1	Title: Comparative Clinical Evaluation of the Alinity m STI Multiplex PCR Assay for
2	Diagnosis and Surveillance of Chlamydia trachomatis, Neisseria gonorrhea,
3	Trichomonas vaginalis, and Mycoplasma genitalium
4	
5	Amorce Lima, PhD ^{1*} , Dominic Uy, MB ¹ , Joshua Kostera, PhD ² , Suzane Silbert, PhD ¹
6	
7	¹ Tampa General Hospital, Tampa, FL, USA
8	² Abbott Laboratories, Des Plaines, IL, USA
9	
10	*Corresponding author: Amorce Lima, PhD
11	Tampa General Hospital
12	1 Tampa General Circle
13	Tampa, FL 33606 USA
14	Phone: 813-660-6357
15	Email: alima@tgh.org
16	
17	Word counts: summary 26; abstract 269; main text 3111
18	Number of references: 30
19	Number of figures: 5
20	Number of tables: 2
21	
22	Conflicts of Interest and Source of Funding
23	Joshua Kostera is an employee of Abbott Laboratories. This study was funded by a
24	grant from Abbott Laboratories.

25 Summary

- 26 Evaluation of Alinity m STI clinical performance for diagnosis and surveillance of CT,
- 27 NG, TV, and MG in a large academic medical center in the US.

28 Abstract

29 Background: Chlamydia trachomatis (CT) and Neisseria gonorrhoeae (NG) are 30 routinely tested and reported; however, *Trichomonas vaginalis* (TV) is the most 31 common STI in the US and the prevalence of *Mycoplasma genitalium* (MG) 32 infections is likely higher than estimated. We examined the clinical performance of 33 the Alinity m STI assay for detection and surveillance of CT/NG/TV/MG in urine 34 specimens from patients at a large academic medical center. 35 **Methods:** Prevalence of mono- and co-infections on Alinity m STI pathogens and 36 predictors of a positive result were identified. Alinity m STI and Aptima Combo 2 37 CT/NG and TV assay (Panther System) results were compared, with discrepant 38 results run on the cobas 6800 CT/NG, TV and MG assays. Analyzer turnaround 39 times (TAT) were determined for Alinity m and Panther systems. 40 **Results:** 199 urine specimens were included. Age \geq 25 years, collection outside the 41 emergency department (ED), and asymptomatic status were predictive of TV or MG 42 infection; symptomatic status was the only predictor of CT or NG infection. Overall 43 agreement rates for the Alinity m, Aptima, and cobas assays ranged from 86.4% to 44 99.5% for the four pathogens. TV and MG infections comprised 54% of the positive 45 samples and were more often asymptomatic than CT and NG infections. Analyzer 46 TAT (onboard to result reporting) was 4 hours 45 minutes for the Aptima CT/NG, 3 47 hours 25 minutes for Aptima TV, and 1 hour 55 minutes for Alinity m STI assay. 48 **Conclusions:** The Alinity m STI assay allows for fast and simultaneous detection of 49 the four major STI pathogens, which can facilitate surveillance and provide accurate 50 results to help clinicians diagnose for initiation of appropriate treatment. 51

52 Key words: surveillance, nucleic acid amplification test, screening, DNA

54 Introduction

55	The most recent CDC surveillance data indicates that 2.5 million STIs were reported
56	in 2021, an increase of almost 3% from 2020 (1). The four most common STI
57	pathogens are Chlamydia trachomatis (CT), Neisseria gonorrhoeae (NG),
58	Trichomonas vaginalis (TV), and Mycoplasma genitalium (MG). Of these, TV is the
59	most common, with 1.2% prevalence among 2013-2014 NHANES participants (2);
60	however, TV is not considered reportable by CDC (3, 4). Current guidelines
61	recommend TV screening only in high-risk populations (3). As the majority of
62	individuals with TV infection are asymptomatic, it can remain undiagnosed and
63	untreated for years, leading to severe consequential health outcomes such as pelvic
64	inflammatory disease, urethritis, and infertility. MG has emerged as an STI pathogen
65	of concern with drug resistant MG placed on CDC's Watch List in 2019 (5). Yet MG
66	is not classified as reportable by CDC; current guidelines recommended MG testing
67	in only a small subset of patients with recurrent urethritis or cervicitis (3). Thus, the
68	true prevalence of MG infection is not clear and is likely higher than expected (6).
69	
70	Untreated STIs have significant long-term health consequences and inflict a
71	substantial economic medical burden (7). Additionally, NG, TV, and MG infections
72	are associated with increased risk for acquiring or transmitting HIV (3, 4, 8). Timely
73	diagnosis of STIs is essential to reduce transmission and initiate treatment (3), but
74	diagnosis based on patient symptoms alone can be challenging. Co-infections by
75	more than one pathogen can cause overlapping symptoms that confound both
76	diagnosis and initiation of appropriate therapy. Inaccurate diagnosis leading to
77	inappropriate or inconsistent treatment can lead to the emergence of multidrug
78	resistant strains (9-11).

