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Abstract

Lupus Nephritis classification has historically relied on labor-intensive and meticulous
glomerular-level labeling of renal structures in whole slide images (WSIs). However, this
approach presents a formidable challenge due to its tedious and resource-intensive nature,
limiting its scalability and practicality in clinical settings. In response to this challenge, our
work introduces a novel methodology that utilizes only slide-level labels, eliminating the
need for granular glomerular-level labeling. A comprehensive multi-stained lupus nephritis
digital histopathology WSI dataset was created from the Indian population, which is the
largest of its kind. LupusNet, a deep learning MIL-based model, was developed for the sub-
type classification of LN. The results underscore its effectiveness, achieving an AUC score
of 91.0%, an Fl-score of 77.3%, and an accuracy of 81.1% on our dataset in distinguishing
membranous and diffused classes of LN.

Keywords: Lupus Nephritis, Weakly Supervised Learning, Whole Slide Image, Binary
Classification

1. Introduction

Lupus Nephritis (LN) is one of the most severe manifestations of systemic lupus erythe-
matosus (SLE), an autoimmune disease, due to its potential for severe renal damage and
the intricate diagnostic and classification process. The complex nature of this disease is
worsened by the substantial-high inter and intra-observer variability in histopathological
renal biopsies (Dasari et al., 2019). As some classes of LN exhibit varying levels of aggres-
siveness, a precise classification of these classes becomes crucial in assessing fatality risks,
predicting long-term prognosis, and determining an effective therapeutic approach.
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Deep learning has recently emerged as a powerful tool in medical Al and healthcare,
revolutionizing various aspects of medicine, from diagnosis and treatment to drug discov-
ery and patient monitoring (Rajkomar et al., 2018). Digital pathology has significantly
advanced due to its capacity to extract intricate patterns and features from complex med-
ical data (Wu and Moeckel, 2023; Ahmed et al., 2022). Improvements in image analysis
have led to significant advancements in various aspects of renal pathology, including au-
tomated detection and classification of glomerular lesions (Sheehan and Korstanje, 2018;
Ginley et al., 2019), and identification of interstitial fibrosis (Zheng et al., 2021a). Advanced
imaging techniques and molecular analyses may assist, but standardization and consensus
in interpretation remain ongoing challenges.

Traditional LN classification follows a two-step process: first identifying glomeruli types,
then classifying LN based on these types, heavily dependent on detailed glomeruli anno-
tations (Sheehan and Korstanje, 2018; Zheng et al., 2021b). Yet, annotating glomeruli on
large-scale WSIs is impractical in clinical settings due to their massive size and memory
limitations, leading to patching and streaming solutions (Campanella et al., 2019; Pinck-
aers et al., 2020). Previous studies mainly differentiated LN from non-LN, not addressing
subtype classification (Wang et al., 2023), which is complicated by similar glomerular types
across subtypes and the unequal contribution of glomeruli to classification. (Cicalese et al.,
2020) proposed an end-to-end LN subtype classification method, but it required manual
segmentation on mice biopsies, not directly applicable to human samples due to differences
in physiology and pathology.

In contrast, our work simplifies this process by creating an end-to-end pipeline that does
not necessitate reliance on glomeruli class labels at any intermediate stage. Multiple In-
stance Learning (MIL) has been extensively explored for other areas of digital histopathology
(Campanella et al., 2019), but not much has been reported or explored in renal pathology.

While digital pathology has made strides, the LN classification research faces challenges
such as access to the datasets and lack of consensus among medical professionals regarding
its classification. In light of these considerations, the principal contributions of our work
are as follows:

e We focus on creating a valuable dataset of LN to drive research (computational and
medical) in kidney diseases. This dataset, featuring multi-stained whole slide images,
stands as one of the largest collections for lupus nephritis, which is a part of the
consortium India Pathology Dataset (IPD) .

e We also introduce a novel architecture, LupusNet, an explainable MIL-based model
that significantly improves LN subtype classification by integrating Gated and Multi-
Head Attention, underscoring the critical requirement to learn the morphological dif-
ferences between LN class 4 & 5.

e To the best of our knowledge, we present the first end-to-end pipeline for LN subtype
classification, designed to achieve efficient diagnosis and classification by relying only
on slide-level labels, easing clinical workload and facilitating practical integration.

