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Abstract 1 

Background: Pregnancy alters many physiological systems, including the maternal gut 2 

microbiota. Diet is a key regulator of this system and can alter the host immune system 3 

to promote inflammation. Multiple perinatal disorders have been associated with 4 

inflammation, maternal metabolic alterations, and gut microbial dysbiosis, including 5 

gestational diabetes mellitus, preeclampsia, preterm birth, and mood disorders. 6 

However, the effects of high inflammatory diets on the gut microbiota during pregnancy 7 

have yet to be fully explored.  8 

 9 

Objective: To use a systems-based approach to characterize associations among 10 

dietary inflammatory potential, a measure of diet quality, and the gut microbiome during 11 

pregnancy. 12 

 13 

Methods: Forty-nine pregnant persons were recruited prior to 16 weeks of gestation. 14 

Participants completed a food frequency questionnaire (FFQ) and provided fecal 15 

samples. Dietary inflammatory potential was assessed using the Dietary Inflammatory 16 

Index (DII) from FFQ data. Fecal samples were analyzed using 16S rRNA amplicon 17 

sequencing. Differential taxon abundance with respect to DII score were identified, and 18 

microbial metabolic potential was predicted using PICRUSt2.  19 

 20 

Results: Inflammatory diets were associated with decreased vitamin and mineral intake 21 

and dysbiotic gut microbiota structure and predicted metabolism. Gut microbial 22 

compositional differences revealed a decrease in short chain fatty acid producers such 23 
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as Faecalibacterium, and an increase in predicted vitamin B12 synthesis, methylglyoxal 24 

detoxification, galactose metabolism and multi drug efflux systems in pregnant 25 

individuals with increased DII scores.  26 

Conclusions: Dietary inflammatory potential was associated with a reduction in the 27 

consumption of vitamins & minerals and predicted gut microbiota metabolic 28 

dysregulation. 29 

  30 
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Introduction 33 

In pregnancy, an under or over supply of nutrients can have deleterious impacts on both 34 

maternal and fetal health. For instance, lack of adequate folic acid intake during 35 

pregnancy is one of the leading causes of neural tube defects during fetal development 36 

(1). Similarly, iron utilization increases during the course of pregnancy, and inadequate 37 

supply is associated with poor fetal outcomes, including intrauterine growth restriction 38 

and low birth weight (2). Conversely, oversupply of dietary nutrients, including 39 

carbohydrates and saturated fats, common in Western diets, are associated with 40 

chronic inflammation and can lead to obstetric complications, from gestational diabetes 41 

mellitus (GDM) (3,4) to preterm birth (5). This is especially important for minoritized 42 

women of color who may have poor nutritional intake due to structural inequalities 43 

(6,7,8) and consequently, higher burden of adverse pregnancy outcomes (9). Thus, 44 

understanding the pro-inflammatory nature of diets could serve to reduce negative 45 

obstetrics and delivery outcomes (10).  46 

 47 

Diet is a major regulator of the gut microbiota (11,12). The gut microbiota encompasses 48 

the bacteria, fungi, viruses, and protists living inside the human gastrointestinal tract. It 49 

is estimated that the combined genomes of all gut bacteria comprise >5 million genes 50 

(13), with the potential to metabolize a vast number of different substrates. Over or 51 

under supply of dietary nutrients (such as fats or fiber) can provide competitive 52 

advantages or disadvantages for different gut microbial species based on their 53 

individual metabolic capabilities (14,15). The dynamic nature of pregnancy alters almost 54 

every system in the body, including the maternal gut microbiota (16) and immune 55 
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system (17), which adapts in a tightly regulated clock to maintain immune protection of 56 

the mother while simultaneously avoiding autoimmune rejection of the growing fetus 57 

(17,18).  The structure of the gut microbiota changes as the pregnancy progresses (19-58 

