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This manuscript describes the application of a suite of software tools to an epidemiological 

analysis. In addition to this description, the software is itself available as an installable 

Python package. The package homepage includes links to notebooks that allow the reader or 

reviewer to interact with our code directly, as well as a link to a page of interactive 

visualisations of our outputs. 

Abstract 

The field of software engineering is advancing at astonishing speed, with packages now available to 

support many stages of data science pipelines. These packages can support infectious disease 

modelling to be more robust, efficient and transparent, which has been particularly important 

during the COVID-19 pandemic. We developed a package for the construction of infectious disease 

models, integrated this with several open-source libraries and applied this pipeline to multiple data 

sources that provided insights into Australia’s 2022 COVID-19 epidemic. We aimed to identify the 

key processes relevant to COVID-19 transmission dynamics and thereby develop a model that could 

quantify relevant epidemiological parameters. Extending the base model to include mobility effects 

slightly improved model fit to data, but including the effect of 2022 vaccination programs on 

transmission did not. Our simulations suggested that one in every two to six COVID-19 episodes 

were detected, subsequently emerging Omicron subvariants escaped 30 to 60% of recently acquired 

natural immunity and that natural immunity lasted only one to eight months. We documented our 

analyses algorithmically and present our methods in conjunction with interactive online notebooks. 

Manuscript 

Introduction  

Throughout the pandemic, epidemiological modelling has been used to influence some of the most 

significant and intrusive public health policy decisions in history, providing analyses to justify a range 

of programs that extended from lockdowns to vaccination.1,2 However, this policy impact brings with 

it a responsibility for modellers to ensure results are accurate, transparent and effectively 

communicated not only to policy makers, but also the public who are impacted by such decisions.2 

While libraries are available to support many components of the data science pipeline, the 

application of software engineering principles to epidemiological modelling remains limited.3 The 

rapid growth of data science as a field, and the corresponding investment in platform development 

provides constant opportunities to expand the range of packages that can be integrated with such 

models, provided the model code itself is developed with this in mind. In particular, a software 
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package whose single responsibility is model construction can separate this concern from the 

multiple other stages in the formulation of a modelling-based analysis. 

Australia’s 2022 epidemic provides an important case study for understanding the epidemiological 

characteristics of COVID-19, because of the distinct epidemic waves, negligible prevalence of natural 

immunity from past infection,4-6 stable vaccination coverage and multiple high-quality data streams. 

Australia pursued an elimination approach through the first two years of the pandemic, achieving 

one of the lowest COVID-19-related mortality rates in the world.7 Shortly after achieving very high 

coverage of wild-type vaccination, most of the country emerged abruptly from this elimination 

phase in 2022, relaxing most restrictions on population mobility as the Omicron variant rapidly 

replaced the preceding Delta SARS-CoV-2 variant of concern.8 Through 2022, national data are 

available that include a daily time-series for cases and deaths, serial survey-derived testing 

behaviour, population mobility, vaccination coverage and seroprevalence. Of particular value, the 

serial serosurveys demonstrate a rapid rise in nucleocapsid antibodies to more than 65% 

seroprevalence by late August 2022.9 The combination of these data sources provides the 

opportunity to improve our understanding of COVID-19 epidemiology in the Omicron era, such as 

quantification of the case detection rate and characteristics of population immunity.  

We developed a suite of software tools to support evidence-based policies, which was applied to 

several countries of the Asia-Pacific Region in collaboration with the World Health Organization and 

other regional public health agencies.10-13 Our platform is based around a library for the construction 

of compartmental models of infectious disease transmission and is now integrated with publicly 

available libraries for numerical computing, optimisation, Bayesian inference, data visualisation and 

scientific documentation.14-17 The combined platform constitutes an end-to-end pipeline for 

infectious disease modelling, which we used to derive insights into COVID-19 epidemiology through 

its application to Australia’s three-wave 2022 epidemic. 

