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Abstract 
Recently the critical success index (CSI) has been increasingly discussed and 
advocated as a unitary outcome measure in various clinical situations where large 
numbers of true negatives may influence the interpretation of other more traditional 
outcome measures such as sensitivity and specificity, or when unified interpretation of 
positive predictive value (PPV) and sensitivity (Sens) is needed.  The derivation of 
CSI from measures including PPV has prompted questions as to whether and how CSI 
values may vary with disease prevalence (P), just as PPV estimates are dependent on 
P, and hence whether CSI values are generalizable between studies with differing 
prevalences.  As no detailed study of the relation of CSI to prevalence has been 
undertaken hitherto, the dataset of a previously published test accuracy study of a 
cognitive screening instrument was reinterrogated to address this question.  Three 
different methods were used to examine the change in CSI across a range of 
prevalences, using both Bayes formula and equations directly relating CSI to Sens, 
PPV, P, and to test threshold (Q).  These approaches showed that, as expected, CSI 
does vary with prevalence, but the dependence differs according to the method of 
calculation adopted.  Bayesian rescaling both Sens and PPV generates a concave 
curve, suggesting that CSI will be maximal at a particular prevalence which may vary 
according to the particular dataset. 
 
Keywords: Bayes formula; Binary classification; Critical success index; F measure; 
prevalence 
 

1. Introduction 
Many measures may be derived from the data cells in a 2x2 contingency table.1  
Choosing the optimal measure(s) to describe the outcomes of a study may be 
dependent upon the nature of the available dataset.   
 
For datasets with very large numbers of true negative (TN) outcomes in the base data, 
as seen for example using routine epilepsy data,2 indices such as specificity (Spec), 
negative predictive value (NPV) and overall classification accuracy (Acc), which all 
feature TN values in both numerator and denominator, may be very high, indeed 
approaching values of 1.  This is because the numbers of TN may approach the total 
number of observations (N), and hence swamp the values of the other cells of the 2x2 
contingency table, namely true positive (TP), false positive (FP), and false negative 
(FN). 
 
This circumstance makes it difficult to rank the diagnostic accuracy of the 
corresponding case-ascertainment algorithms based on Spec, NPV, or Acc, as the 
figures are all similarly high.3  In conditions such as dementia,4 motor neurone 
disease,5 and epilepsy,2 systematic reviews of the diagnostic accuracy of routine data 
indicate that the original studies published have largely measured positive predictive 
value (PPV) and Sens without measuring Spec or NPV.  This is because finding true 
negative cases in the community to verify an absent diagnostic code in a routine 
dataset is a challenge for researchers, who often only have permission to study 
populations that have been positively coded with the disease in question.  Making a 
judgment on the optimal case-ascertainment algorithm for a particular condition based 
on either PPV and Sens is challenging because PPV and Sens tend to have an inverse 
relationship,6 so it is difficult to know which measure to prioritise to best indicate 
accuracy.   
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There are other examples in clinical medicine where large numbers of TN may 
complicate the interpretation of more traditional measures such as PPV and Sens, 
including National Institute for Clinical Excellence criteria for 2-week-wait suspected 
brain and CNS cancer referrals,7 polygenic hazard scores,8 and in the evaluation of 
cognitive screening instruments.9  Accordingly, as we have previously indicated, a 
metric is needed which eschews TN and combines PPV and Sens.  As we are not 
aware of such a metric currently in common use in medicine, we have proposed use of 
the critical success index (CSI) for this purpose.  This measure, which has been 
intermittently reinvented over the last century, has been variously known as the ratio 
of verification in the context of forecasting tornadoes,10 and subsequently as the 
Jaccard index or similarity coefficient (J),11 the threat score,12 the Tanimoto index,13 
CSI,14 and most recently as F*.15,16   
 
In terms of the base data of the 2x2 contingency table: 
 

CSI = TP/(TP + FP + FN) 
= TP/(N – TN) 

 
CSI may also be expressed in terms of PPV and Sens: 
 

CSI = 1/[(1/PPV) + (1/Sens) – 1]    Eqn. 1 
 
We have demonstrated the advantages of using CSI to complement traditional 
diagnostic accuracy measures using real-word data in several conditions.3,9,17 
 
A question often raised about CSI concerns how its values relate to prevalence, P, the 
probability of a positive diagnosis.  It is well-known that values of PPV vary with P, 
hence are sensitive to class imbalance and may therefore not be generalizable between 
studies.18  Since, as shown in Eqn.1, CSI may be expressed in terms of PPV, a similar 
expectation will hold for CSI.  Likewise, following from Eqn.1, it may be asked 
whether CSI values track predominantly with Sens or PPV and whether this changes 
with P. 
 