21). In fact, transplantation of gut microbiota from pregnant individuals into germ-free 59 

animals, renders common pregnancy phenotypes of obesity, insulin resistance (19,22), 60 

and adaptations in immunity (23).  Poor diet quality leading to a pro-inflammatory state 61 

can alter the normal dynamic changes of the gut microbiota (14) and immune system 62 

during pregnancy (24), increasing risk of common perinatal complications, including 63 

GDM (25), iron deficiency (26), and mood disorders (27). It is thus essential to 64 

understand how maternal diet quality during pregnancy impacts the gut microbiota.  65 

 66 

The Dietary Inflammatory Index (DII) is a literature-derived population-based index to 67 

quantify the inflammatory potential of diets among diverse populations (28). The Index 68 

was developed by leveraging global dietary studies to assign inflammatory effect scores 69 

(S) to common dietary nutrients based on their ability to increase or decrease pro-70 

inflammatory biomarkers, such as cytokines IL-1β, IL-4, IL-6, and IL-10 (28-30). 71 

Previous studies have shown DII is positively associated with inflammatory markers 72 

during pregnancy (31), increased rates of cesarean delivery in obese mothers (32) and 73 

decreased fetal growth (33). Furthermore, DII has also been negatively linked with 74 

microorganisms that produce short-chain fatty acids (SCFAs), which are beneficial anti-75 

inflammatory metabolites (34-37). Thus, the normal gut microbial compositional 76 

changes occurring during the gestational period may be negatively altered by poor diet 77 
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quality, which could be assessed by the DII score, and may mediate obstetric 78 

complications.  79 

 80 

Dysbiosis refers to the imbalance in the gut microbiota, where the equilibrium between 81 

beneficial and harmful microorganisms is disrupted by factors such as poor diet, 82 

antibiotics, or illness (25). Microbial dysregulation, closely related to dysbiosis, 83 

describes when the regulation of these microbial populations is disturbed, leading to 84 

health issues (27) which can manifest as an impaired immune response or altered 85 

metabolic processes (21). Both dysbiosis and microbial dysregulation are crucial 86 

concepts in understanding conditions like obesity and gestational diabetes, where the 87 

gut microbiota plays a significant role in disease progression or mitigation (21). 88 

Understanding how diet regulates the gut microbiota during pregnancy could potentially 89 

lead to avenues of early interventions to reduce risk of pregnancy comorbidities 90 

associated with systemic inflammation. Here, we aim to assess the relationship 91 

between dietary inflammatory potential and the maternal gut microbiota during the first 92 

trimester of pregnancy in a cohort mostly composed of minoritized women of color living 93 

in a large diverse urban community in the United States.  94 

 95 

Methods 96 

Participant Recruitment 97 

This work is a secondary data analysis of a longitudinal cohort study (MoMent) in which 98 

participants were recruited from the outpatient obstetrics clinics at a public university 99 

hospital, the University of Illinois Chicago (Chicago, IL, USA), from 2018 to 2020 (38). 100 
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This study was approved by the University of Illinois Chicago Institutional Review Board 101 

(IRB #2014-0325). Written informed consent was obtained prior to study enrollment and 102 

sample collection. To be eligible for the study, participants had to be less than 16 weeks 103 

pregnant and English speaking. Women were excluded for the following criteria:  less 104 

than 18 or over 64 years of age, current multi-gestational pregnancy, a prior history of 105 

gastrointestinal surgeries, oral antibiotic, antiviral, or antifungal use in the last 6 months, 106 

use of medication or supplements to treat any chronic disorder (e.g., diabetes, 107 

hypertension, mood disorders), history of substance abuse (excluding marijuana, 108 

alcohol and tobacco, self-report) within the last 6 months, use of in vitro fertilization 109 

treatments for current pregnancy, active diagnosis of cancer, HIV or eating disorders or 110 

chronic diarrhea within the last 6 months. For this secondary study, we selected 111 

participants who completed a diet food frequency questionnaire before 28 gestational 112 

weeks and provided a fecal sample at their first study visit (< 16 gestational weeks), 113 

rendering a total of 49 subjects.  114 

Stool Collection 115 

Study participants self-collected rectal swabs (n=44), avoiding touching the rectal tissue, 116 

or provided stool samples (n=5) for gut microbiota assessment. Stool samples were 117 

homogenized and aliquoted in cryogenic vials. Rectal swabs and aliquoted stool 118 

samples were stored at -80°C before being sent for 16S rRNA amplicon sequencing. 119 