Results 

We released a suite of open-source packages to support infectious disease modelling and used these 

packages to represent the key epidemiological processes relevant to Australia’s 2022 COVID-19 

epidemic (Figure 1). At the heart of our pipeline, we developed the summer Python package to 

support easy and reliable construction of infectious disease models through an epidemiologically 

intuitive application programming interface. summer's backend is integrated with Google’s jax 

library for high-performance numerical computing. We validated summer against a popular textbook 

of infectious diseases modelling,18 demonstrating that it could recover the behaviours of a wide 

range of infectious diseases models through a series of jupyter notebooks. Next, through a series of 

interactive Google Colab-hosted notebooks, we released a textbook of infectious disease modelling 

that systematically demonstrates core infectious disease modelling principles using summer. Last, 

we released estival, a wrapper for the calibration and optimisation of summer-based models, which 

supports the integration of these models with current state-of-the-art calibration, optimisation and 

interpretation platforms, including the PyMC package for Bayesian inference14 and Facebook’s 

nevergrad library for gradient-free optimisation.15 ArviZ was used for Bayesian diagnostics,16 with 

interactive visuals produced using plotly.17  
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Figure 1. Computational structure of our modelling pipeline. Red-coloured boxes represent 

packages developed by our team, mauve-coloured boxes represent publicly available 

packages, green crosses represent points for user interaction. 

The analysis is provided as an installable Python package that incorporates interactive Google Colab 

Jupyter notebooks for the inspection of model features and interrogation of outputs. Through this 

approach, we fit a complex model of COVID-19 dynamics (1984 compartments under the base case, 

2976 compartments under the vaccination extension) to three key epidemiological indicators (cases, 

deaths and nucleocapsid antibody seroprevalence a marker of ever being infected). 

Candidate model comparison 

We considered four candidate models with and without extended structure for mobility and 

vaccination for their ability to capture the broad epidemic profile of Australia’s 2022 Omicron waves 

(i.e. mobility extension, vaccination extension, both extensions, and neither). All four models were 

able to capture the broad epidemic profile we targeted, with each achieving a good fit to the time-

series of deaths. The model configurations with additional structure for scaling contact rates with 

mobility data achieved a somewhat better fit to the seroprevalence targets than the two 

configurations without this extension (median seroprevalence likelihood contribution 0.6 versus 0.9, 

Figure 2). Inclusion of additional model structure for time-varying vaccination-related immunity to 

infection resulted in a slightly poorer fit to the time-series for cases (median cases likelihood 

contribution –12.7 versus –12.2 to –12.4 for the other analyses). We therefore selected the mobility 

extension model as the primary model analysis for consideration in the following sections. Additional 

approaches to model construction, calibration and interpretation of results can easily be explored 

via the interactive notebooks available on the project homepage. 
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Figure 2. Likelihood comparison. Comparison of the kernel density distribution of the final 

likelihood from calibration algorithm, with the contributions to the final likelihood of the 

three targets from which it was constructed.  

Calibration results 

Leveraging Google’s jax package and calibration algorithms from PyMC, epidemiological models of 

1984 to 2976 compartments (depending on application of the vaccination extension) completed 

60,000 iterations per chain within 4-8 hours on 8-core 3rd Generation Intel Xeon machines clocked 

at 2.9 to 3.5 GHz. For the primary (mobility extension) analysis, each core completed 3.62 model 

iterations per second. Metrics of the calibration algorithm for the primary analysis are presented in 

the Supplemental Material. The algorithm achieved highly satisfying chain convergence, with the 

Rhat statistic for all parameters below 1.05 and all effective sample sizes above 150 (Supplemental 

Figure 4). 

Figure 3 shows model fit for each of the target epidemiological indicators. Calibration fit was better 

for deaths than for case notifications, which is reflected in the markedly lower likelihood 

contributions for the cases calibration target (median –12.2) than for the deaths targets (median –

4.7) (Figure 2). This difference was particularly noticeable during the first (BA.1) wave of 2022, at a 

time when notifications may have been a more variable epidemic indicator as Australia struggled to 

scale testing capacity up to match demand (Figure 3).19 Under the constraint that BA.1 and BA.5 had 

the same modelled severity,20 accepted model runs often under-estimated the peak number of 

deaths for the third (BA.5) wave of 2022. Our results typically showed a higher seroprevalence than 

estimated from the serosurvey target values for its first round, but lower for the third. The relative 

contribution of each variant and each infection process (i.e. de novo infection, early reinfection due 

to immune escape and late reinfection due to waned immunity) is presented in Figure 4. 
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Figure 3. Primary analysis output credible intervals. Model median estimate (black line), 2.5 

to 97.5 centile credible interval (light blue shading), and 25 to 75 centile credible interval 