Here we initially address two possible methods to illustrate the dependence of CSI on 
P, as previously suggested:17 firstly using Bayes formula to recalculate PPV and then 
to recalculate CSI (hence a two-step method); and secondly using equations in which 
CSI is expressed directly in terms of Sens, PPV, P, and the test threshold or 
probability of a positive test, denoted Q.  In addition, we introduce a third method in 
which Sens is also rescaled, by using Bayes formula to recalculate NPV and hence 
Sens.  This then allows CSI values to be recalculated using both rescaled PPV and 
Sens.  
 

2. Materials and methods 
 
2.1 Dataset  
The dataset from a screening test accuracy study19 of a cognitive screening 
instrument, the Mini-Addenbrooke’s Cognitive Examination (MACE),20 was re-
examined.  In this study, MACE was administered to consecutive patient referrals (N 
= 755) to a dedicated cognitive disorders clinic located in a secondary care 
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neurosciences centre.  Subjects gave informed consent and the study was approved by 
the institute’s committee on human research (Walton Centre for Neurology and 
Neurosurgery Approval: N 310). 
 
In this cohort, 114 patients received a final criterial diagnosis (DSM-IV) of dementia 
(P = 0.151).19  The original analysis of the dataset established the optimal MACE cut-
off for the diagnosis of dementia to be ≤20/30 (calculated from the maximal value for 
the Youden index), where TP = 104, FP = 188, FN = 10, and TN = 453.  Hence, at 
this cut-off, Sens = 0.912, Spec = 0.707, PPV = 0.356, and NPV = 0.978. 
 
From these base data, values of CSI across a range of P values (0.1 to 0.9, in 0.1 
increments) were calculated using three different methods. 
 
2.2 Method 1: CSI recalculated via Bayes formula for PPV 
As Sens and Spec are relatively impervious to change in P, being strictly columnar 
ratios in the 2x2 contingency table, PPV may be recalculated for different values of P 
using Bayes formula: 
 

PPV = Sens.P/(Sens.P) + [(1 – Spec).P']   Eqn.2 
 
where P' = (1 – P).  Using the base data (Sens = 0.912, Spec = 0.707) values of PPV 
were calculated for P values ranging from 0.1 to 0.9.   
 
The second step in this method used the recalculated PPV values at different 
prevalences to recalculate CSI values according to its relation to PPV and Sens (Eqn. 
1).   
 
Hence this approach requires the sequential application of Eqn.2 and Eqn.1 to the 
base data.  Results were displayed in a table and graphically. 
 
2.3 Method 2: CSI recalculated via its relation to Sens, PPV, P, and Q 
The dependence of CSI on P, the probability of a positive diagnosis, may be directly 
expressed in terms of Sens, PPV, P, and test threshold, the probability of a positive 
test (Q):1 
 

CSI = 1/[(P + Q)/Sens.P] – 1     Eqn.3  
 
= 1/[(P + Q)/PPV.Q] – 1    Eqn.4 

 
Hence, the dependence of CSI on P may be addressed by calculating its value for 
different values of P at chosen values of Q.  Q ranges from 0-1, where Q = 0 equates 
to a test threshold at which there are no positives (neither TP nor FP), and Q = 1 
equates to a threshold at which there are no negatives (neither TN nor FN).  When Q 
= 0.5, in a balanced data set (P = 0.5) there are equal numbers of false positives and 
false negatives. 
 
Using the base data (Sens = 0.912, PPV = 0.356), values of CSI were calculated for P 
values ranging from 0.1 to 0.9 to illustrate the dependence of CSI on P.  Three 
conditions were examined: Q = 0.1 (very few false positives); Q = 0.5 (equal numbers 
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of false positives and false negatives, if the dataset was balanced); and Q = 0.9 (very 
few false negatives).   
 