Biological samples were collected with an average estimated gestational age of 10.9 ± 3 120 

weeks.  121 

Dietary Assessment  122 
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Participants completed one of two validated FFQs: Vioscreen (n=25) (39) or the Diet 123 

History Questionnaire II (DHQII) (n=24) (40) with an average estimated gestational age 124 

of 14.7 ± 5.9 weeks. Participants were asked about the previous month of intake. 125 

Vioscreen was completed electronically at home by participants, with some receiving 126 

calls from research staff to complete the survey. DHQII was completed in-person with a 127 

certified registered dietitian within an average of 4.4 ± 5.5 weeks of microbiome sample 128 

collection. The Dietary Inflammatory Index (DII) was calculated using the DII 129 

components common to both FFQs, a total of twenty-seven variables (60% of total DII 130 

parameters) which is within the DII’s developer’s suggested limit (28). Individuals were 131 

checked to ensure daily caloric intake < 500 or > 5,000 kcal/day). These DII variables 132 

included were daily intake of alcohol (g), vitamin B12 (μg), vitamin B6 (mg), β-carotene 133 

(μg), caffeine (g), carbohydrates (g), cholesterol (mg), energy (kcal), total fat (g), fiber 134 

(g), folic acid (μg), iron (mg), magnesium (mg), monounsaturated fatty acids (myristoleic 135 

acid, MUFA 14:1) (g), niacin (mg), total protein (g), polyunsaturated fatty acids (PUFA) 136 

(g), riboflavin (mg), saturated fat (g), selenium (μg), thiamin (mg), trans-saturated fat (g), 137 

vitamin A (retinol equivalents), vitamin C (mg), vitamin D (μg), vitamin E (mg), and zinc 138 

(mg). Individual DII scores were calculated using (eq. 1):  139 

 140 

 ���� � �∑ ���� ��������
��

	
 � 2  1	 � �
�
���                                    (eq.1) 141 

  142 

where n represents the total number of common DII parameters between VioScreen 143 

and DHQII; �xi is the mean daily intake of food parameter i obtained from the FFQ; �yi is 144 

the global mean (average daily intake across global populations) and; ��  is the global 145 
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standard deviation of parameter i both derived from the reference table; � is the 146 

cumulative distribution function; and S represents the inflammatory effect score. Scores 147 

can range from −8.87 to +7.98 with the latter being the most inflammatory (28). After 148 

calculating DII scores for each participant, individuals were grouped into tertiles. 149 

Differences in patient demographics by DII tertile were assessed using Chi-square 150 

(qualitative) or ANOVA (quantitative). Correlations among DII parameters (continuous 151 

scale) were identified using Spearman’s correlation using energy corrected nutritional 152 

values. Energy correction was performed by scaling each individual's food parameter by 153 

their reported daily caloric intake. Dimensionality reduction Principal Component 154 

Analysis (PCA) was performed on DII parameters to identify the key nutrients that drive 155 

DII scores.  Differences in nutrient parameters by tertile were assessed using ANOVA 156 

and between Tertile 1 & Tertile 2/3 using students t-test. All analysis were completed in 157 

R.  158 

 159 

Microbiota Assessment 160 

Rectal and fecal samples underwent 16S rRNA amplicon sequencing in four different 161 

batches at the University of Chicago (Chicago, IL, US) and at the University of California 162 

San Diego (San Diego, CA, US) together with control samples to account for possible 163 

reactant and environmental contaminations. Forward raw FASTQ sequences were 164 

processed using the DADA2 pipeline independently using default parameters (41) and 165 

passed to the R package phyloseq (42). After primer removal, reads were truncated to 166 

