare variants (for which LDSPEC is underpowered due to a lower level of LD
between rare SNP pairs). Investigating SNP-pair effect correlations for rare variants (which have often been reported to have
concordant effects29–34, motivating the development of rare variant burden tests52, 66, 67) is an important future direction. Sixth,
analogous to other studies that employ linear complex trait models1–21, we have not investigated the potential impact of epistatic
interactions on our estimates; however, the impact of epistatic interaction on these models is hypothesized to be small63–65.
Seventh, we have not assessed the impact of unmodeled causal variants that are missing from the data on our estimates.
However, shared tagging of unmodeled causal variants could produce spurious positive effect correlations between positive-LD
SNP pairs, but would not be expected to produce the negative effect correlations that we report here. Eighth, we have analyzed
“in.white.British.ancestry.subset” samples from the UK Biobank, but an important future direction is to extend our analyses to
cohorts of diverse genetic ancestry68, 69. Despite these limitations, our work provides a comprehensive genome-wide assessment
of SNP-pair effect correlations of causal disease effect sizes across MAF, LD, and functional annotations.
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Number of SNP pairs Average distance
Proximal 0-100bp 3.5M 47bp

Proximal 100bp-1kb 27M 546bp
Proximal 1-10kb 253M 5.4kb

Same-exon 0.81M 3.6kb
Same-gene exonic 1.8M 53kb

Same-gene promoter 1.2M 46kb
Same-protein-domain 0.19M 47kb

Same-gene 1889M 390kb
H3K27ac-100 1.4M 46bp

H3K27ac (PGC2)-100 0.92M 46bp
H3K4me1-100 1.4M 46bp

Intron-100 1.3M 46bp
Repressed-100 1.6M 45bp

Super enhancer-100 0.61M 46bp
Transcribed-100 1.1M 44bp

DGF-1k 1.2M 387bp
DHS-1k 1.9M 383bp

DHS peaks-1k 0.91M 366bp
Enhancer-1k 0.73M 418bp
Fetal DHS-1k 0.84M 349bp
H3K27ac-1k 11M 483bp

H3K27ac (PGC2)-1k 7.2M 469bp
H3K4me1-1k 10M 466bp

H3K4me1 peaks-1k 2.1M 432bp
H3K4me3-1k 2.7M 436bp
H3K9ac-1k 2.5M 441bp
Intron-1k 11M 487bp

Promoter-1k 1.3M 469bp
Repressed-1k 10M 466bp

Super enhancer-1k 5.3M 487bp
TFBS-1k 1.9M 388bp

Transcribed-1k 6.8M 458bp
Super enhancer (Vahedi)-1k 0.59M 485bp

Typical enhancer-1k 0.65M 475bp

Table 1. Main SNP-pair annotations. We report the name, number of SNP pairs, and average distance, for each of 34
SNP-pair annotations in the baseline-SP model (136 SNP-pair annotations when counting common positive-LD, low-frequency
positive-LD, common negative-LD, and low-frequency negative-LD SNP-pair annotations separately): 3 proximity-based
annotations, 5 gene-based annotations, 7 functional 0-100bp annotations, and 19 functional 0-1kb annotations. Further details
are provided in Supplementary Table 4.
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Figure 1 Main simulations 080523

a b

Figure 1. Estimates of SNP-pair effect correlations in null and causal simulations. (a) Null simulations with zero
SNP-pair effect correlation. We report estimates of SNP-pair effect correlation (ξ ) for the 136 SNP-pair annotations in the
baseline-SP model. Error bars denote 95% confidence intervals around the mean of 50 simulation replicates; “*” denotes
statistical significance after multiple testing correction (P<0.05/136). Numerical results are reported in Supplementary Table 8.
(b) Causal simulations with negative SNP-pair effect correlations for a subset of positive-LD SNP-pair annotations. We report
estimates of SNP-pair effect correlation (ξ ) for the 6 causal positive-LD SNP-pair annotations simulated to have negative
contribution to per-SNP-pair effect covariance (ω) and the corresponding 6 non-causal negative-LD SNP-pair annotations.
Error bars denote 95% confidence intervals around the mean of 50 simulation replicates; “*” denotes statistical significance
after multiple testing correction (P<0.05/136). Red dashed lines denote true simulated values. Numerical results are reported in
Supplementary Table 9.
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Figure 2. Estimates of SNP-pair effect correlation (ξ ) across 29 independent diseases and complex traits for
proximity-based and gene-based SNP-pair annotations. We report meta-analyzed ξ estimates across 29 independent
diseases for 3 proximity-based and 5 gene-based SNP-pair annotations. Results are shown for the low-frequency positive-LD,
common positive-LD, low-frequency negative-LD, and common negative-LD SNP-pair annotations, respectively (upper and
middle panels). Error bars denote 95% confidence intervals. “*” denotes statistical significance after multiple testing correction
(P<0.05/136). The lower panel shows the distance distribution across SNP pairs for each annotation, where positive-LD and
negative-LD SNP pairs are combined because their distributions are similar. The large distance for the same-gene promoter
SNP-pair annotation is because a gene may have multiple promoter regions due to alternative splicing70. Numerical results are
reported in Supplementary Table 14.