(dark blue shading), with comparison against epidemiological targets (red circles). Panel for 

each epidemiological output as indicated. Sampled runs from same calibration also 

presented as interactive online figures for cases, deaths, seroprevalence and reproduction 

number. Key dates for each variant are shown as vertical bars on lower right panel: blue, 

BA.1; red, BA.2; green, BA.5; dotted, first detection; dashed, >1% of isolates; solid, >50% of 

isolates. Proportion of isolates and dates based on reported Pango lineage variant 

designated proportions for Australia on Cov-Spectrum.21  

Parameter inference 

The short prior estimates for the durations for the latent and infectious periods22,23 were not 

substantially influenced by the process of fitting to target data, while the period of partial immunity 

following infection was estimated to be markedly shorter than our prior belief (Figure 5). Our 

uninformative prior estimate for the proportion of cases detected was also substantially influenced 

by the fitting process, suggesting that the highest case detection early in the BA.1 epidemic wave 

was around 17 to 50%. The infection fatality rate had to be inflated around two- to three-fold from 

the baseline estimates taken from a population-wide epidemiological study in Denmark.24 The extent 

of immune escape of both BA.2 and BA.5 against previous infection with other sub-variant strains 

was moderately greater than anticipated in our prior distributions,25-30 and was centred around a 

value of 50% for both subvariants (i.e. past infection only protected half as much against early 

reinfection with novel subvariants as compared to against early reinfection with the previously 

infecting subvariant). The relative reduction in severity of BA.2 compared to BA.1 and BA.5 was 

consistent with past evidence,20,31-33 while little additional information was obtained for the time to 

WA fully mixing with the rest of the country or the parameters pertaining to the convolution 

processes for notifications and deaths. The seeding time parameters resulted in epidemic profiles 
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that were consistent with reports of national genomic data (see Supplemental Figure 25).34 On 

examination of the bivariate distributions of combinations of two parameters, the contact rate 

parameter showed expected inverse interactions with the extent of population immunity and the 

infectious duration parameters (Figure 6). The association of shorter duration of post-infection 

immunity and a lower case detection proportion can be attributed to both these processes being 

associated with larger modelled epidemics. The expected association between short duration of 

post-infection immunity and the extent of BA.2 and BA.5 escape was observed, but was modest. 

Figure 4. Contribution of various infection processes through the course of the simulated 

epidemic under the maximum posterior parameter set from the primary (mobility extension) 

analysis. Colour shows infection with BA.1 (greens), BA.2 (blues) and BA.5 (purples). Shading 

depth shows infection process, with initial infection (dark), early reinfection (intermediate 

darkness), late reinfection (light). (Note early reinfection with BA.1 does not occur to a 

significant extent.) 
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Figure 5. Posterior densities and prior distributions. Inferred parameter posterior densities 

(blue areas) compared against corresponding calibration algorithm prior distributions (grey 

areas). 
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Figure 6. Bivariate distributions of selected parameter combinations for accepted parameter 

sets from selected (mobility extension) model calibration. Three-way interactive parameter 

combination plots are available at our interactive outputs page. 

Discussion 

Our analysis demonstrates the feasibility of integrating epidemiological modelling with advanced 

tools in data science, including open-source tools produced by user communities and Big Tech. Our 

results supported a major role for Omicron subvariants in driving the three major epidemic waves 

observed in Australia over the course of 2022. With each subvariant epidemic following closely on 

from the preceding wave, most accepted model configurations required a combination of both high 

levels of immune escape, as well as a short period of natural immunity. In addition to improving 

efficiency and expanding the functional possibilities from our platform, our methodological 

approach reduces the volume of code that the modeller must produce, thereby enhancing 

transparency and minimising opportunities for errors. 