150 base pairs, denoised using standard parameters, and chimeras were removed. 167 

Taxonomical assessment of the trimmed, cleaned reads was performed using the Silva 168 
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reference database version 132 (43). Contaminating amplicon sequence variances 169 

(ASV) found in blank controls were removed from each batch using the prevalence 170 

method in the R decontam package (44). A threshold of 0.5 was used to identify 171 

contaminants that were more prevalent in negative controls than in clinical samples. 172 

Samples with library size below 10 reads were excluded from downstream analysis. 173 

Subsequently, batch-effects were removed using the R package ComBat-seq (45). The 174 

count table and taxonomic assignments for each batch were then merged, keeping all 175 

the Amplicon Sequencing Variants (ASVs). ASVs with a relative abundance less than 176 

1% relative to sample library size were removed from downstream analysis. After 177 

prevalence filtering, taxa counts were normalized using cumulative sum scaling (CSS) 178 

(46). Alpha diversity was calculated using the Shannon (47) and Simpson indexes (48). 179 

Statically significant differences in mean alpha diversity between DII tertiles were 180 

assessed using Wilcoxon rank sum test (49). Beta diversity was determined with Bray-181 

Curtis (50) and unweighted, normalized UniFrac distance (51). Significant differences in 182 

beta-diversity distances by DII scores were assessed using PERMANOVA (52) 183 

correcting for participant BMI, gestational weeks (EGA), food frequency questionnaire 184 

type (DHQII or Vioscreen), sample type (stool or rectal) and maternal age. Associations 185 

between DII and CSS-normalized ASVs were identified by fitting a zero-inflated 186 

Gaussian model with the R package metagenomeSeq (53). Models were adjusted by 187 

the same covariates as before. Multiple comparisons were corrected using the 188 

Benjamini-Hochberg method (54). Finally, gut metabolic potential was predicted via 189 

PICRUSt 2.0 (Phylogenetic Investigation of Communities by Reconstruction of 190 

Unobserved States) (55). Associations between metabolic pathways, microbial 191 
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enzymes and DII scores were assessed with zero-inflated Gaussian models, corrected 192 

by the same covariates as above and multiple comparisons were adjusted using the 193 

Benjamin-Hochberg’s method. Gene set enrichment analysis (GSEA) was performed 194 

using all microbial enzymes, identified as significant before FDR adjustment using the R 195 

package MicrobiomeProfiler (56). Finally, associations among the identified enzymes 196 

and each food parameter used in DII estimation were quantified with zero-inflated 197 

Gaussian models, corrected by the same covariates as above and multiple comparisons 198 

were adjusted using Benjamin-Hochberg’s method. A total of 27 models were fit with Z-199 

scored energy corrected food parameters per subject as the outcome and microbial 200 

enzymes as predictors.   201 

 202 

Results 203 

Our sample was composed of minoritized women of color with a large percentage 204 

consuming a vitamin depleted pro-inflammatory diet.  205 

A total of 49 participants completed a FFQ and provided a fecal sample. The study 206 

cohort was primarily comprised of non-Hispanic Black (44%) and Hispanic (17%) 207 

pregnant persons with an average estimated gestational age of 10.9 ± 3 weeks at fecal 208 

sample collection, average maternal age of 29 ± 6 years, and 73% reporting an annual 209 

household income below $31,000 per year (Table 1). Notably, most participants 210 

reported use of Federal Aid Health Insurance (75.5%), a proxy for low socioeconomic 211 

status (57). A similar number of participants completed the Vioscreen (n=25) and DHQII 212 

(n=24) FFQs. Based on the 27 food parameters common between both FFQs (60% of 213 

total DII parameters), DII scores were spread across low and higher inflammatory 214 
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scores with the lowest tertile (Tertile 1) mean of -2.3 (± 0.9) and highest (Tertile 3) mean 215 

DII of 3.4 (± 0.5) (Table 1). All DII scores were within the normal limits specified by the 216 