1. https://hai.iiit.ac.in/ipd/
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Figure 1: LupusNet: Proposed architecture for our lupus nephritis classifier. Gated atten-
tion identifies each glomerulus’s importance, while multi-head attention (MHA)
discerns their contextual relationships.

2. Materials and Method
2.1. Data Acquisition & Description

In this study, biopsy specimens of 166 patients (retrospective and prospective cases) in
different subclasses (ranging from 1 to 6) of LN from the Nizam Institute of Medical Sciences
(NIMS) in Hyderabad, India, were digitalized. A total of 540 WSIs were digitalized using
the Morphle Optimus 6X Scanner, with each WSI captured at a maximum magnification
of 40x and stored in the widely used TIFF format.

Within this repository of 540 WSIs, there are four distinct categories of stained images,
specifically Hematoxylin and Eosin (H&E), Periodic Acid-Schiff (PAS), methenamine silver
Periodic Acid-Schiff (mt-PAS), and silver methenamine Periodic Acid-Schiff (sm-PAS). In
this dataset, LN classes 4 (diffused proliferated) and 5 (membranous) exhibited the highest
representation, with 62 and 53 cases, respectively. Class 4 LN displays a varied glomerular
appearance characterized by widespread inflammation, cellular proliferation, and diverse
lesions, whereas class 5 LN demonstrates a uniform appearance due to immune complex
deposition, resulting in a membranous pattern (Weening et al., 2004). Consequently, our
study focused primarily on observations and results for these two prominent LN class classi-
fications using PAS-stained slides, highlighting carbohydrates, glycogen, and glycoproteins,
aiding the identification of renal structures.

This India region-specific dataset is created to support global collaboration in lupus
nephritis research. It helps add diversity to the other existing cohort, offering insights into
potential regional and ethnic variations in the disease.

2.2. Methodology

We aim to learn a function that can predict the presence or absence of a condition within
a WSI based on its constituent patches. Mathematically, this problem can be defined as
follows: We are provided with a dataset containing pairs of bag-labels {(X;,Y;)}2,. Each
X; represents a collection of instances (patches) within a bag, and Y; is the label assigned to
that bag. Each bag X; contains a variable number of instances {z1, z2,...,2n} € X;. These
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instances have labels {y1,y2,...,yn} with y, € {0,1}. However, the labels for individual
instances are unknown during the training phase. If any instance in a bag belongs to the
positive class, then the bag is considered positive. Conversely, if all the instances in a bag
belong to the negative class, the bag is considered negative.

{1, if 3z,, € X; such that y,, =1
P =

0, otherwise

Our methodology extends this formulation to multiple positive classes for subtype LN
classification. Unlike lung, brain, and breast datasets, renal pathology primarily focuses on
a limited region of interest, particularly the glomerular area, allowing us to use recurrent
networks. Glomeruli play a pivotal role in various renal diseases, including LN. Instead
of providing MIL with all WSI patches, we exclusively use glomerular patches, enhancing
precision by avoiding potential noise. Recognizing the laborious labeling at the glomerular
area, we aimed to eliminate the need for intermediate glomerular-level labels; thus, opting
for weakly supervised approaches is an appropriate option.

Our novel end-to-end MIL architecture for LN classification, LupusNet, works on raw
glomerular patches, extracted using fine-tuned YOLOv4 model (Hemmatirad et al., 2023),
with two key components: (a) Feature Extractor (f) and (b) Feature Aggregator (g), jointly
trained. f transforms inputs into an information-rich feature space using a ResNet-50 net-
work pre-trained on histopathology images (Kang et al., 2023). We built on CLAM princi-
ples (Lu et al., 2021), which utilizes gated attention pooling and instance-level clustering to
distinguish positive from negative samples. Gated attention, however, cannot fully exploit
the uniformity of class 5 lupus nephritis glomeruli, hindering its ability to achieve opti-
mal efficacy in capturing its consistent patterns. We hypothesize that adding contextual
information among all glomeruli patches will improve the performance. To address this,
we integrate self-attention and Bi-LSTM into the MIL framework, enhancing contextual
understanding among instances (patches) in a WSI.