12

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 4, 2023. ; https://doi.org/10.1101/2023.12.04.23299391doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.04.23299391
http://creativecommons.org/licenses/by-nd/4.0/


0.5

0.0

0.5 0-100bp, pos-LD
Functional SNP-pair annotations

low-freq
common

0.5

0.0

0.5

* *

*

* * * * * * ** * * *

0-1kb, pos-LD

0.5

0.0

0.5 0-100bp, neg-LD

H3K
27

ac

H3K
27

ac 
(PG

C2)

H3K
4m

e1
Int

ron

Re
pre

sse
d

Su
pe

r e
nh

an
cer

 (H
nis

z)

Tra
nsc

rib
ed DGF

DHS

DHS p
ea

ks

En
ha

nce
r

Fet
al 

DHS

H3K
4m

e1
 pe

aks

H3K
4m

e3

H3K
9a

c

Pro
mote

r
TFB

S

Su
pe

r e
nh

an
cer

 (V
ah

ed
i)

Typ
ica

l e
nh

an
cer

0.5

0.0

0.5

* * * * * * *
0-1kb, neg-LD

Ex
ce

ss
 S

NP
-p

ai
r e

ffe
ct

 c
or

re
la

tio
ns

Figure 3. Estimates of excess SNP-pair effect correlation (ξ ∗) across 29 independent diseases and complex traits for
functional SNP-pair annotations. We report meta-analyzed ξ ∗ estimates across 29 independent diseases for 7 functional
0-100bp and 19 functional 0-1kb SNP-pair annotations. Results are shown for the positive-LD 0-100bp, positive-LD 0-1kb,
negative-LD 0-100bp, and negative-LD 0-1kb SNP-pair annotations in the 4 panels, respectively, and are stratified by MAF in
each panel. Error bars denote 95% confidence intervals. “*” denotes statistical significance after multiple testing correction
(P<0.05/136). Numerical results are reported in Supplementary Table 16.
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Figure 4 excess correlation vs. h2_enrich for functional SNP-pair annotations 100723

Figure 4. Comparison between estimates of heritability enrichment and estimates of excess SNP-pair effect
correlation (ξ ∗) across 19 functional 0-1kb SNP-pair annotations. Each dot represents a SNP-pair annotation, x-axis
represents the meta-analyzed estimate of heritability enrichment, and y-axis represents the meta-analyzed estimate of ξ ∗ (across
29 independent diseases/traits). Results are shown for the common positive-LD, low-frequency positive-LD, and common
negative-LD SNP-pair annotations separately (significantly nonzero slope with P<0.05/4); results were not significant for the
low-frequency negative-LD SNP-pair annotation (P>0.05/4; not shown). Regression slopes are provided with SEs in the figure
legend. Complete results are reported in Supplementary Figure 9. Numerical results are reported in Supplementary Table 18.
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Figure 5. Comparison between estimates of SCV and estimates of SNP-heritability across 70 diseases and complex
traits. Each dot represents a disease/trait, x-axis represents the estimate of SCV, and y-axis represents the estimate of
SNP-heritability. Regression slope was obtained by linear regression without intercept across 29 independent diseases/traits.
Numerical results are reported in Supplementary Table 20.

Figure 5 evolutionary simulation for SNP-pair effect correlations 080523

a b

Figure 6. SNP-pair effect correlation (ξ ) in forward evolutionary simulations with stabilizing selection. Panels a and b
report values of ξ for positive-LD and negative-LD SNP pairs, respectively. For each panel, results are reported for common
and low-frequency SNP pairs separately, stratified into 0-100bp, 100bp-10kb, and 1-10kb distance bins. Error bars denote 95%
CIs. Numerical results are reported in Supplementary Table 21.
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Methods
Modelling SNP-pair effect correlations
We considered N individuals, M SNPs, and assume a polygenic model1, 71

y = Xβββ + e, βββ ∼ (0,ΣΣΣ), e∼ (0,Iσ
2
e ), (3)

where y ∈ RN is a quantitative phenotype, X ∈ RN×M is the standardized genotype, βββ ∈ RM is the SNP causal effects on
phenotype, and e ∈ RN is the environmental factor. We model X as fixed and model βββ and e as random variables independent
of each other. Previous work has assumed independent SNP-to-phenotype effects1–21 (implying elements of βββ are independent),
but our model allows SNP-to-phenotype effects to be correlated by assuming a general covariance βββ ∼ (0,ΣΣΣ). We standardize71

X as Xni = (X raw
ni −2pi)/

√
2pi(1− pi), where X raw

ni is the number of derived alleles for individual n and SNP i, and pi is the
derived allele frequency of SNP i.

We consider C binary/continuous single-SNP annotations, where ac(i) ∈ R represents the value of annotation c for SNP i.
We consider K binary SNP-pair annotations, where Gk(i, j) ∈ {0,1} indicates if SNP pair (i, j) is in the annotation (we set
diagonal elements Gk(i, i) = 0 for modelling convenience). We model the SNP causal effect covariance as a linear combination
of contributions from single-SNP annotations and SNP-pair annotations:

Σii = Var(βi) =
C

∑
c=1

ac(i)τc, Σi j = Cov(βi,β j) =
K

∑
k=1

Gk(i, j)ωk, (4)

where τc represents the contribution of single-SNP annotation c to per-SNP heritability, and ωk represents the contribution of
SNP-pair annotation k to per-SNP-pair covariance. Analyzing standardized effect sizes (as in this paper) may produce slightly
different results compared to analyzing non-standardized (per-allele) effect sizes, as the two analyses, together with model (4),
imply different MAF-dependent genetic architectures.

Inference via LDSPEC
Let Zi =

1√
N ∑

N
n=1 ynXni be the summary association statistic for SNP i and ri j =

1
N ∑

N
n=1 XniXn j be the signed in-sample LD

between SNPs i and j. Then the chi-square statistic χ2
i is equal to Z2

i . Under the correlated SNP effect model (Equations
(3),(4)),

E
[
Z2

i
]
=

C

∑
c=1

Nl(i,c)τc +
K

∑
k=1

Nd(i,k)ωk + riiσ
2
e , (5)

where l(i,c) = ∑
M
j=1 ac( j)r2

i j is the LD score of SNP i for single-SNP annotation c and d(i,k) = ∑
M
j=1 ∑

M
j′=1 Gk( j, j′)ri jri j′ is

the directional LD score of SNP i for SNP-pair annotation k. Please see the Supplementary Note for more details.
We use all SNPs in the data set as both reference SNPs (for computing LD and directional LD scores) and regression SNPs