79

80	Guidelines recommend screening for the reportable pathogens, CT and NG, with
81	nucleic acid amplification tests (NAATs) to help reduce transmission and guide
82	treatment (12, 13). Similar NAAT-based surveillance programs for TV and MG would
83	be expected to identify subclinical or asymptomatic infections, refine treatment
84	algorithms, and reduce transmission rates (3, 14, 15). Because sequential testing for
85	each pathogen can prolong the time to diagnosis and delay initiation of appropriate
86	treatment, NAATs have been developed for simultaneous detection of multiple
87	pathogens from a single specimen.
88	
89	The Alinity m STI assay (Abbott Laboratories, Des Plaines, IL, USA) is an in vitro
90	multiplex RT-PCR assay that is designed for qualitative and simultaneous detection
91	of CT, NG, MG, and TV in various urogenital and extragenital specimens. The
92	objective of this study was to evaluate the Alinity m STI assay and compare the
93	results with our standard of care (SOC) STI tests, the Aptima Combo 2 CT/NG and
94	the Aptima TV assays, run on the Panther system (Hologic, Marlborough, MA) for
95	urine specimens collected from patients at a large academic medical center in the
96	United States. We also examined the utility of the Alinity m STI assay for surveillance
97	of TV and MG infection.
98	
99	Materials and Methods
100	Specimens and setting
101	199 residual de-identified urine specimens from consecutive inpatients, outpatients,

102 and patients in the emergency department (ED) at Tampa General Hospital (TGH;

103 Tampa, Florida, USA) were included in the study after SOC testing. No inclusion or

104	exclusion criteria	were applied.	The study was	s conducted following	GCLP	and in
			1110 0100, 1100			

- 105 accordance with the Declaration of Helsinki, under IRB# 1301043.
- 106

107 Specimen collection and disposition

- 108 Approximately 2 mL of first catch urine specimen was transferred from the primary
- 109 urine collection container to an Aptima Urine Specimen Transport Tube for SOC
- 110 testing on the Panther system (Figure 1). Two additional 5-mL aliquots from the
- 111 primary urine collection container were pipetted into cryogenic vials: Aliquot #1 was
- 112 transferred to the Alinity m multi-collect tube which was used for testing on the Alinity
- m STI assay and Aliquot #2 was used for referral testing to confirm MG positives on
- 114 Alinity m and resolve any discrepant results.
- 115
- 116 All MG-positive specimens and at least 5 MG-negative specimens on Alinity m STI
- 117 with sufficient remaining volume were sent to the University of Alabama STD
- 118 Diagnostics Lab (UAB; Birmingham, AL, USA), to be tested for CT, NG, TV, and MG
- on the cobas 6800 system (Roche, Branchburg, NH, USA). All specimens with
- 120 discrepant results on the Aptima and Alinity m assays with sufficient volume for
- 121 Aliquot #2 were also sent to UAB for testing with the cobas 6800 CT/NG, TV and MG
- 122 assays.
- 123

124 Assay platforms

125 The Alinity m STI assay (Abbott Laboratories) was run on a single Alinity m analyzer 126 at TGH according to the manufacturer's instructions using reagents that was not yet 127 approved by the FDA for that purpose. The Alinity m STI assay primers and probes 128 amplify and detect an endogenous human DNA sequence as validity control (cellular

129	control, CC) and an exogenous internal control (IC) is used to confirm the absence of
130	PCR inhibitors in the test specimen. For this study, 2.1 mL of each collected urine
131	specimen was transferred from Aliquot #1 to an Alinity m multi-Collect tube for
132	testing and the analyzer was programmed to test all four STI pathogens (CT, NG,
133	MG, and TV). Alinity m reagents were left onboard the analyzer for 10-30 days.
134	
135	The Aptima Combo 2 for CT/NG and Aptima TV assays were run on the Panther
136	system (Hologic, Inc.) at TGH. If clinical orders were for CT/NG testing only, then TV
137	testing was performed using the same specimen. Because onboard stability of the
138	Aptima reagents is 72 hours, TV testing was performed in batches. Upon completion
139	of testing, the reagents were removed from the Panther instrument and refrigerated.
140	If TV testing was not done on the same day as CT/NG testing, specimens were
141	stored at 2-8°C until the next batch run.
142	
143	The cobas 6800 CT/NG assay and cobas 6800 TV/MG assays were run at UAB. All
144	assays were run following the manufacturers' instructions.
145	
146	Workflow study
147	Total TAT for the Alinity m STI assay were calculated based on timepoints entered
148	into the laboratory information system and electronic medical record. The average
149	time from specimen receipt to results reporting and from specimen loading onto the
150	analyzer to results reporting were tracked.