Hence this approach requires the application of either Eqn.3 or Eqn.4 to the base data.  
Results were displayed in tables and graphically. 
 
2.4 Method 3: CSI recalculated via both rescaled PPV and Sens 
There is also a method to recalculate CSI using not only rescaled PPV, as in Method 
1, but also rescaled Sens. 
 
Bayes formula may be used to calculate different values of NPV across the range of P 
values: 
 

NPV = Spec.P'/(Spec.P') + [(1 – Sens).P]   Eqn.5 
 
This allows recalculation of Sens at different P values using the equivalence shown by 
Kraemer, such that:21 
 

(Sens – Q)/Q' = (NPV – P')/P 
 
Rearranging, values for Sens at a fixed Q may be calculated at variable P:1 
 

Sens = [Q'.(NPV – P')/P] + Q      Eqn.6 
 
Hence this approach requires the application of Eqn.5 and Eqn.6 to the base data 
(Spec = 0.707; Q = 0.387 at optimal MACE cut-off of ≤20/30) to recalculate NPV and 
Sens respectively. 
 
With the rescaled Sens and the previously rescaled PPV (Table 1), it is then possible 
to recalculate CSI (Eqn.1).  Results were displayed in a table and graphically. 
 

3. Results 
 
3.1 Method 1: CSI recalculated via Bayes formula for PPV 
Using Bayes formula (Eqn.2), both the recalculated values of PPV and CSI increased 
with increasing P (Table 1; Figure 1A).  This confirms the expectation evident in 
Bayes formula that CSI, like PPV, is proportional to P in this formulation.  This 
implies that the highest values of CSI will occur when P is high. 
 
3.1 Method 2: CSI recalculated via its relation to Sens, PPV, P, and Q 
Using Eqn.3 (fixed Sens value), CSI increased with increasing P (Tables 2, 3, and 4, 
3rd column; Figure 1B).  This implies that, with a fixed Sens, the highest values of 
CSI will occur when P is high. 
 
Using Eqn.4 (fixed PPV value), CSI decreased with increasing P (Tables 2, 3 and 4, 
4th column; Figure 1C).  This implies that, with a fixed PPV, the highest value of CSI 
will occur when P is low. 
 
3.3 Method 3: CSI recalculated via rescaled PPV and Sens 
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Using this method, neither PPV nor Sens is fixed, only Q.  The rescaled values 
(Figure 1D) show Sens decreasing with increasing P (Table 5, column 4) and PPV 
increasing with increasing P (Table 5, column 3; and as per Table 1 and Figure 1A).   
 
Combining these rescaled values as per Eqn.1, CSI showed a concave curve when 
plotted against P (Table 5 column 5, Figure 1E).  CSI values approximated PPV at 
low values of P (as in Figure 1A), and approximated Sens values at high values of P 
(compare Figures 1D and 1E). 
 

4. Discussion 
This study has shown that the dependence of CSI on P differs according to the method 
of calculation adopted.   
 
Using either the method via Bayes formula to rescale PPV (Eqn.2) or the direct 
method based on Sens (Eqn.3), CSI values increased with increasing P.  In these 
methods, the value of Sens is fixed but the product (Sens.P) varies with P.  Hence CSI 
values increase as P increases (Figures 1A and 1B). 
 
In contrast, using the direct method based on PPV (Eqn. 4), CSI values decrease as P 
increases.  In this method the value of PPV is fixed, and hence the product (PPV.Q) is 
also fixed for each of the three chosen values of Q (Tables 2, 3, and 4, 4th column).  
Hence the only changing variable in this method of calculation is (P + Q), which is 
inversely proportional to CSI (Eqn.4).  This inverse relation is also expected on the 
basis of the observation that test Sens and PPV change in opposite directions with 
change in test cut-off.6  This change in opposite directions was empirically observed 
in the previous analysis of the dataset used in this study.19 
 
Using the third method, in which both PPV and Sens are rescaled via Bayes formula, 
the relationship between CSI and P was shown to be a concave curve.  This suggests 
that CSI will be maximal at a particular prevalence which may vary according to the 
particular dataset under examination.  It was previously shown, using the same 
dataset, that another unitary measure based on Sens and PPV, the F measure (the 
harmonic mean of Sens and PPV) showed a concave curve when plotted against P, 
with a maximum value at P = 0.7 but falling away at both higher and lower values of 
P.  The finding of maximal CSI at P = 0.7 in this dataset was previously predicted 
since CSI and F share a monotonic relationship.1  The findings suggest that, at least in 
this cohort, CSI values follow PPV at low values of P, and follow Sens at high values 
of P, but this needs further investigation in other patient cohorts. 
 