DII score authors (29). Socio-demographic characteristics were similar across all three 217 

groups (Table 1, p > 0.05). A less inflammatory diet was associated with higher 218 

vitamin B12, B6, A, niacin, iron, and zinc. (Table 2, p < 0.05). These DII parameters 219 

were positively associated with each other (Figure 1, p < 0.05). Of the nutrients used to 220 

calculate the DII score, the biggest contributors were those negatively associated with 221 

DII (Figure 1, p < 0.05). 222 

 223 

Gut microbiota composition and predicted metabolic potential were associated 224 

with proinflammatory diets in early pregnancy.  225 

There were no statistically significant differences in alpha or beta diversity by DII tertile 226 

(Fig. S1A-D, p-value > 0.05). A total of 18 ASVs were identified as differentially 227 

abundant in terms of DII score (Table S1, false discovery rate (fdr)-adjusted p-value < 228 

0.05). Among the top 10 ASVs, those mapped to Solobacterium moorei, Gemella 229 

asaccharolytica, Gardnerella vaginalis, Atopobium vaginae and unclassified members of 230 

the Eggerthellaceae family and the Corynebacterium genera, were positively associated 231 

with DII (Fig. 2A, adjusted p < 0.05), while those mapped to Parabacteroides distasonis, 232 

unclassified members of the genus Faecalibacterium, Prevotella, and Clostridium sensu 233 

stricto (Fig. 2A, adjusted p < 0.05) were negatively associated with dietary inflammatory 234 

potential. 235 

 236 
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Next, we examined which PICRUSt2 predicted microbial enzymes and metabolic 237 

pathways were associated with DII scores. We identified 2 pathways, aerobic 238 

adenosylcobalamin (vitamin B12) synthesis and methylglyoxal detoxification (Fig. 2B, 239 

fdr-adjusted p < 0.05), and 38 enzymes significantly associated with DII score (Table 240 

S2, fdr-adjusted p-value < 0.05). The significantly enriched predicted enzymes were all 241 

positively associated with DII (Table S2) with several being involved in bacterial two-242 

component system related to multi-drug efflux pumps (K07642, BaeS) and drug efflux 243 

pumps/resistance (K18889, K18148) and in galactose degradation and transport 244 

(K10111, K12112, K0894) (Fig. 3A, fdr-adjusted p < 0.05). Gene set enrichment 245 

analysis of the DII associated predicted enzymes before multiple comparisons (n=194, 246 

p-value<0.05), also revealed an increase of two-component systems terms (58) 247 

primarily related to nitrogen and sugar metabolism, genes involved in nitrogen 248 

metabolism (specifically nitrate reduction to ammonia), biofilm formation, and galactose 249 

metabolism (Fig. 3B, adjusted p < 0.05, Table S3).   250 

 251 

Several individual DII components were associated with predicted microbial 252 

enzymes.   253 

Finally, we investigated the relationships between DII components and DII-associated 254 

enzymes (Fig. 4). Several DII-associated enzymes, such as efflux pumps and 255 

resistance genes, and enzymes pertaining to the galactose metabolism, were also 256 

associated with 19 individual DII food parameters including Vitamins B12, A, D, E, and 257 

cholesterol. The microbial resistance genes were K18889 (multi-drug efflux pump), 258 

K18148 (beta lactamase resistance) and K07642 (two-component signaling system for 259 
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efflux pumps). K07642 was associated with the largest number of DII components 260 

(63%, such as vitamins A, C, D, E among others). These enzymes were mostly 261 

negatively associated with essential vitamins and minerals (vitamin A, B12, Niacin, & 262 

Zinc) that were decreased in the higher DII individuals (Table 2, Fig. 4). The second 263 

group of enzymes associated with individual DII nutrient parameters (Sugar transporter 264 