151

152 Data analysis

153 The prevalence of each analyte and co-infections in the study population were

154	determined based on the Alinity m STI assay results. Positive, negative, and overall
155	percent agreement (PPA, NPA, OPA) and 95% confidence intervals (CIs) and kappa
156	values were determined for results from the Alinity m STI assay and the comparator
157	assays. Odds ratios and 95% CIs were calculated to identify variables predictive of
158	positive Alinity m STI assay results.
159	
160	Results
161	Study cohort characteristics and test results
162	Urine specimens from 199 patients were included in the study; demographic
163	characteristics are shown in Table 1. The majority of specimens were collected from
164	females and in the inpatient setting. Median patient age was 29 years; of note, a
165	patient between the age of 6-10 was included, but was the only patient under 16
166	years of age and was negative for all pathogens tested on the Aptima CT/NG and TV $% \left({{\left({{{\left({{{}_{{\rm{T}}}} \right)}} \right)}_{{\rm{T}}}}} \right)$
167	assays and Alinity m STI assay (CT/NG/TV/MG). The cohort was diverse, with
168	slightly more Black patients than White or Hispanic patients. Eighteen patients in the
169	"Other" category were Asian, mixed-race, Middle Eastern, or chose not to identify
170	their racial/ethnic background.
171	
172	Forty-three patients had positive Alinity m assay results (Table 1). There were 7 CT,
173	4 NG, 12 TV, and 11 MG mono-infections; 3 CT/NG co-infections; 3 CT/MG co-

174 infections; 2 NG/TV co-infections; and 1 TV/MG co-infection. No triple or quadruple

175 co-infections were detected. TV and MG infections comprised more than half (54%)

176 of the positive samples and 14% were co-infections with CT or NG (Figure 2A). Only

177 25% of positive results were CT or NG mono-infections and 7% were CT/NG co-

178 infections. The mean age of patients with TV or MG mono-infections or TV/MG co-

179	infection was 32 years, 5 years older than the mean age of patients with CT or NG
180	mono-infection or CT/NG co-infection. In this cohort, TV, MG, TV/MG, and
181	associated co-infections were mostly asymptomatic (20 asymptomatic and 9
182	symptomatic), whereas CT, NG, CT/NG infections were more often symptomatic (10
183	symptomatic and 4 asymptomatic). The distribution of Alinity m STI positive results
184	varied based on site of specimen collection (Figure 2B). The vast majority of positive
185	specimens collected in the inpatient setting were from asymptomatic patients,
186	whereas the majority of positive specimens collected in the ED and all positive
187	specimens collected in the outpatient setting were from symptomatic patients.
188	Specimens were tested on 82 unique testing days over the course of 10 months.
189	
190	Predictors of positive Alinity m STI assay results
191	Factors that were most predictive of an assay result positive for TV or MG mono- or
192	co-infection were age ≥25 years, specimen collected at a site outside the ED, and
193	asymptomatic status (Figure 3A). The only factor predictive of CT, NG, or CT/NG
194	positive results was symptomatic status (Figure 3B). Specimen collection outside the
195	ED was somewhat predictive of a positive CT, NG, or CT/NG result.
196	
197	Comparative performance of STI NAATs

- 198 Agreement between Alinity m STI, Aptima CT/NG, Aptima TV, and cobas MG assay
- 199 results is summarized in Table 2. Overall percent agreement (OPA) between Alinity
- m STI and comparator assay results was 99.5% (95%CI: 97.2%, 99.9%) for CT,
- 201 99.5% (95%Cl: 97.2%, 99.9%) for NG, 98.4% (95%Cl: 95.5%, 99.5%) for TV, and

202 86.4% (95%CI: 66.7%, 95.3%) for MG.