This concave relationship is simply a reflection of the fact that CSI is dependent on 
both P and Q, as per Eqn.3 and Eqn.4.  Just as paired outcome measures may be 
dependent on either P (PPV, NPV, and their complements) or Q (Sens, Spec, and their 
complements), so unitary measures are often functions of both P and Q.  This is the 
case not only for CSI but also for F measure, Youden index (Y), predictive summary 
index (PSI), Matthews’ correlation coefficient (MCC), and the harmonic mean of Y 
and PSI (HMYPSI) (Table 6).  All showed concave relationships to P in this dataset.1    
 
Hence, we suggest that there is no simple answer to the question of how CSI is 
dependent on P, other than that it is, and this depends on the method of calculation 
chosen to examine the relationship.  In real-world situations, the dependence of CSI 
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on P is not, and cannot be, independent of Q.  Thus, conclusions based on outcome 
values of CSI (and indeed F) may be dataset-specific, and not easily translated or 
generalised to other situations, as is recognised to be necessarily the case for PPV.  
Moreover, pragmatically this is also the case for Sens since, although it is 
algebraically unrelated to P as a strictly columnar ratio in the 2x2 contingency table, it 
will vary according to the heterogeneity of clinical populations (ditto Spec),22 as is 
implied in the dependence of the Youden index on P (Table 6). 

Declarations of interest 

None of the authors have any conflict of interests to disclose. 

Funding 

This research received no external funding. 

Data availability statement 

Base data are available from the authors of the original study.19  
 
References 

1. Larner AJ. The 2x2 matrix. Contingency, confusion, and the metrics of binary 
classification (2nd edition). London: Springer, 2024 (in press). 

2. Mbizvo GK, Bennett KH, Schnier C, Simpson CR, Duncan SE, Chin RFM. 
The accuracy of using administrative healthcare data to identify epilepsy 
cases: A systematic review of validation studies. Epilepsia 2020; 61: 1319-
1335. 

3. Mbizvo GK, Bennett KH, Simpson CR, Duncan SE, Chin RFM, Larner AJ. 
Using Critical Success Index or Gilbert Skill Score as composite measures of 
positive predictive value and sensitivity in diagnostic accuracy studies: 
weather forecasting informing epilepsy research. Epilepsia 2023; 64: 1466-
1468. 

4. Wilkinson T, Ly A, Schnier C, et al. Identifying dementia cases with routinely 
collected health data: A systematic review. Alzheimers Dement 2018; 14: 
1038-1051. 

5. Horrocks S, Wilkinson T, Schnier C, et al. Accuracy of routinely-collected 
healthcare data for identifying motor neurone disease: A systematic review. 
PLoS One 2017; 12: e0172639. 

6. Wang H, Wang B, Zhang X, Feng C. Relations among sensitivity, specificity 
and predictive values of medical tests based on biomarkers. General 
Psychiatry 2021; 34: e100453. 

7. Mbizvo GK, Larner AJ. Isolated headache is not a reliable indicator for brain 
cancer. Clinical Medicine 2022; 22(1): 92-93. 

8. Mbizvo GK, Larner AJ. Re: Realistic expectations are key to realising the 
benefits of polygenic scores. BMJ https://www.bmj.com/content/380/bmj-
2022-073149/rapid-responses  (Published 11 March 2023). 

9. Larner AJ. Assessing cognitive screening instruments with the critical success 
index. Progress in Neurology and Psychiatry 2021; 25(3): 33-37. 