K10111, Beta-galactosidase K12112, Beta-glucoside kinase K18673, and D-265 

galactonate transporter K01894) were involved in galactose metabolism and were 266 

mostly negatively associated with key perinatal nutrients such as magnesium and folic 267 

acid.  Cholesterol was the only nutrient positively associated with more than one 268 

enzyme (D-galactonate transporter K01894 & Two-component systems K07642) 269 

 270 

Discussion 271 

Dietary intake is an essential aspect of maternal health. Food choice is often related to 272 

the dietary preferences of an individual, their environment, and their socioeconomic 273 

status. Under or oversupply of certain nutrients can have direct impacts on maternal 274 

health and the growing fetus (59, 60). This study demonstrated that diet inflammatory 275 

potential, an indicator of poor diet quality, was associated with lower vitamin and 276 

mineral intake, altered maternal gut microbiota composition and dysregulated microbial 277 

metabolic potential in early pregnancy. As diet is one of the main regulators of the gut 278 

microbiota (11, 12), poor diet quality during pregnancy could disrupt the normal dynamic 279 

adaptations of the maternal gut microbiota through altered substrate availability.   280 

 281 
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In our study, the overall gut microbiota diversity did not differ in individuals consuming 282 

higher inflammatory diets. While distinct patterns of beta diversity composition in 283 

pregnant individuals with better diet quality have been previously reported (61, 62), 284 

recent microbiome-pregnancy cohorts have not identified alterations in beta diversity by 285 

diet quality (63,64), supporting our study observations. At the taxonomic level, several 286 

ASVs varied with dietary inflammatory potential. Higher DII scores were associated with 287 

enrichment of pro-inflammatory bacterial species, including S. moorei, a producer of 288 

proinflammatory sulfur compounds (65), and those associated with inflammatory 289 

perinatal conditions such as preterm birth and GDM including G. vaginalis, A. vaginae 290 

(66) and members of the Corynebacterium genera (67). In contrast, microbiome 291 

members that were depleted in individuals reporting high DII scores included known 292 

producers of anti-inflammatory SCFAs such as Faecalibacterium (68). This suggests 293 

pro-inflammatory diets are associated with deleterious alterations to gut microbiota 294 

composition.  295 

 296 

The influence of maternal diet quality on the gut microbiota extends to their metabolic 297 

potential, as our study reveals a link between the predicted metabolic capabilities of gut 298 

microbes in individuals with higher inflammatory diets and community-wide metabolic 299 

dysregulation. The Cob(II)yrinate a,c-diamide biosynthesis metabolic pathway (part of 300 

adenosylcobalamin/vitamin B12 pathway) (69) was increased in participants reporting 301 

higher DII scores. Vitamin B12 deficiency can lead to upregulation of the cytokine TNF-302 

α (70) and has been linked to multiple perinatal disorders including pre-eclampsia and 303 

neonate growth retardation (71). The increase in this bacterial pathway may be related 304 
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to the insufficient vitamin B12 intake of the high DII group and a subsequent shift 305 

towards microbial communities capable of producing this essential vitamin to 306 

compensate for the unbalance. The second pathway associated with high DII scores 307 

was a microbially regulated methylglyoxal detoxification pathway. Methylglyoxal is a 308 

toxic oxidizing substance derived from sugar metabolism, a DII enriched process in this 309 

study, and is known to be elevated in perinatal metabolic disorders such as gestational 310 

diabetes mellitus (72,73). Methylglyoxal detoxification can occur via glyoxalase system 311 

(74,75), a common microbial detoxification pathway (76,77). This finding highlights the 312 

pro-inflammatory nature of poor diet quality as well as the compensatory shift in the gut 313 

microbiota to reduce toxic metabolic species.  314 

 315 

DII scores were also associated with the upregulation of microbial virulence pathways, 316 

such as drug resistance, biofilm formation as well as nitrogen and sugar/galactose 317 

metabolism. Sugar and galactose metabolism overall was enriched in individuals 318 

reporting high DII scores. Galactose metabolism has been shown to be enriched in 319 

perinatal inflammatory conditions such as gestational diabetes (78,79) and specifically 320 

associated with elevated methylglyoxal (80). Notably, S. moorei and G. vaginalis were 321 

both positively linked with DII scores and have been reported to contribute to galactose 322 

fermentation (65,81). Enrichment of microbial multidrug resistant efflux pumps enzymes 323 