203

204	For CT, 1 specimen collected from an asymptomatic female patient in her 20s was
205	CT-positive on Aptima, CT-negative on Alinity m, and CT-positive on cobas. The
206	review of the Aptima CT/NG relative light units (RLU) for this specimen was 829 vs
207	mean RLU for all CT-positive specimens was 1125 (SD 227), indicating a low CT
208	concentration in the specimen that was not detected by Alinity m STI.
209	
210	One specimen collected from an asymptomatic female patient under 20 years old
211	was NG-positive on Aptima and NG-negative on Alinity m. The RLU on Aptima
212	CT/NG for this specimen was 563, more than 3 SD from the mean RLU for all NG-
213	positive specimens of 1299 (SD 154). The specimen was also found to be NG-
214	negative on cobas, in agreement with the Alinity m STI result.
215	
216	Two specimens were found to be TV-positive on Aptima and TV-negative on Alinity
217	m STI assay. The first was from an asymptomatic male patient in his 50s that was
218	TV-negative on cobas. The specimen was not positive for any other pathogen. The
219	specimen RLU on Aptima TV was 133, more than 2 SD from the mean RLU of 1324
220	(SD 369) for all TV-positive specimens from asymptomatic patients. The second
221	specimen, from an asymptomatic female patient in her early 40s, was TV-positive on
222	cobas. The TV RLU was 1528, within 1 SD of the mean RLU of 1324. One specimen
223	from an asymptomatic female in her 30s was TV-negative on Aptima, TV-positive on
224	Alinity m, and TV-negative on cobas.
225	
226	Three specimens were MG-negative on cobas but MG-positive on Alinity m. One

female patient in their 20s were negative for CT/NG/TV on Alinity m, negative for

227

11

specimen from a symptomatic female patient and another from an asymptomatic

229	CT/NG and TV on Aptima, and negative for CT/NG and TV/MG on cobas. The third
230	specimen, from an asymptomatic female patient in her 30s, was also TV-positive on
231	the Alinity m, Aptima, and cobas assays. The cause for the discrepancy between
232	Alinity m and cobas MG results could potentially be attributable to neat sample
233	degradation between collection and testing with cobas or assay sample type
234	sensitivities.
235	
236	For the 8 specimens with discrepant results on the Aptima, Alinity m, and cobas
237	assays, there was no significant difference in the Alinity m IC and CC cycle number
238	(CN) values compared to the average IC and CC CN values of all specimens in
239	cohort (see Table, Supplemental Digital Content 1).
240	
241	
242	Aptima and Alinity m STI assay performance by symptom status
243	Although the assays are qualitative, we compared assay readouts (RLU for Aptima
244	and CN for Alinity m) across target pathogens and in specimens from symptomatic
245	and asymptomatic patients. Aptima RLUs were significantly higher for specimens
246	from symptomatic patients with CT/NG co-infection compared to those with CT, NG,
247	or TV mono-infection or in asymptomatic patients (Figure 4A). It is not surprising that
248	higher RLUs were seen with co-infections, as they would elicit a double probe
249	response. CN values for specimens run on the Alinity m STI assay were consistently
250	between 10 and 40 and did not differ by symptom status (Figure 4B).
251	
252	Aptima and Alinity m STI workflow analysis

253	We compared the workflows for each assay for 199 specimens. The average overall
254	turnaround time, from receipt of the specimen in the lab to results reporting, for the
255	Alinity m STI assay for all four analytes was 6 hours 59 minutes (n=199; Figure 5A).
256	The overall turnaround time was 8 hours 28 minutes (n=199) for the Aptima CT/NG
257	assay and 80 hours 56 minutes (n=128) for the Aptima TV assay, reflecting the
258	batching of specimens. To assess workflow independent of batching, we examined
259	the turnaround time from loading the specimen on the analyzer to results reporting
260	for the three assays (Figure 5B). The average time from onboarding to result was 3
261	hours 25 minutes for the Aptima CT/NG assay, 3 hours 25 minutes for the Aptima TV
262	assay, and 1 hour 55 minutes for the Alinity m STI assay for CT/NG/TV/MG.
263	
264	Discussion
265	In this study, we found high agreement rates between the Alinity m STI assay and
266	the Aptima Combo 2 and TV assays for CT/NG and TV (OPA ≥98.4%) or cobas
267	TV/MG assay for MG (OPA=86.4%). Discrepant specimens that were negative on
268	Alinity m were primarily seen in asymptomatic patients where a CN value was not
269	generated or had high CN values greater than the assay cutoff cycle, indicating low
270	levels of the pathogen target. These findings are consistent with a previous study
271	demonstrating concordance of results from the Alinity m STI assay and RealTime
272	CT/NG/TV assay run on the m2000 system (16).
273	
274	The prevalences of infection and co-infection in our study indicate that TV and MG
275	infections are likely being missed. Only 2 out of the 14 positive TV samples had a
276	microscopy test performed and both were negative. Current practice at our institution
277	is consistent with CDC guidance for CT and NG screening (3), with specimens run

