Abstract
The COVID-19 pandemic has prompted an unprecedented global effort to understand and mitigate the spread of the SARS-CoV-2 virus. In this study, we present a comprehensive analysis of COVID-19 in Western New York, integrating individual patient-level genomic sequencing data with a spatially informed agent-based disease Susceptible-Exposed-Infectious-Removed (SEIR) computational model. The integration of genomic and spatial data enables a multi-faceted exploration of the factors influencing the transmission patterns of COVID-19, including population density, movement dynamics, and genetic variations in the viral genomes replicating in New York State (NYS). Our findings shed light on local dynamics of the pandemic, revealing potential hotspots of transmission. Additionally, the genomic analysis provides insights into the genetic heterogeneity of SARS-CoV-2 within a single lineage at a region-specific level. This interdisciplinary approach, bridging genomics and spatial modeling, contributes to a more holistic understanding of COVID-19 dynamics. The results of this study have implications for future public health strategies, guiding targeted interventions and resource allocation to effectively control the spread of similar viruses in the Western New York region.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work was initially funded by a State University of New York Research Foundation pilot project award (COVID202044) to J.A.S. Subsequent work was funded by UBs Genome Environment and Microbiome Community of Excellence and Erie County Department of Health (J.A.S.) and the National Science Foundation PIPP Phase 1 #2200173 (J.A.S and A.T.C)
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability Statement
The agent based SEIR model is shared along with the synthetic population, its social networks at https://figshare.com/projects/SEIR_Western_NY/187872. We do so to allow others to replicate our results and to extend the model as they see fit.