Suppose, in a WSI bag X, we have N glomerular patches, and the Feature Extractor
f transforms each image z, € R??4%224X3 into a h vector of dimension d € R4, For N
such images, we obtain a matrix H € RV*? (eq: 1). Our feature aggregator can further
be divided into three branches: (1) Gated Attention Pooling, (2) Self-Attention + LSTM
and (3) Instance-level Clustering. In Branch 1, the gated attention block assigns attention

scores A9 = {af,a,...,a%} € RN to every instance (eq: 2), followed by instance-level
clustering using AY as pseudo labels for confident instances (Branch 3).
H = f(X;0) where H={hy,ho,...,hn} (1)

W/ (tanh(Wahi) © o (Wihi))
SoiL W (sanh(Woh]) © o (Wyh]))

N
CY =Y alh (3)
k=1

9 _
ap =

where W,, W}, and W, are trainable parameters, ai can be supposed as positive probabil-
ity of instances. o represents sigmoid function and ©® represents element-wise multiplication.
(9 is the output context vector of Branch 1 (eq: 3).
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In Branch 2, initially, H goes to MHA, yielding contextualized output among instances
(A®). Self-attention (eq: 4) enables context consideration between every instance pair, and
the multi-head mechanism focuses on modeling various such contextual relationships and
dependencies among instances. The attention scores obtained from different heads, ny is a
total number of heads, are concatenated, and a linear transformation is applied to ensure
that the resulting shape matches the input, resulting in R*¢ (eq: 5). To further process this
contextualized information, we employ LSTM, which uses gating mechanisms and outputs
the hidden layer of the last time step R,

KT
afelf = softmax <Q\/d>z ) Vi (4)
k
A= (@M od .. oahw, (5)

where @Q; = H WZQ,K = HWE and V.= HW}Y for the i'" head, are derived using
trainable parameters VVZQ, WiK , VVZ-V, and W, linearly transforms the multi-head outputs.
dy is used for scaling to prevent the dot product from becoming too large, and C® is the
bi-LSTM processed output context vector from Branch 2 on A®.

Furthermore, we use softmax normalized learnable parameters sy and s; to adaptively
aggregate contributions from each pipeline’s output. A scaling learnable parameter - fine-
tunes the overall merged output contribution, introducing an additional degree of freedom
in the weighting process (eq: 6). Inspired by attention principles, this approach facilitates
contextual understanding and dynamic weighting for effective information extraction from
both branches. It draws parallels from multiple layer fusion of contextual embeddings in
ELMO during downstream task (Peters et al., 2018).

logits = v (s0CY + 51C%) (6)

After applying the adaptive aggregation method, a binary classifier with a single neuron
and a sigmoid activation function is used to estimate the probabilities, y, of a slide being pos-
itive. Subsequently, binary cross-entropy loss is computed at the slide level (Branch 1 and
2), while Smooth SVM loss (Lu et al., 2021) is applied for instance-level clustering (Branch
3). The Smooth SVM loss, a generalization of traditional cross-entropy classification loss,
accommodates diverse margin values and temperature scaling strategies, providing flexibil-
ity to mitigate overfitting. The rationale for choosing Smooth SVM loss lies in addressing
potential noise in pseudo-labels, offering robustness in the presence of uncertainties. The
total loss, as per Equation 7, is calculated as the weighted sum of both losses, where H' and
A9 are the subset of H and A9 respectively, § is ground truth and § is a hyper-parameter.

J = B BCE(y,9) + (1 — 3) Smooth-SVM(H’, A%") (7)
3. Results

3.1. Experimentation Details

For a robust evaluation of classification performance, we employed 10-fold cross-validation.
All methods were implemented in PyTorch and trained on a single NVIDIA RTX 3080ti
GPU. The patch size for YOLOv4-based glom detector was set to 6000 x 6000, and the MIL
training involved 50-200 epochs with early stopping. n, = 4, 8 = 0.8, a Bi-LSTM hidden
dimension of 512, and Adam optimizer with lr = le4. Batch size is set to 1 for all models.
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Table 1: Comparing our proposed model (LupusNet) with baselines, averaging results (in
%) over 10-fold cross-validation on test cohort. Input types include GP (Only
Glomeruli Patches) and AP (All Patches).