(for estimating τc and ωk via regression). We prefer in-sample LD over external LD reference panels because external LD data
sets may have smaller sample sizes and may not match the GWAS cohort, potentially reducing power and introducing estimation
bias. For computational tractability, we approximate the LD and directional LD scores using SNPs in an adjacent 10Mb
window; using a smaller window may introduce estimation biases (Supplementary Figure 7). We use two sets of regression
weights similar to previous work4: LD score weights proportional to 1/l(i) accounting for dependency between regression
SNPs and heteroskedasticity weights proportional to 1/(Nl(i)/M+1)2 (approximating 1/Var

[
Z2

i
]
), where l(i) = ∑

M
j=1 r2

i j is
the LD score of SNP i and is estimated using reference SNPs in the adjacent 10Mb window. We estimate the covariance of
estimates of τc and ωk using a genomic block jackknife with 100 equally-sized blocks of adjacent SNPs; estimates of τc and ωk
are approximately normally distributed.

LDSPEC further estimates a number of parameters for single-SNP annotations and SNP-pair annotations. Let ac = {i :
ac(i) = 1} be the set of SNPs in a binary single-SNP annotation c and Gk = {(i, j) : Gk(i, j) = 1} be the set of SNP pairs in a
SNP-pair annotation k.

1. Heritability of a single-SNP annotation c: h2(c) = 1
N ∑

N
n=1 Var

[
∑i∈ac Xniβi

]
. It holds that h2(c) = ∑i∈ac ∑

C
c′=1 ac′(i)τc′ +

∑i∈ac ∑ j∈ac ∑
K
k′=1 Gk′(i, j)ri jωk′ (second term is 0 when SNP effects are independent; see Supplementary Note for more de-

tails). For computational efficiency, we approximate the coefficient of ωk′ in the second term as ∑i∈ac ∑ j∈ac Gk′(i, j)ri j ≈

r̄(k′)∑i∈ac ∑ j∈ac Gk′(i, j), where r̄(k′) =
∑

M
i=1 ∑

M
j=1 Gk′ (i, j)ri j

∑
M
i=1 ∑

M
j=1 Gk′ (i, j)

is the average signed LD across SNP pairs in Gk′ and can be

precomputed (see Data availability).
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2. Sum of causal effect size variance (SCV) of a single-SNP annotation c: SCV(c) = ∑i∈ac Var(βi) = ∑i∈ac ∑
C
c′=1 ac′(i)τc′ .

SCV(c) is equal to h2(c) when SNP effects are independent.

3. Heritability enrichment of a single-SNP annotation c11. For a common single-SNP annotation c, the common heritability
enrichment is h2(c)/|ac|

h2
common/Mcommon

, where h2
common is the common SNP heritability and Mcommon is the number of common

SNPs. We define and estimate low-frequency heritability enrichment for a low-frequency single-SNP annotation similarly.

4. Heritability shrinkage of a single-SNP annotation c: h2(c)
SCV(c) .

5. Total SNP-pair effect covariance of a SNP-pair annotation k: Cov(k) = ∑i, j∈Gk
Cov(βi,β j) = ∑i, j∈Gk ∑

K
k′=1 Gk′(i, j)ωk′ .

6. SNP-pair effect correlation of a SNP-pair annotation k: ξk = Cov(k)
/[

∑i, j∈Gk

√
Var(βi)Var(β j)

]
, where Var(βi) =

∑
C
c′=1 ac′(i)τc′ .

7. Total excess SNP-pair effect covariance of a SNP-pair annotation k: Cov∗(k) = Cov(k)−∑kprox Cov(kprox)
|Gkprox∩Gk|
|Gkprox |

,

where, for a heritability model with non-overlapping proximity-based SNP-pair annotations (such as baseline-SP), ∑kprox

sums over the non-overlapping proximity-based SNP-pair annotations. Cov∗(k) = 0 for proximity-based annotations by
definition.

8. Excess SNP-pair effect correlation of a SNP-pair annotation k: ξ ∗k = Cov∗(k)
/[

∑i, j∈Gk

√
Var(βi)Var(β j)

]
, where

Var(βi) = ∑
C
c′=1 ac′(i)τc′ .

Heritability, SCV, total SNP-pair effect covariance, and excess total SNP-pair effect covariance are linear in τc′ and ωk′

(therefore approximately normal); we estimate their SE and further compute z-scores to test for significance using the covariance
of estimates of τc′ and ωk′ . Since heritability enrichment may not be normally distributed, analogous to previous work5, we
test for significant enrichment (6= 1) by testing whether h2(c)

|ac| −
h2

common−h2(c)
Mcommon−|ac| 6= 0, which is linear in τc′ and ωk′ (therefore

approximately normal). Since heritability shrinkage may not be normally distributed, we test for significant shrinkage 6= 1
by testing whether h2(c)−SCV(c) 6= 0, which is linear in τc′ and ωk′ (therefore approximately normal). Since ξk (resp. ξ ∗k )
may not be normally distributed, we test for significantly nonzero ξk (resp. ξ ∗k ) using the p-value for nonzero Cov(k) (resp.
Cov∗(k)). We also report jackknife SE for heritability enrichment, heritability shrinkage, ξk, and ξ ∗k , even though this is not
what we use to assess significance.

The computational cost for LDSPEC to analyze one UK Biobank disease/trait (14,820,648 SNPs) was roughly 12 hours for
a single-core CPU, and roughly 128GB of memory; this assumes precomputed LD and directional LD scores (which need to be
computed only once for all diseases/traits analyzed).