Of our candidate models, all were able to find epidemiologically plausible parameter space and were 

generally associated with similar results in relation to parameter inference. The coherence of our 

epidemiological model with multiple data sources simultaneously permitted our analysis to capture 

a range of model trajectories and associated parameter sets that could accurately represent 

Australia’s 2022 COVID-19 epidemics. We achieved a closer fit to the time-series of deaths than we 

achieved for cases, which may be attributable to the higher quality or greater consistency of the 

mortality data during a period when testing recommendations and test availability changed 

markedly. By contrast to our expectations in late 2021 when the Omicron variant first emerged in 

Southern Africa,35 the first (BA.1) epidemic wave of 2022 was likely not Australia’s largest, with the 
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subsequent waves (largely attributable to BA.2 and BA.5) also associated with substantial attack 

rates. The vaccination extension did not improve calibration metrics, which may be attributable to 

the complex evolving profile of vaccination-induced population immunity, or the limited indirect 

protection conferred by vaccination.36 By contrast, population mobility appeared to improve model 

fit slightly, possibly by allowing for a smaller initial BA.1 wave through capturing the “shadow 

lockdown” in summer 2021/2022.37,38  

Parameter posterior estimates suggested a greater level of immune escape and a shorter duration of 

immunity than our prior beliefs from the literature,39-41 which can be attributed to the rapid 

succession of each subvariant’s wave as the preceding wave had only recently begun to decline. Our 

inflation factor for the infection fatality rate suggested considerably greater severity than observed 

in a population with a longer history of COVID-19 epidemics,24 which may relate to lower natural 

immunity to COVID-19 along with a larger vulnerable population after two years of lower circulation 

of influenza and other viruses.42 

The availability of seroprevalence estimates for nucleocapsid antibodies that increased markedly 

from close to zero to nearly 80% within the simulation window we considered markedly increases 

our confidence that our analysis captures the overall epidemic size.9 Although we did not consider 

antibody waning, the greatest delay from infection to antibody measurement relevant to our 

analysis would have been infection early in the BA.1 wave (January 2022) followed by antibody 

measurement in August 2022 (for persons not infected in the intervening waves), whereas these 

antibodies are known to be well maintained over ten months.43 Moreover, given the apparently 

large size of Australia’s first BA.1 wave, we found it surprising that adult seroprevalence only 

reached 20.7% after the first wave, whereas the subsequent estimates implied around 50% of 

persons not previously infected were exposed within the subsequent windows between survey 

rounds (February to June and June to August). There are several possible causes of bias in such 

estimates, including selection bias of blood donors by comparison to the general population,44 which 

has not been quantified in the Australian context to our knowledge. Rather than attempt to adjust 

for such biases, we acknowledged the bidirectional uncertainty in these data through the likelihood 

calculation for the seroprevalence calibration target. 

More generally, while adjusting our approach to allow for a smaller first wave would have improved 

fit to the first seroprevalence estimate (e.g. through a higher initial case detection ratio), a lower 

absolute epidemic peak would also have led to a flatter epidemic peak. By contrast, the first (BA.1 

wave) notifications peak was very sharp in shape. Although the shape of this wave was likely 

modified by changing reporting requirements and poor national availability of rapid antigen tests, 

this implies a large epidemic. The mobility extension models we considered improved fit to the 

seroprevalence estimates, implying that the “shadow” (public-led) lockdown over the 2021-2022 

summer was likely part of the explanation for this wave being smaller than expected.37,38 We 

considered that accepting model runs that modestly over-estimated the first seroprevalence 

estimate but under-estimated the latter two estimates was the optimal balance, as was the case 

with our chosen primary analysis for parameter inference. 

By contrast to mobility, allowing for the additional vaccination programs rolled out during 2022 to 

modify transmission after Australia had reached close to complete coverage with the two-dose 

primary courses did not improve model fit. The greatest modelled effect of these programs would be 

the roll-out of the third dose program for persons aged 16 and above, which reached its greatest 

rate in February and March 2022 (with all vaccine-related effects lagged to 14 days later). During this 

period, the modelled effective reproduction number had begun to increase following a nadir, by 

contrast to its marked decline during January driven by natural immunity following the major BA.1 
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wave. Therefore, the timing of this program did not help to explain the epidemic profile over a 

period when the overall change in population immunity was difficult to determine because of the 

simultaneous implementation of several vaccination programs when immunity from past vaccination 

was waning. 

Our final model structure aimed to balance parsimony against complexity and avoid over-fitting to 

the available data. Our analysis points to several features that may improve model fit. In addition to 

the considerations around seroprevalence targets and epidemic size discussed above, we did not 

allow for a direct effect of vaccination on severe outcomes, for the BA.5 subvariant to be more 

severe than both BA.1 and BA.2, or for population heterogeneity in spatial structure or immunity 

beyond our two-category approach. Such configurations and others of interest to the reader can be 

explored through our interactive notebooks. 