10. Gilbert GK. Finley’s tornado predictions. American Meteorological Journal 
1884; 1: 166-172. 

11. Jaccard P. The distribution of the flora in the alpine zone. New Phytologist 
1912; 11: 37-50. 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 4, 2023. ; https://doi.org/10.1101/2023.12.03.23299335doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.03.23299335
http://creativecommons.org/licenses/by/4.0/


 8

12. Palmer WC, Allen RA. Note on the accuracy of forecasts concerning the rain 
problem. U.S. Weather Bureau manuscript: Washington, DC., 1949. 

13. Tanimoto TT. An elementary mathematical theory of classification and 
prediction. Internal IBM Technical Report 17th November 1958. 
http://dalkescientific.com/tanimoto.pdf 

14. Schaefer JT. The critical success index as an indicator of warning skill. 
Weather Forecasting 1990; 5: 570-575. 

15. Hand DJ, Christen P, Kirielle N. F*: an interpretable transformation of the F 
measure. Machine Learning 2021; 110(3): 451-456. 

16. Mbizvo GK, Larner AJ. F*, an interpretable transformation of the F measure, 
equates to the critical success index. Preprints.org 2023, 2023090556. 
https://doi.org/10.20944/preprints202309.0556.v1 

17. Mbizvo GK, Simpson CR, Duncan SE, Chin RFM, Larner AJ. Critical success 
index or F measure to validate the accuracy of administrative healthcare data 
identifying epilepsy in deceased adults in Scotland. Submitted. 

18. Zimmerman M. Positive predictive value: a clinician’s guide to avoid 
misinterpreting the results of screening tests. Journal of Clinical Psychiatry 
2022; 83: 22com14513. 

19. Larner AJ. MACE for diagnosis of dementia and MCI: examining cut-offs and 
predictive values. Diagnostics (Basel) 2019; 9: E51. 

20. Hsieh S, McGrory S, Leslie F, Dawson K, Ahmed S, Butler CR, Rowe JB, 
Mioshi E, Hodges JR. The Mini-Addenbrooke’s Cognitive Examination: a 
new assessment tool for dementia. Dementia and Geriatric Cognitive 
Disorders 2015; 39: 1-11. 

21. Kraemer HC. Evaluating medical tests. Objective and quantitative guidelines. 
Newbery Park, California: Sage; 1992. 

22. Leeflang MM, Rutjes AW, Reitsma JB, Hooft L, Bossuyt PM. Variation of a 
test’s sensitivity and specificity with disease prevalence. CMAJ 2013; 185: 
E537-E544. 

 
 

Figure legend 
 
Figure 1: Panel of line graphs showing study results  

Legend:  

(A) Plot of CSI (♦) and PPV (▲) (y axis) for dementia diagnosis at fixed Q (Q = 
0.387; MACE cut-off ≤20/30) versus prevalence P (x axis) calculated by sequential 
application of Eqn.2 (Bayes formula) and Eqn.1 
 
(B) Plot of CSI (y axis) for dementia diagnosis at fixed Sens (0.912) and variable Q = 
0.1 (♦), = 0.5 (▲), = 0.9 (*) versus prevalence P (x axis) calculated using Eqn.3 
 
(C) Plot of CSI (y axis) for dementia diagnosis at fixed PPV (0.356) and variable Q = 
0.1 (♦), = 0.5 (▲), = 0.9 (*) versus prevalence P (x axis) calculated using Eqn.4 
 
(D) Plot of Sens (♦) and PPV (▲) (y axis) for dementia diagnosis at fixed Q (Q = 
0.387, MACE cut-off ≤20/30) versus prevalence P (x axis) calculated respectively by 
application of Eqn.6 and Eqn.2 
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(E) Plot of CSI (y axis) for dementia diagnosis at fixed Q (Q = 0.387, MACE cut-off 
≤20/30) versus prevalence P (x axis), combining rescaled Sens and PPV (Figure 1D) 
 
 
 
 
Table 1: Values of PPV and CSI for dementia diagnosis at fixed value of Q 
(MACE cut-off of ≤20/30) at various prevalence levels 
 
 

 

MACE cut-off ≤20/30 
Sens = 0.912 

P P' Recalculated PPV (from 
Eqn.2) 

Recalculated CSI (from 
Eqn.1) 