278 on the Aptima CT/NG assay as the SOC test. We do not routinely test for TV, unless 279 ordered by the provider and do not test for MG. In our cohort, 68% of positive 280 samples on Alinity m were TV or MG positive (53% mono-infection) and were more 281 likely to be from asymptomatic patients. 282 283 Our findings are consistent with the literature that most TV/MG infections are 284 asymptomatic. The Swiss STAR trial screened high-risk women and found a 285 prevalence of undiagnosed TV up to 10.4% and MG up to 6.7% (17). A US study of 286 374 female adolescents in juvenile detention found that 8% tested positive for TV 287 and half of these were asymptomatic (18). Another study of men who have sex with 288 men (MSM) with HIV who were screened for MG found a 20% prevalence, 93% of 289 which were asymptomatic (19). Addition of TV and MG testing would reduce the

290 likelihood of missed infections, decrease the risk of transmission, and improve

- appropriate antimicrobial use.
- 292

293 Identification of factors predictive of positive TV and MG results on Alinity m STI or 294 other NAATs could help inform adjustments to STI screening algorithms (1, 3) to 295 ensure that asymptomatic infections are detected and treated. In our study, the 296 mean age of patients with TV/MG-positive results was 5 years older than those with 297 CT/NG-positive results. This is consistent with several surveillance studies showing 298 that TV/MG infections are more likely to be diagnosed at a later age than CT/NG 299 infections (3, 20-22). A recent US study of NHANES data found that women, 300 smokers, non-Hispanic Black patients, and patients of lower socioeconomic status 301 are more likely to have a TV infection (23). In contrast to our findings, a study of a 302 high-risk population of women in New Mexico found that MG infection was more

prevalent in younger than older women (24). Rigorous, nationwide studies of
predictors of MG infection are needed to develop evidence-based recommendations
for MG testing.

306

307 The distribution of positive Alinity m results by collection site illustrated that the ED is 308 utilized to confirm infection in symptomatic patients. Studies suggest that a growing 309 number of STIs are being diagnosed in the ED setting, possibly related to closure of 310 STI clinics and increased utilization of the ED for primary care (25, 26). STI testing in 311 the ED may help identify individuals with asymptomatic infection, allowing earlier 312 initiation of treatment to stop transmission chains. A recent study developed a 313 prediction model for identifying patients as candidates for CT/NG/TV testing in the 314 ED, based on age, marital status, race, findings from vaginal wet prep, and urinalysis 315 (27).

316

317 In the workflow analysis, Alinity m STI reduced turnaround times compared to 318 Aptima by removing the need for batching of TV assays. Simultaneous testing of all 319 four pathogens also decreased the onboard to result turnaround times. Our findings 320 are consistent with a previous report of faster turnaround times with the Alinity m STI 321 assay compared to the Abbott RealTime assay run on the m2000 instrument (28). A 322 workflow study of the Alinity m platform also demonstrated reduced the time to 323 diagnosis and treatment initiation (29). More rapid results reporting has implications 324 for management of STIs in the ED setting. A recent study suggested that rapid NAAT 325 for STIs may help direct appropriate utilization of antimicrobials in the ED and reduce 326 the risk of treatment resistance (30).