Model Input Test AUC Test F1 Test ACC
ResNet-101 GP 52.88 44.12 53.23
CLAM-SB AP 57.65 52.22 52.43
CLAM-SB GP 86.00 72.80 75.55

LupusNet (Ours) GP 91.00 77.30 81.11

3.2. Quantitative analysis

We established baselines using a pseudo-labeling approach for lack of detailed glomerulus-
level labels by assigning whole slide labels to all glomeruli and tested models like AlexNet,
ResNet, and DenseNet, with ResNet-101 performing best (1). These experiments under-
scored the challenge of label inconsistency among similar glomeruli in lupus classes 4 and 5,
affecting model accuracy and emphasizing the need for alternative methods in the absence
of precisely labeled datasets.

Afterward, we employed a weakly supervised CLAM single-branched variant (CLAM-
SB) and our proposed LupusNet on the in-house dataset. Results are presented for both
scenarios, wherein we either input all the WSI patches or just the glomeruli patches. The
conclusive findings, as shown in Table 1, demonstrate that LupusNet outperforms all base-
line models. We can empirically observe a significant performance improvement when only
glomeruli patches are provided, consequently reducing noise to the CLAM-SB model. Ad-
ditional observation showed LupusNet outperforming CLAM-SB (GP), by a significant F1-
score improvement for class 5 LN (65.17% to 77.03%), highlighting its efficacy in distin-
guishing the two classes and reducing false positives and enhancing precision.

(a) Class 4 glomeruli (b) Class 5 glomeruli

Figure 2: Comparison of visual features between subtype samples. (a) involves proliferative
changes in the glomeruli, whereas (b) shows thickening of the glomerular basement
membrane
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Figure 3: Attention weights of both branches for a class 5 sample (a) Gated Attention and
(b) Multi-head Attention

Table 2: Ablation study with module variations.
L=LSTM; G=Gated Attention; C=Clustering (Instance level)

Model Test AUC Test F1  Test ACC

LSTM 64.00 56.27 60.00

L+G 81.65 67.00 71.11
L+G+C 85.00 74.91 77.78

LupusNet (Ours) 91.00 77.30 81.11

3.3. Qualitative analysis

Figure 3 represents the interpretability of a test sample, which contains multiple glomerulus
images. It uses attention weight distributions using heatmaps from the two branches of
our model. Here, MHA (Branch 2) focuses on glomeruli patterns, prioritizing context at
the WSI level. This contextualization is crucial for capturing the uniform membranous
patterns of class 5 LN (Figure: 2) and thus highlights the importance of MHA for improved
classification performance compared to relying only on gated attention (Branch 1), which
exhibits a diverse focus necessary for class 4 LN, which shows diffuse proliferation pattern.

4. Ablation Study

In our ablation study, we methodically introduced various architectural components to
evaluate their individual and combined effects on the model’s performance. Beginning
with a basic LSTM model as our starting point, we then integrated Gated Attention and
Instance-level clustering. Each addition led to noticeable improvements in performance, as
shown in Table 2, with our final model, LupusNet, outperforming all other configurations.
This step-by-step process helped us identify the specific contributions of each component
to the model’s overall effectiveness in classifying two LN classes. We further optimized
LupusNet by adjusting the learning rates and the number of Multi-Head Attention (MHA)
blocks (Figure 4).
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Figure 4: Hyperparameter tuning of LupusNet based on the optimized value of learning
rate (left) and number of attention heads (right)

5. Discussion and Conclusion

Our study introduces LupusNet, a MIL-based model for lupus nephritis classification that
uses only slide-level labels, eliminating the necessity for glomeruli-level labels. Due to the
limited data size, other MIL-based models incorporating transformers (Shao et al., 2021)
were deemed sub-optimal for our case. However, we recognized the need for self-attention
among glomeruli for context inclusion. Therefore, our work includes this aspect without
increasing network complexity while retaining interpretability for pathologists. This study
is a valuable reference for pathologists to address inter/intra-variability. Additionally, it
holds significance for researchers studying other diverse renal diseases beyond the specific
focus on LN. It also contributes to renal pathology research by creating a digital whole slide
image dataset. While LupusNet exhibits promising results, there are areas for potential
improvement. Our future work involves improving glomeruli detection models and feature
aggregators, which could extract even better contextual information from glomeruli.

Data Availability Statement: The dataset generated and/or analyzed during the
current study is available from the authors on reasonable request within the terms of the
data use agreement and compliance with ethical and legal requirements.
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