0.1 0.9 0.257 0.251 
0.2 0.8 0.437 0.420 
0.3 0.7 0.571 0.542 
0.4 0.6 0.675 0.634 
0.5 0.5 0.757 0.705 
0.6 0.4 0.824 0.763 
0.7 0.3 0.879 0.810 
0.8 0.2 0.926 0.850 
0.9 0.1 0.966 0.883 
 
Table 2: Values of CSI for dementia diagnosis at fixed value of Q = 0.1 and either 
Sens (0.912) or PPV (0.356) at various prevalence levels 
 
P P + Q CSI (Eqn.3) Sens = 

0.912 
CSI (Eqn.4) PPV = 0.356 

0.1 0.2 0.838 0.217 
0.2 0.3 1.55 0.135 
0.3 0.4 2.16 0.098 
0.4 0.5 2.70 0.077 
0.5 0.6 3.17 0.063 
0.6 0.7 3.58 0.054 
0.7 0.8 3.95 0.047 
0.8 0.9 4.28 0.041 
0.9 1.0 4.58 0.037 
 
Table 3: Values of CSI for dementia diagnosis at fixed value of Q = 0.5 and either 
Sens (0.912) or PPV (0.356) at various prevalence levels 
 
P P + Q CSI (Eqn.3) Sens = 

0.912 
CSI (Eqn.4) PPV = 0.356 

0.1 0.6 0.179 0.421 
0.2 0.7 0.352 0.341 
0.3 0.8 0.520 0.286 
0.4 0.9 0.682 0.247 
0.5 1.0 0.838 0.217 
0.6 1.1 0.990 0.193 
0.7 1.2 1.14 0.174 
0.8 1.3 1.28 0.159 
0.9 1.4 1.42 0.146 
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Table 4: Values of CSI for dementia diagnosis at fixed value of Q = 0.9 and either 
Sens (0.912) or PPV (0.356) at various prevalence levels 
 
P P + Q CSI (Eqn.3) Sens = 

0.912 
CSI (Eqn.4) PPV = 0.356 

0.1 1.0 0.100 0.473 
0.2 1.1 0.199 0.412 
0.3 1.2 0.295 0.365 
0.4 1.3 0.390 0.328 
0.5 1.4 0.483 0.297 
0.6 1.5 0.574 0.272 
0.7 1.6 0.664 0.251 
0.8 1.7 0.752 0.233 
0.9 1.8 0.838 0.217 
 
Table 5: Values of recalculated PPV (as per Table 1), Sens, and CSI for dementia 
diagnosis at various prevalence levels 
 
P P' Recalculated PPV 

(from Eqn.2) 
Recalculated Sens 
(from Eqn.6) 

Recalculated CSI (from 
Eqn.1) 

0.1 0.9 0.257 0.914 0.251 
0.2 0.8 0.437 0.908 0.418 
0.3 0.7 0.571 0.896 0.536 
0.4 0.6 0.675 0.884 0.620 
0.5 0.5 0.757 0.865 0.677 
0.6 0.4 0.824 0.840 0.712 
0.7 0.3 0.879 0.803 0.723 
0.8 0.2 0.926 0.746 0.704 
0.9 0.1 0.966 0.640 0.625 
 
Table 6: Summary of dependence of unitary measures on P and Q 

Unitary measure Dependence on P and Q 
Critical success index  
(CSI) 

CSI = 1/[(P + Q)/Sens.P] – 1 
CSI = 1/[(P + Q)/PPV.Q] – 1 

F measure  
(F) 

F = 2.Sens.P/(Q + P) 
F = 2.PPV.Q/(Q + P) 

Youden index  
(Y) 

Y = (Sens – Q)/P' 
Y = (Spec – Q')/P 
Y = (Q – Q2/P – P2).PSI 

Predictive summary index  
(PSI) 

PSI = (PPV – P)/Q' 
PSI = (NPV – P')/Q 
PSI = (P – P2/Q – Q2).Y 

Matthews’ correlation coefficient 
(MCC) 

MCC = √(P – P2/Q – Q2).Y 
MCC = √(Q – Q2/P – P2).PSI 

Harmonic mean of Y and PSI 
(HMYPSI)   

HMYPSI = 2/(1/Y).[(1 + (Q – Q2)/(P – P2)] 
HMYPSI= 2/(1/PSI).[(P – P2)/(Q – Q2) + 1] 
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