327

328

329	This was a single-center study, which may limit the generalizability of our findings;
330	however, we utilized a third assay system run at a separate facility to resolve
331	discrepancies in assay results. The Aptima system was not used to test for MG,
332	which prevented a direct comparison to the Alinity m STI assay. This study also only
333	utilized urine specimens; additional studies are needed to evaluate the performance
334	of the Alinity m STI assay with other genital and extragenital specimen types and
335	collection methods. Despite these limitations, this study utilized a convenience
336	sample with no inclusion or exclusion criteria, which led to a diverse study cohort.
337	We collected specimens from multiple sites in the medical center, and tested
338	throughout the year to ensure that the sample was not enriched for certain peak
339	periods.
340	
340 341	Our findings support the surveillance of MG and TV, which often remain as
340 341 342	Our findings support the surveillance of MG and TV, which often remain as asymptomatic infections that serve as ongoing transmission reservoirs. Symptoms
340 341 342 343	Our findings support the surveillance of MG and TV, which often remain as asymptomatic infections that serve as ongoing transmission reservoirs. Symptoms alone are non-diagnostic and can overlap significantly between CT, NG, TV, and
340 341 342 343 344	Our findings support the surveillance of MG and TV, which often remain as asymptomatic infections that serve as ongoing transmission reservoirs. Symptoms alone are non-diagnostic and can overlap significantly between CT, NG, TV, and MG. The Alinity m STI assay allows for simultaneous detection of the four major STI
340 341 342 343 344 345	Our findings support the surveillance of MG and TV, which often remain as asymptomatic infections that serve as ongoing transmission reservoirs. Symptoms alone are non-diagnostic and can overlap significantly between CT, NG, TV, and MG. The Alinity m STI assay allows for simultaneous detection of the four major STI pathogens in a single assay, which can simplify the implementation of MG/TV
 340 341 342 343 344 345 346 	Our findings support the surveillance of MG and TV, which often remain as asymptomatic infections that serve as ongoing transmission reservoirs. Symptoms alone are non-diagnostic and can overlap significantly between CT, NG, TV, and MG. The Alinity m STI assay allows for simultaneous detection of the four major STI pathogens in a single assay, which can simplify the implementation of MG/TV surveillance programs in health systems that already report NG and CT infections.
 340 341 342 343 344 345 346 347 	Our findings support the surveillance of MG and TV, which often remain as asymptomatic infections that serve as ongoing transmission reservoirs. Symptoms alone are non-diagnostic and can overlap significantly between CT, NG, TV, and MG. The Alinity m STI assay allows for simultaneous detection of the four major STI pathogens in a single assay, which can simplify the implementation of MG/TV surveillance programs in health systems that already report NG and CT infections. TV and MG surveillance programs can inform evidence-driven changes in the STI
 340 341 342 343 344 345 346 347 348 	Our findings support the surveillance of MG and TV, which often remain as asymptomatic infections that serve as ongoing transmission reservoirs. Symptoms alone are non-diagnostic and can overlap significantly between CT, NG, TV, and MG. The Alinity m STI assay allows for simultaneous detection of the four major STI pathogens in a single assay, which can simplify the implementation of MG/TV surveillance programs in health systems that already report NG and CT infections. TV and MG surveillance programs can inform evidence-driven changes in the STI diagnostic algorithm, with multiplex assays moving patients more quickly to
 340 341 342 343 344 345 346 347 348 349 	Our findings support the surveillance of MG and TV, which often remain as asymptomatic infections that serve as ongoing transmission reservoirs. Symptoms alone are non-diagnostic and can overlap significantly between CT, NG, TV, and MG. The Alinity m STI assay allows for simultaneous detection of the four major STI pathogens in a single assay, which can simplify the implementation of MG/TV surveillance programs in health systems that already report NG and CT infections. TV and MG surveillance programs can inform evidence-driven changes in the STI diagnostic algorithm, with multiplex assays moving patients more quickly to diagnosis and initiation of the most appropriate treatment.

351 Acknowledgements

352 The authors would like to thank Yan Zhang, PhD, for assistance with the statistical

- analysis. Stacey Tobin, PhD, provided editorial support for manuscript preparation,
- 354 with compensation from Abbott Laboratories.
- 355

356 References

- 357 1. Centers for Disease Control and Prevention. Sexually Transmitted Disease
- 358 Surveillance 2021. 2023; Accessed at
- 359 <u>https://www.cdc.gov/std/statistics/2021/default.htm</u>. Accessed May 23 2023.
- 360 2. Patel EU, Gaydos CA, Packman ZR, Quinn TC, Tobian AAR. Prevalence and
- 361 Correlates of Trichomonas vaginalis Infection Among Men and Women in the United
- 362 States. Clin Infect Dis. 2018;67(2):211-7.
- 363 3. Workowski KA, Bachmann LH, Chan PA, et al. Sexually Transmitted Infections
- 364 Treatment Guidelines, 2021. MMWR Recomm Rep. 2021;70(4):1-187.
- 365 4. Muzny CA. Why Does Trichomonas vaginalis Continue to be a "Neglected" Sexually
 366 Transmitted Infection? Clin Infect Dis. 2018;67(2):218-20.
- 367 5. Centers for Disease Control and Prevention. Antibiotic Resistance Threats in the
- 368 United States 2019. Atlanta, GA: US Department of Health and Human Services;
- 369 2019; Accessed at https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-
- 370 <u>threats-report-508.pdf</u>. Accessed August 28 2023.
- 371 6. Manhart LE, Holmes KK, Hughes JP, Houston LS, Totten PA. Mycoplasma
- 372 genitalium among young adults in the United States: an emerging sexually

373 transmitted infection. Am J Public Health. 2007;97(6):1118-25.

- 3747.Chesson HW, Spicknall IH, Bingham A, et al. The estimated direct lifetime medical
- 375 costs of sexually transmitted infections acquired in the United States in 2018. Sex
- 376 Transm Dis. 2021;48(4):215-21.
- Kissinger P, Adamski A. Trichomoniasis and HIV interactions: a review. Sex Transm
 Infect. 2013;89(6):426-33.