Conclusions 

Australia’s 2022 COVID-19 epidemic was characterised by overlapping waves that were driven by 

Omicron subvariants that exhibited substantial immune-escape properties, with rapidly waning 

immunity to past infection also likely contributing. The multiple data sources and clear swings in the 

epidemic profile and reproduction number allowed our beliefs pertaining to several epidemiological 

parameters to be substantially updated, suggesting a peak case detection rate of 17 to 50% and 

higher infection fatality rates than observed in a setting with a greater experience with COVID-19. 

Our pipeline for infectious disease modelling supports greater understanding of these results 

through interactive notebooks and online visuals and could constitute a new paradigm for infectious 

disease modelling. 

Methods 

We constructed four candidate models with common underlying characteristics to represent COVID-

19 dynamics during the course of 2022 in Australia. Epidemiological details are presented in the 

repository for this analysis and described in detail in our Supplemental Material, which is 

algorithmically generated from the code used in model construction to ensure accuracy of 

documentation. In brief, we built an SEIRS model with chained serial latent and infectious 

compartments and reinfection from the waned (second S) compartment. To this we added age 

structure in five-year bands from 0-4 years to 75 years and above. Age stratification determined the 

initial population distribution, and an age-specific mixing matrix was adapted to the Australian 

population structure from United Kingdom survey data was applied to capture heterogeneous 

mixing between age groups.45 The model was further stratified into Western Australia (WA) and the 

other major jurisdictions of Australia to acknowledge the negligible community transmission in WA 

prior to the re-opening of internal borders to the state. Further stratification was applied to replicate 

all model compartments into two populations with differing levels of immunity to infection and 

reinfection, with no transition between these two classes permitted in the base model configuration 

(without vaccination extension). Three subvariant strains were introduced into the base model 

through the course of the simulation to represent the BA.1, BA.2 and BA.5 subvariants of Omicron, 

with incomplete cross-immunity to subsequent strains during the early recovered stage conferred 

through infection with earlier strains. 

The unextended model described in the preceding paragraph was elaborated in two respects. First, 

the mixing matrix that remains fixed over modelled time in the unextended model was allowed to 

vary over time, with the location-specific contribution to each cell of the matrix scaled according to 

metrics sourced from Google’s Community Mobility Reports.46 
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Second, the model was extended to allow that the historical profile of vaccination through 2022 

could have influenced rates of infection. Under this alternative analysis, all the model’s initial 

population was assigned to the non-immune category, with population then transitioning to the 

partially immune class as new vaccination programs (booster and paediatric) were rolled out 

through 2022. Vaccine-derived immunity was then allowed to wane, with vaccinated persons 

returning to a third immunity stratum with the same susceptibility to infection as those who had 

never received vaccination under these programs. 

From these two extensions to the base model, we created four alternative analytical approaches: no 

additional structure (“none”), mobility extension only (“mob”), vaccination extension only (“vacc”), 

and both mobility and vaccination extensions (“both”). 

Last, we calibrated each of the four candidate models described in the preceding paragraph to 

publicly available data for three empirical indicators of the COVID-19 epidemic through 2022: the 

seven-day moving average of national daily time-series for case notifications, the seven-day moving 

average of national daily time-series for deaths and the results of a nationally representative adult 

blood donor seroprevalence survey at three key time points in 2022. Equivalent modelled quantities 

to notifications and deaths were estimated through a convolution approach that allowed a gamma-

distributed delay from onset of symptoms (taken as the time of transition from the first to the 

second serial infectious compartment) to notification or death. The proportion of the population no 

longer in the original susceptible compartment was further compared to seroprevalence estimates 

of SARS-CoV-2 exposure, which were adjusted for nucleocapsid test sensitivity and lagged forward 

by 14 days. Model calibration was then achieved independently for each of the four candidate 

models using the PyMC implementation of the differential evolution Metropolis algorithm 

“DEMetropolis(Z)”.14 All important epidemiological parameter inputs were included in the calibration 

algorithm, creating a 17-dimensional parameter space for exploration. The approach with only 

mobility implemented was selected as the primary analysis for parameter inference, largely because 

of its superior fit to seroprevalence estimates. 
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