Genotype data
We considered 337,426 unrelated “in.white.British.ancestry.subset” individuals and 70 diseases and complex traits from the
UK Biobank37 (average N=305,646, z-score >5 for nonzero SNP-heritability; Supplementary Table 1). The subset of 29
independent diseases/traits (average N=298,430) was selected to have pairwise genetic correlation7 r2

g < 0.1. We considered the
set of 14,820,648 UK Biobank imputed SNPs (version “imp_v3” from ref.37) with MAF≥ 0.1% and INFO score≥ 0.6, similar
to previous work11, 43. This set of SNPs was used as both the regression SNPs and reference SNPs in the LDSPEC analysis.
We considered disease effects defined with respect to derived alleles of SNPs. To determine the ancestral allele (opposite
of the derived allele) at each variant site, we obtained a whole genome alignment of the Human hg19 genome assembly to
the Chimpanzee panTro6 genome assembly from the UCSC genome browser (see Data availability). We converted the MAF
formatted file (hg19.panTro6.synNet.maf.gz) to VCF format using MAFFilter v1.3.172 (see Code availability) and extracted the
chimpanzee allele at all variant sites in the UK Biobank.

SNP annotations
We considered 165 single-SNP annotations (Supplementary Tables 2,3), including 163 annotations in the baseline-LF model11

and 2 annotations of CADD score45 for deleterious coding SNPs (common and low-frequency CADD score >20 SNPs, resp.).
The 165 single-SNP annotations were constructed from 45 main functional annotations (baseline model version provided
in Supplementary Table 2). Since we considered a different set of reference SNPs, we recomputed these main functional
annotations. Specifically, the original .bed reference files were used for 36 main functional annotations. The annotations
“Nucleotide diversity” and “Recombination rate” were recomputed following the original definition8, 11. The annotation
“MAF-adjusted LLD-AFR” was computed using the 1000 genome African population LD score73 (missing values imputed
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as 1). The annotations “Conserved (GERP RS ≥ 4)”, “Conserved (GERP NS)”, “CpG content”, “Deleterious (CADD ≥ 20)”
were obtained from the CADD database v1.645 (see Data availability). The annotations “Non-synonymous” and “Synonymous”
were curated using SnpEff v4.3t74 (see Code availability). All single-SNP annotations analyzed are publicly available (see Data
availability).

We constructed 136 SNP-pair annotations obtained by stratifying 34 main SNP-pair annotations by MAF (common or
low-frequency) and LD (positive or negative): 3 proximity-based annotations (0-100bp, 100bp-1kb, 1-10kb), 5 gene-based
annotations (e.g., same-gene promoter SNP pairs), 7 functional 0-100bp annotations, and 19 functional 0-1kb annotations
(e.g., pairs of H3K27ac SNPs with distances 0-100bp) (Table 1, Supplementary Tables 4,5; Data availability). For gene-
based annotations, we used GENCODE v41 for exon and gene annotations (Data availability) and downloaded the promoter
annotation from ref.70, and annotated protein domains using VEP v10275 (Code availability). The functional SNP-pair
annotations were constructed from 38 binary baseline model single-SNP functional annotations (Supplementary Table 2),
restricted to functional SNP-pair annotations with at least 1 million SNP pairs (combined across MAF and LD bins). We
excluded SNP-pair annotations involving one common SNP and one low-frequency SNP, because these SNP pairs had low
levels of LD, limiting the informativeness of directional LD scores. All SNP-pair annotations analyzed are publicly available
(see Data availability).

Simulations
For all simulations, we used the UK Biobank genotype data of all 337,426 samples and all 1,161,341 SNPs on chromosome 1,
analogous to previous work8, 11. We considered two values of SCV (0.5 or 0.2) and two values of causal SNP proportion (0.2 or
0.1). We repeated all simulations 50 times. All simulation parameters are reported in Supplementary Table 7. We note that
heritabilities are different from SCVs in causal simulations with nonzero SNP-pair effect correlations.

In null simulations, we simulated heritable traits with functional enrichment but zero SNP-pair effect correlations. First, we
simulated per-SNP heritability of SNPs (Var(βi)) according to Equation (4), where we incorporated the LD-dependent genetic
architecture by assigning nonzero τ to LD-related single-SNP annotations based on estimates from previous work8, 11 and
incorporated functional enrichments by assigning a positive τ to the common Super enhancer (Hnisz) single-SNP annotation,
also motivated by previous work5, 8, 11 (Supplementary Table 7). Second, we simulated the MAF-dependent genetic architecture
by further multiplying the simulated per-SNP heritability of each SNP i by [pi(1− pi)]

(1+α), where pi is the derived allele
frequency and we used α =−0.38 based on previous work16. Third, we simulated the sparse genetic architecture by randomly
selecting a subset of causal SNPs, setting the simulated per-SNP heritability of non-causal SNPs to zero, and scaling up the
simulated per-SNP heritability of causal SNPs to match the target SCV (making ∑i Var(βi) equal to target SCV). Finally, we
sampled causal SNP effect sizes for each SNP from a normal distribution with mean zero and variance equal to the simulated
per-SNP heritability. We determined the true values of τ and ω by regressing simulated causal effects on the subset of causal
single-SNP and SNP-pair annotations following Equation (4) and determined true values of other quantities based on true
values of τ and ω .

In casual simulations, we simulated heritable traits with functional enrichment and nonzero SNP-pair effect correlations.
In primary causal simulations, we simulated negative ω for positive-LD SNP pairs but zero ω for negative-LD SNP pairs, to
mimic our findings in real-data analysis that positive-LD SNP pairs had strongly negative ξ estimates but negative-LD SNP
pairs had very weakly positive ξ estimates (Figures 2, Supplementary Figure 8). First, we simulated LD-and-MAF dependent
genetic architectures and functional enrichments for per-SNP heritability of SNPs by repeating the first and second steps in null
simulations. Second, we assigned nonzero contributions to SNP-pair effect correlation (ω) to a subset of SNP-pair annotations
(Supplementary Table 7) and calculated the correlation matrix of SNP effect sizes by summing up contributions from all causal
SNP-pair annotations. Third, we calculated the covariance matrix of SNP effect sizes by scaling the simulated correlation
matrix by simulated per-SNP heritability. Fourth, we simulated SNP causal effect sizes by blocks of 100 SNPs, randomly
selecting a subset of blocks to be causal based on the target causal SNP proportion, and sampled causal SNP effect sizes from
a multivariate normal distribution with zero mean and the simulated covariance matrix for causal SNP blocks (we removed
negative eigenvalues from covariance matrices to keep them positive semidefinite). Fifth, we rescaled the simulated causal
effect sizes to match the target SCV by scaling ∑i Var(βi) to be equal to the target SCV. We calculated the true parameter values
the same as in null simulations.