379	9.	Sethi S, Zaman K, Jain N. Mycoplasma genitalium infections: current treatment
380		options and resistance issues. Infect Drug Resist. 2017;10:283-92.
381	10.	Getman D, Jiang A, O'Donnell M, Cohen S. Mycoplasma genitalium Prevalence,
382		Coinfection, and Macrolide Antibiotic Resistance Frequency in a Multicenter Clinical
383		Study Cohort in the United States. J Clin Microbiol. 2016;54(9):2278-83.
384	11.	Unemo M, Jensen JS. Antimicrobial-resistant sexually transmitted infections:
385		gonorrhoea and Mycoplasma genitalium. Nat Rev Urol. 2017;14(3):139-52.
386	12.	Recommendations for the laboratory-based detection of Chlamydia trachomatis and
387		Neisseria gonorrhoeae2014. MMWR Recomm Rep. 2014;63(Rr-02):1-19.
388	13.	Nelson HD, Zakher B, Cantor A, Deagas M, Pappas M. Screening for Gonorrhea and
389		Chlamydia: Systematic Review to Update the U.S. Preventive Services Task Force
390		Recommendations. Rockville (MD); 2014.
391	14.	Muzny CA, Burkholder GA, Fry KR, Austin EL, Schwebke JR. Trichomonas vaginalis
392		Nucleic Acid Amplification Testing at an Urban HIV Clinic. Sex Transm Dis.
393		2016;43(8):483-8.
394	15.	Muzny CA, Blackburn RJ, Sinsky RJ, Austin EL, Schwebke JR. Added benefit of
395		nucleic acid amplification testing for the diagnosis of Trichomonas vaginalis among
396		men and women attending a sexually transmitted diseases clinic. Clin Infect Dis.
397		2014;59(6):834-41.
398	16.	Herrmann B, Malm K. Comparison between Abbott m2000 RealTime and Alinity m
399		STI systems for detection of Chlamydia trachomatis, Neisseria gonorrhoeae, and
400		Mycoplasma genitalium. Eur J Clin Microbiol Infect Dis. 2021.
401	17.	Vernazza PL, Rasi M, Ritzler M, et al. The Swiss STAR trial - an evaluation of target
402		groups for sexually transmitted infection screening in the sub-sample of women.
403		Swiss Med Wkly. 2020;150:w20393.
404	18.	Oshin E, Eissa MA, Benjamins LJ, Barratt MS, Beyda RM. Trichomonas Vaginalis
405		Infections Among Youth in Detention in the Southeastern United States. J Pediatr
406		Adolesc Gynecol. 2022;35(3):368-70.

407	19.	Ring A, Balakrishna S, Imkamp F, et al. High Rates of Asymptomatic Mycoplasma
408		genitalium Infections With High Proportion of Genotypic Resistance to First-Line
409		Macrolide Treatment Among Men Who Have Sex With Men Enrolled in the Zurich
410		Primary HIV Infection Study. Open Forum Infect Dis. 2022;9(6):ofac217.
411	20.	Flagg EW, Meites E, Phillips C, Papp J, Torrone EA. Prevalence of Trichomonas
412		vaginalis Among Civilian, Noninstitutionalized Male and Female Population Aged 14
413		to 59 Years: United States, 2013 to 2016. Sexually Transmitted Diseases.
414		2019;46(10).
415	21.	Peterman TA, Tian LH, Metcalf CA, Malotte CK, Paul SM, Douglas JM, Jr. Persistent,
416		undetected Trichomonas vaginalis infections? Clin Infect Dis. 2009;48(2):259-60.
417	22.	Sutton M, Sternberg M, Koumans EH, McQuillan G, Berman S, Markowitz L. The
418		prevalence of Trichomonas vaginalis infection among reproductive-age women in the
419		United States, 2001-2004. Clin Infect Dis. 2007;45(10):1319-26.
420	23.	Tompkins EL, Beltran TA, Gelner EJ, Farmer AR. Prevalence and risk factors for
421		Trichomonas vaginalis infection among adults in the U.S., 2013-2014. PLoS One.
422		2020;15(6):e0234704.
423	24.	Hammer A, Gravitt PE, Adcock R, Patterson N, Cuzick J, Wheeler CM. Burden of
424		Mycoplasma genitalium and Bacterial Coinfections in a Population-Based Sample in
425		New Mexico. Sex Transm Dis. 2021;48(12):e186-e9.
426	25.	Hilbert SM, Reno HEL. Management of Patients with Sexually Transmitted Infections
427		in the Emergency Department. Emergency Medicine Clinics of North America.
428		2018;36(4):767-76.
429	26.	Pearson WS, Peterman TA, Gift TL. An increase in sexually transmitted infections
430		seen in US emergency departments. Preventive Medicine. 2017;100:143-4.
431	27.	Sheele JM, Niforatos JD, Elkins JM, Campos SC, Thompson CL. Prediction model
432		for gonorrhea, chlamydia, and trichomoniasis in the emergency department. Am J
433		Emerg Med. 2022;51:313-9.

28.	Galindo LT, Hristov AD, Gentil LG, Scarpelli L, Santiago J, Levi JE. Performance
	evaluation of the fully automated molecular system Alinity m in a high-throughput
	central laboratory. J Clin Virol. 2021;137:104786.
29.	Obermeier M, Pacenti M, Ehret R, et al. Improved molecular laboratory productivity
	by consolidation of testing on the new random-access analyzer Alinity m. Journal of
	Laboratory Medicine. 2020;44(6):319-28.
30.	Rivard KR, Dumkow LE, Draper HM, Brandt KL, Whalen DW, Egwuatu NE. Impact of
	rapid diagnostic testing for chlamydia and gonorrhea on appropriate antimicrobial
	utilization in the emergency department. Diagnostic Microbiology and Infectious
	Disease. 2017;87(2):175-9.
	28. 29. 30.

447 Figure Legends

448

449 **Figure 1.** Study design.

450

- 451 Figure 2. Alinity m STI assay positive specimens in the study cohort. (A) Distribution
- 452 by mono-infection or co-infection. (B) Number of positive specimens collected in
- 453 each setting from asymptomatic or symptomatic patients.

454

- 455 Figure 3. Factors predictive of an Alinity m STI assay positive result. Odds ratios
- 456 and 95% confidence intervals for factors predicting (A) a positve TV, MG, TV/MG,
- 457 TV/NG, or MG/CT result or (B) a postive CT, NG, or CT/NG result on the Alintiy m

458 STI assay.

459

- 460 Figure 4. (A) Aptima Combo 2 RLU values and (B) Alinity m STI assay CN values
- 461 for positive specimens from symptomatic and asymptomatic patients.

462

- 463 **Figure 5.** Turnaround times for Alinity m STI assay on the Alinity m platform
- 464 compared to Aptima CT/NG and TV assays run on the Panther platform. (A) Overall
- 465 turnaround from specimen arrival in the lab to results reporting. (B) Onboard
- 466 turnaround from specimen loading on the analyzer to results reporting.

467

468

470 Tables

471

472 **Table 1.** Study Cohort Demographics

	Full Cohort (N=199) n (%)	Cohort with Positive Alinity m STI Assay Results (N=43) n (%)
Collection site		
Inpatient	112 (56.3)	21 (48.8)
Emergency department	35 (17.6)	14 (32.6)
Outpatient	31 (15.6)	3 (7.0)
Labor & Delivery	16 (8.0)	4 (9.3)
Other	5 (2.5)	1 (2.3)
Sex		
Female	145 (72.9)	28 (65.1)
Male	54 (27.1)	15 (34.9)
Age (y), median (range)	29 (9-74)	27 (16-63)
Race/ethnicity		
Black	73 (36.7)	22 (51.2)
Hispanic	58 (29.1)	10 (23.3)
White	50 (25.1)	9 (20.9)
Other	18 (9.1)	2 (4.6)
Symptom status ^a		
Asymptomatic	151 (76.0)	24 (55.8)
Symptomatic	45 (22.5)	19 (44.2)
Unknown	3 (1.5)	0 (0.0)

^a Symptom status data was available for n=199 of the full cohort and for all patients with positive Alinity m STI assay results.

Table 2. Agreement Between Alinity m STI Assay (CT/NG/TV/MG) and Aptima Combo 2 & Trichomonas vaginalis Assays (CT/NG and TV) or Cobas TV/MG Assay (MG) Results

475

			Cobas						
		СТ		NG		TV		MG	
Alinity m		POS	NEG	POS	NEG	POS	NEG	POS	NEG
	POS	13	0	9	0	14	1	10	3
	NEG	1	185	1	190	2	176	0	9
Agreement (95% Cl)		OPA: 99.5% (97.2, 99.9%) PPA: 92.9% (68.5, 98.7%) NPA: 100.0% (98.0, 100.0%)		OPA: 99.5% (97.2, 99.9%) PPA: 94.4% (59.6, 98.2%) NPA: 100.0% (98.0, 100.0%)		OPA: 98.4% (95.5, 99.5%) PPA: 87.5% (64.0, 96.5%) NPA: 99.4% (96.9, 99.9%)		OPA: 86.4% (66.7, 95.3) PPA: 100.0% (72.2, 100.0) NPA: 75.0% (46.8, 91.1)	

477 List of Supplemental Digital Content

478

479 Supplemental Digital Content 1.pdf

481 Figures

482 **Figure 1**

В

В

В