Data analysis
We used genomic jackknife to assess standard error and statistical significance when aggregating dependent estimates, including
analyses in Figure 4 and Supplementary Figure 9, and Supplementary Tables 15,17. For analysis of heterogeneity across
diseases/traits (in Analysis of 70 diseases and complex traits), let n be the number of diseases/traits and let µ̂i, σi be the point
estimate and SE of the ith trait. We assume that µ̂i ∼ N(µi,σ

2
i ). Let µ̄ = 1

n ∑i µ̂i be the unweighted mean. For the ratio between
across-trait variance and average SE, the across-trait variance is estimated as 1

n ∑i(µ̂i− µ̄)2− n−1
n2 ∑i σ2

i (second term corrects
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for bias), and the average SE is computed as 1
n ∑i σ2

i . Let µ̃ = ∑i
µ̂i
σ2

i
/∑i

1
σ2

i
be the weighted mean. The chi-square statistic is

∑i
(µ̂i−µ̃)2

σ2
i

and follows a χ2
n−1 distribution.

Forward evolutionary simulations
Forward evolutionary simulations were performed on SLiM v3.676 (Code availability) using a fixed population size of 10,000
diploid individuals, each with a single chromosome of length 100kb, mutation rate µ = 1×10−8, and recombination rate
1×10−8. For simulations of stabilizing selection, new mutations were introduced at rate µ with effect sizes of −β (trait-
decreasing), 0 (neutral), or +β (trait-increasing) (with equal probability); β = 0.1 was used in the main simulation, and
additional β values were considered for simulation of linkage disequilibrium varying over a log-scaled range from 1×10−4

to 1 (Supplementary Figure 12b). At the end of each generation, aggregate trait effect g for each individual was calculated
as g = ∑

M
i=1 βi across M variants each with effect size βi. Individual fitness W (g) (as a function of aggregate trait effect g

for each individual in a given generation) was calculated as W (g) = exp
(
− g2

2σ2

)
depending on the width of fitness function

parameter σ , following ref.38. We considered 3 values for the width parameter: strong selection (σ = 2, used in the main
simulation), moderate selection (σ = 4), and effectively neutral (σ = 1×106) (Supplementary Figure 12a). Simulations were
run for 10N = 100,000 generations. Pairwise linkage disequilibrium D was computed using emeraLD77 v0.1 (Supplementary
Figure 12) (Code availability), or using correlation coefficient (Figure 6). An aggregate of 5,000 simulated populations was
run, and the mean statistic (e.g., ξ or D) was summarized within each run and then between runs to derive mean values and
confidence intervals.

Data availability
Information of imputed SNPs and corresponding ancestral alleles, GWAS summary statistics, baseline-SP single-SNP and
SNP-pair annotations, LD scores, directional LD scores, and LDSPEC output from this study are available at https:
//figshare.com/projects/LD_SNP-pair_effect_correlation_regression_LDSPEC_/188052. We
did not release in-sample LD files due to their large sizes; similar in-sample LD files can be found in ref.43. The whole
genome alignment of the Human hg19 genome assembly to the Chimpanzee panTro6 genome assembly is available at http:
//hgdownload.cse.ucsc.edu/goldenpath/hg19/vsPanTro6/. CADD database v1.645 is available at https:
//cadd.gs.washington.edu/download. GENCODE v41 is available at https://www.gencodegenes.org/
human/release_41.html. The promoter annotation from ref.70 is available at https://alkesgroup.broadinstitute.
org/cS2G.

Code availability
Software implementing LDSPEC and code for generating all results of the paper are available at https://github.com/
martinjzhang/LDSPEC. MAFFilter v1.3.172 is available at https://jydu.github.io/maffilter/. SnpEff
v4.3t74 is available at http://pcingola.github.io/SnpEff/. VEP v10275 is available at https://useast.
ensembl.org/info/docs/tools/vep/script/vep_download.html. SLiM version v3.6 is available at https:
//github.com/MesserLab/SLiM/releases/tag/v3.6. emeraLD version v0.1 is available at https://github.
com/statgen/emeraLD.
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Supplementary Note

1 Proofs and derivations
1.1 Derivation of the regression equation
Regression equation:
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Proof. Let Xi = [X1i, · · · ,XNi]
T be the i-th column of X. The summary association statistic for SNP i satisfies
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Next, the expectation of Z2
i can be written as
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Let ri =
1
N XT Xi = [ri1, · · · ,riM]T be the signed LD between SNP i and other SNPs. We have

E
[
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i
]
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i ΣΣΣri + riiσ
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e . (8)

Define the vector form of single-SNP annotation ac = [ac(1), · · · ,ac(M)]T and the matrix form of SNP-pair annotation
Gk : [Gk]i j = Gk(i, j). Taking Eq. (4) into the above equation to have
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1.2 Derivation of heritability
Heritability for binary single-SNP annotation c:
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Proof. Let Xn = [Xn1, · · · ,XnM]T be the n-th row of X. Let [·]ac denote restricting the corresponding vector/matrix to elements
in ac.
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where for the last equation, we note that 1
N ∑

N
n=1 XnXT

n = R, the LD matrix whose i j-th element is equal to ri j.
Define the vector form of single-SNP annotation ac = [ac(1), · · · ,ac(M)]T and the matrix form of SNP-pair annotation

Gk : [Gk]i j = Gk(i, j). Furthermore,
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Supplementary Tables
See Supplementary Excel file

Supplementary Table 1. GWAS diseases and complex traits. We report the name, identifier, indication of 29
independent traits, and number of samples for 70 diseases/traits analyzed in the paper. For each disease/trait, we also report
estimates of heritability, heritability SE, and z-score for nonzero heritability from LDSPEC with the baseline-SP model.

See Supplementary Excel file

Supplementary Table 2. Main single-SNP annotations. We report the name, identifier, type, number of common SNPs
(MAF≥5%), number of low-frequency SNPs (0.5%≤MAF<5%), reference, source, and version of baseline model for main 45
single-SNP annotations in the baseline-SP model.

See Supplementary Excel file

Supplementary Table 3. Single-SNP annotations in baseline-SP. We report the name, type, and number of SNPs for the
165 single-SNP annotations in the baseline-SP model.

See Supplementary Excel file

Supplementary Table 4. Main SNP-pair annotations. We report the name, identifier, type, and description for 34 main
SNP-pair annotations in the baseline-SP model. For each SNP-pair annotation, we also report number of SNP pairs and average
distance (combined across common negative-LD, low-frequency negative-LD, common positive-LD, low-frequency
positive-LD), and we report average LD (for common negative-LD, low-frequency negative-LD, common positive-LD,
low-frequency positive-LD, separately).

See Supplementary Excel file

Supplementary Table 5. SNP-pair annotations in baseline-SP. We report the name and number of SNP pairs for the 136
SNP-pair annotations in the baseline-SP model.

See Supplementary Excel file

Supplementary Table 6. Correlation of LD and directional LD scores. We report the correlation across 14,820,648
SNPs between 165 single-SNP annotations and 136 SNP-pair annotations in the baseline-SP model.

See Supplementary Excel file

Supplementary Table 7. Simulation parameters. We report the simulation name, term, and values for all simulations
performed in the paper. “h2g” denotes target SCV (may be different from heritability in causal simulations), “p_causal”
denotes proportion of causal SNPs, and “alpha” denotes the MAF-dependent genetic architecture, i.e., scaling the per-SNP
heritability by [MAF(1−MAF)](1+α).
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See Supplementary Excel file

Supplementary Table 8. Numerical results for null simulations in Figure 1a. We report the annotation name, term,
term identifier, and true value for all estimates across the 165 single-SNP annotations and 136 SNP-pair annotations in the
baseline-SP model. For each term and each annotation, we report LDSPEC estimates aggregated across the 50 simulation

replicates: jackknife SE (
√

1
50 ∑

50
i=1 JNSE2

i /
√

50), empirical mean (mean across 50 estimates), empirical SE (SD across 50

estimates divided by
√

50), empirical p-value (assuming normal distribution), and empirical FWER (P<0.05/165 for
single-SNP annotations and P<0.05/136 for SNP-pair annotations).

See Supplementary Excel file

Supplementary Table 9. Numerical results for causal simulations in Figure 1b. We report the annotation name, term,
term identifier, and true value for all estimates across the 165 single-SNP annotations and 136 SNP-pair annotations in the
baseline-SP model. For each term and each annotation, we report LDSPEC estimates aggregated across the 50 simulation

replicates: jackknife SE (
√

1
50 ∑

50
i=1 JNSE2

i /
√

50), empirical mean (mean across 50 estimates), empirical SE (SD across 50

estimates divided by
√

50), empirical p-value (assuming normal distribution), and empirical FWER (P<0.05/165 for
single-SNP annotations and P<0.05/136 for SNP-pair annotations).

See Supplementary Excel file

Supplementary Table 10. LDSPEC results for single-SNP annotations and 70 diseases/traits. We report trait identifier,
annotation identifier, annotation type, and number of SNPs for 165 single-SNP annotations. We report point estimates, SE, and
p-values of τ , heritability, SCV, heritability enrichment, and heritability shrinkage for 165 single-SNP annotations and 70
diseases/traits.

See Supplementary Excel file

Supplementary Table 11. LDSPEC results for SNP-pair annotations and 70 diseases/traits. We report trait identifier,
annotation identifier, and number of SNP pairs for 136 SNP-pair annotations. We report point estimates, SE, and p-values of ω ,
total SNP-pair effect covariance, ξ , total excess SNP-pair effect covariance, and ξ ∗ for 70 diseases/traits and 136 SNP-pair
annotations.

See Supplementary Excel file

Supplementary Table 12. Meta-analyzed LDSPEC results for single-SNP annotations. We report meta-analyzed point
estimates, SE, and p-values of τ , heritability, SCV, heritability enrichment, and heritability shrinkage for 165 single-SNP
annotations. The meta-analysis was performed across 29 independent diseases/traits.

See Supplementary Excel file

Supplementary Table 13. Meta-analyzed LDSPEC results for SNP-pair annotations. We report meta-analyzed point
estimates, SE, and p-values of ω , total SNP-pair effect covariance, ξ , total excess SNP-pair effect covariance, and ξ ∗ for 136
SNP-pair annotations. The meta-analysis was performed across 29 independent diseases/traits.

See Supplementary Excel file

Supplementary Table 14. Numerical results for Figure 2. We report annotation name, ξ estimate, SE of ξ estimate,
p-value of ξ estimate, and FWER of ξ estimate for low-frequency negative-LD, common negative-LD, low-frequency
positive-LD, and common positive-LD SNP-pair annotations in Figure 2, respectively.

See Supplementary Excel file

Supplementary Table 15. Jacknife-estimated differences for comparisons in Figure 2. We report annotation name,
first stratum, second stratum, estimated difference, SE, p-value, and FWER for each comparison.

See Supplementary Excel file

Supplementary Table 16. Numerical results for Figure 3. We report annotation name, ξ ∗ estimate, SE of ξ ∗ estimate,
p-value of ξ ∗ estimate, and FWER of ξ estimate for the 0-100bp and 0-1kb common positive-LD, low-frequency positive-LD,
common negative-LD, and low-frequency negative-LD SNP-pair annotations, respectively.
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See Supplementary Excel file

Supplementary Table 17. Jacknife-estimated differences for comparisons in Figure 3. We report annotation name,
first stratum, second stratum, estimated difference, SE, p-value, and FWER for each comparison.

See Supplementary Excel file

Supplementary Table 18. Numerical results for Figure 4. We report the annotation name, heritability enrichment
estimate, SE of heritability enrichment estimate, ξ ∗ estimate, and SE of ξ ∗ estimate for SNP-pair annotations in Figure 4.

See Supplementary Excel file

Supplementary Table 19. Heterogeneity across traits. We report the chi-square statistic, p-value, within-trait variance,
between-trait variance, variance ratio (within over between), FWER (across 136 SNP-pair annotations tested), and FDR (across
136 SNP-pair annotations tested).

See Supplementary Excel file

Supplementary Table 20. Numerical results for Figure 5. We report the trait name, heritability estimate, SE of
heritability estimate, SCV estimate, SE of SCV estimate, heritability shrinkage estimate, and SE of heritability shrinkage
estimate for 70 diseases/traits.

See Supplementary Excel file

Supplementary Table 21. Numerical results for Figure 6. We report the distance bin, MAF bin, LD bin, ξ estimate, and
SE of ξ estimate for SNP-pair categories in Figure 6.

6

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 4, 2023. ; https://doi.org/10.1101/2023.12.04.23299391doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.04.23299391
http://creativecommons.org/licenses/by-nd/4.0/


Supplementary Figures
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Supp. Fig. Additional estimates for the main simulations 100723

a

b

Supplementary Figure 1. Additional results of estimates for SNP-pair annotations in null and casual simulations in
Figure 1. We report estimates of ω , ξ , and ξ ∗ for 136 SNP-pair annotations in the baseline-SP model. (a) for null simulations
and (b) for causal simulations. Error bars denote 95% confidence intervals around the mean of 50 simulation replicates; “*”
denotes statistical significance after multiple testing correction (P<0.05/136). Red horizontal lines represent the true simulated
values for SNP-pair annotations whose true values are available.
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Supp. Fig. Additional estimates for the main simulations 100723

a b

c d

e f

Supplementary Figure 2. Additional results of estimates for single-SNP annotations in null and casual simulations
in Figure 1. We report estimates of τ , heritability, SCV, heritability enrichment, and heritability shrinkage for 17 binary
single-SNP annotations whose true values for all 5 terms are available. (a) for null simulations and (b) for causal simulations.
We also report the corresponding estimates using LDSPEC + baseline (without SNP-pair annotations) in panels c,d, and
corresponding estimates (τ and heritability) using S-LDSC1 + baseline (without SNP-pair annotations) in panels e,f. Error bars
denote 95% confidence intervals around the mean of 50 simulation replicates; “*” denotes statistically significantly different
from the true values after multiple testing correction (P<0.05/165). Red horizontal lines represent the true values.
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Supp. Fig. CIs for the main simulations 061623
a

b

Supplementary Figure 3. Calibration of CIs for null and causal simulations in Figure 1. Results are shown for
estimates of τ , heritability, SCV, heritability enrichment, heritability shrinkage, ω , SNP-pair effect covariance, ξ , excess
SNP-pair effect covariance, and ξ ∗, respectively. (a) for null simulations and (b) for causal simulations. Each point represents
an annotation, x-axis represents the log10 empirical SE (SD of estimates across simulation replicates), and y-axis represents

the log10 jackknife SE (
√

1
50 ∑

50
i=1 JNSE2

i ). The median of ratios between jackknife SE and empirical SE across annotations is
provided in the figure annotation. We note that the p-value of ξ is based on estimates of SNP-pair effect covariance, and the
p-value of ξ ∗ is based on estimates of excess SNP-pair effect covariance (Methods).
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Supp. Fig. Varying heritability 100723 

a

b

Supplementary Figure 4. Null and causal simulations with a lower value of SCV. (a) Null simulations with SCV of 0.2
(instead of 0.5) and causal SNP proportion of 0.2. (b) Causal simulations with SCV of 0.2 (instead of 0.5) and causal SNP
proportion of 0.2. We report estimates of ω , ξ , and ξ ∗ for 136 SNP-pair annotations in the baseline-SP model. Error bars
denote 95% confidence intervals around the mean of 50 simulation replicates; “*” denotes statistical significance after multiple
testing correction (P<0.05/136). Red horizontal lines represent the true simulated values for SNP-pair annotations whose true
values are available.

11

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 4, 2023. ; https://doi.org/10.1101/2023.12.04.23299391doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.04.23299391
http://creativecommons.org/licenses/by-nd/4.0/


Supp. Fig. Varying p_causal 100723 

a

b

Supplementary Figure 5. Null and causal simulations with a lower value of causal SNP proportion. (a) Null
simulations with SCV of 0.5 and causal SNP proportion of 0.1 (instead of 0.2). (b) Causal simulations with SCV of 0.5 and
causal SNP proportion of 0.1 (instead of 0.2). We report estimates of ω , ξ , and ξ ∗ for 136 SNP-pair annotations in the
baseline-SP model. Error bars denote 95% confidence intervals around the mean of 50 simulation replicates; “*” denotes
statistical significance after multiple testing correction (P<0.05/136). Red horizontal lines represent the true simulated values
for SNP-pair annotations whose true values are available.
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Supp. Fig. Other causal simulations 100723 

a

b

Supplementary Figure 6. Non-LD-stratified causal simulations. (a) Causal simulations with negative ω for both
positive-LD and negative-LD SNP-pair annotations (vs. negative ω for only positive-LD SNP-pair annotations in primary
simulations), SCV of 0.5, and causal SNP proportion of 0.2. (b) Causal simulations with positive ω for both positive-LD and
negative-LD SNP-pair annotations (vs. negative ω for only positive-LD SNP-pair annotations in primary simulations), SCV of
0.5, and causal SNP proportion of 0.2. We report estimates of ω , ξ , and ξ ∗ for 136 SNP-pair annotations in the baseline-SP
model. Error bars denote 95% confidence intervals around the mean of 50 simulation replicates; “*” denotes statistical
significance after multiple testing correction (P<0.05/136). Red horizontal lines represent the true values for SNP-pair
annotations whose true values are available.
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Supp. Fig. winsize

a c

e

k

b d

f g h

i j l

om n p

Supplementary Figure 7. Results for applying LDSPEC to the primary null and causal simulation data with LD
and directional LD scores computed with smaller window sizes. We considered 3 smaller window sizes: 1Mb, 3Mb, 5Mb
(instead of 10Mb). (a-b) Estimates of heritability in null and causal simulations. (c-d) Estimates of heritability enrichment for
the common Super enhancer (Hnisz) annotation in null and causal simulations (simulated to have a positive τ in both null and
causal simulations). (e-p) Estimates of ξ in null and causal simulations for the 6 SNP-pair annotations simulated to have
negative ω in the causal simulation. Error bars denote 95% confidence intervals around the mean of 50 simulation replicates.
Red horizontal lines represent the true simulated values.
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Supplementary Figure 8. Estimates of SNP-pair effect correlation (ξ ) across 29 independent diseases and complex
traits for functional SNP-pair annotations. We report meta-analyzed ξ estimates across 29 independent diseases for 7
functional 0-100bp and 19 functional 0-1kb SNP-pair annotations. Results are shown for the positive-LD 0-100bp, positive-LD
0-1kb, negative-LD 0-100bp, and negative-LD 0-1kb SNP-pair annotations in the 4 panels, respectively, and are stratified by
MAF in each panel. Error bars denote 95% confidence intervals. “*” denotes statistical significance after multiple testing
correction across estimates on the figure (P<0.05/136).
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Figure 4 excess correlation vs. h2_enrich for functional SNP-pair annotations 080523

a

b

Supplementary Figure 9. Comparison between estimates of heritability enrichment and estimates of excess
SNP-pair effect correlation estimate (ξ ∗) across functional SNP-pair annotations. Panels a and b show results for
functional 0-100bp and functional 0-1kb SNP-pair annotations, respectively. Each dot represents a SNP-pair annotation, x-axis
represents the meta-analyzed estimate of heritability enrichment, and y-axis represents the meta-analyzed estimate of ξ ∗

(across 29 independent diseases/traits). In each panel, results are shown for the common positive-LD, low-frequency
positive-LD, common negative-LD, and low-frequency positive-LD SNP-pair annotations separately. Error bars denote 95%
confidence intervals. Regression slopes are provided with SEs in the figure legend; “*” denotes statistical significance after
multiple testing correction (P<0.05/4).
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Supp. Fig. Comparison of estimates obtained from different model
a. Proximity-based annotations from proximity-only models and baseline-SP model
b. Gene-based annotations from baseline-SP and baseline-SP100

a b c

Supplementary Figure 10. Comparison of ξ estimates of LDSPEC with alternative heritability models. (a)
Comparison of meta-analyzed ξ estimates between the baseline-SP model (x-axis) and the baseline-SP-proximity model for 12
proximity-based SNP-pair annotations shared between the two models. (b) Comparison of meta-analyzed ξ estimates between
the baseline-SP model (x-axis) and the baseline-SP-gene model for 20 gene-based SNP-pair annotations shared between the
two models. (c) Comparison of meta-analyzed ξ estimates between the baseline-SP model (x-axis) and the
baseline-SP-functional model for 104 functional SNP-pair annotations shared between the two models. Each dot represents a
SNP-pair annotation. No difference between the x-value and y-value is statistically significant (P>0.05/136).
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Supp. Fig. Comparison of estimates obtained from different model
a. Proximity-based annotations from proximity-only models and baseline-SP model
b. Gene-based annotations from baseline-SP and baseline-SP100

a b

c d

Supplementary Figure 11. Comparison of estimates for single-SNP annotations. (a) Comparison of heritability
estimates using LDSPEC with the baseline model (x-axis) and the baseline-SP model (y-axis) for 29 independent diseases/traits.
(b) Comparison of meta-analyzed heritability enrichment estimates using LDSPEC with the baseline model (x-axis) and the
baseline-SP model (y-axis) for 165 single-SNP annotations. (c) Comparison of meta-analyzed τ estimates between S-LDSC1

(x-axis) and LDSPEC (y-axis) (both using the baseline model) for 165 single-SNP annotations. (d) Comparison of heritability
estimates between S-LDSC1 (x-axis) and LDSPEC (y-axis) (both using the baseline model) for 29 independent diseases/traits.
No difference between the x-value and y-value is statistically significant (P>0.05/29 for panels a,d, P>0.05/165 for panels b,c).
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Figure 5 supp: comparison between different evolutionary models 091123

a b

Supplementary Figure 12. Additional results for forward evolutionary simulations. (a) Fitness as a function of sum
of causal effects (aggregate SNP effect on trait) under a stabilizing selection model. The 3 curves correspond to strong selection
(width σ = 2), moderate selection (width σ = 4), and no selection (width σ = 1×106). (b) LD measured by D as a function of
effect size (β ) for concordant-effect SNP pairs (left), opposite-effect SNP pairs (middle), and neutral SNP pairs (right, at least
one zero-effect SNP in the SNP pair). Error bars denote 95% CIs.

19

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 4, 2023. ; https://doi.org/10.1101/2023.12.04.23299391doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.04.23299391
http://creativecommons.org/licenses/by-nd/4.0/

	References
	Proofs and derivations
	Derivation of the regression equation
	Derivation of heritability

	References