(K07642,18889, K18148) could be promoted by host pro-inflammatory diets. Recent 324 

work has shown bacterial multidrug efflux pumps are involved in nutrient signal 325 

processing, cellular adaptations to anaerobic respiration, and colonization of eukaryotic 326 

cells (82). Poor maternal diet quality may promote expression of these gut microbial 327 
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enzymes in response to nutrient alterations. The predicted gut microbial enzymes 328 

related to both galactose metabolism and virulent efflux pumps were also mostly 329 

negatively correlated with vitamins and minerals (i.e., vitamins B12 and A and iron, 330 

magnesium, niacin, zinc) that were decreased in high DII individuals. Taken together, 331 

our results suggest that a vitamin and mineral depleted perinatal diet is associated with 332 

a shift in the gut microbiota towards a more pathogenic/pro-inflammatory community.  333 

 334 

Our cohort was primarily comprised of low-income Black and Latinx pregnant persons. 335 

Intake of highly processed foods is a hallmark of a Western diet, a diet pattern that is 336 

more common among disadvantaged minorities in the U.S., as these foods are more 337 

affordable and attainable for individuals with high financial burden (83). Previous studies 338 

from large perinatal cohorts, such as the 30-year longitudinal AVON study, have shown 339 

that women with lower access to high quality foods, have decreased vitamin and 340 

mineral intake (6). Our results support the hypothesis that poor diet quality is linked to 341 

insufficient vitamin and mineral dietary intake and accompanied by pro-inflammatory 342 

adjustments in the gut microbiome composition and metabolic structure.  343 

 344 

Strengths and Limitations. Our work focused on an understudied population at high 345 

risk of multiple health disorders, such as hypertension and GDM (6, 84). Associations 346 

between diet inflammatory potential and gut microbiota during pregnancy are under 347 

explored, and our research indicates that there is a significant link between microbial 348 

composition and metabolic functions and dietary inflammatory potential. Our work could 349 

be further improved by employing a more comprehensive dietary assessment approach 350 
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that can assess all the 45 dietary parameters to calculate DII instead of just a portion of 351 

them (27 used for this study); including a larger sample size of a more diverse 352 

population in terms of DII scores that is followed longitudinally to determine the effects 353 

of DII on the gut microbiome later in pregnancy and perinatal disease development; 354 

employing a single stool sampling method; utilizing the same diet assessment for all 355 

participants and at the same collection time; employing sequencing technologies that 356 

enable to measure the abundance of microbial genes, such as shotgun sequencing 357 

(metagenomics), instead of relaying in metabolic predictions; and further characterizing 358 

the host immune and metabolic profiles.  359 

 360 

Conclusion 361 

A proinflammatory diet, measured by DII, characterized by low intake of vitamins B12, 362 

B6, and A and iron, magnesium, niacin, riboflavin, and zinc, during early pregnancy is 363 

associated with a pro-inflammatory shift in the gut microbiota and metabolism as 364 

indicated by increase in galactose metabolism and methylglyoxal detoxification and 365 

multi drug efflux pump expression. Further characterization of gut metabolic status as a 366 

function of dietary alterations can provide opportunities for future research and targeted 367 

intervention strategies for at risk perinatal populations. 368 
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Table 1: Study cohort demographic characteristics did not differ as a function of 373 

DII scores. Participants were stratified into DII tertiles. There were no differences in 374 

study characteristics by DII tertile (p > 0.05).  375 

  Tertile 1 Tertile 2 Tertile 3 p 

DII Mean (SD) -2.3 (0.9) 1.0 (0.9) 3.4 (0.5)  

Gestational Weeks Mean (SD) 11.2 (3.5) 11.2 (2.9) 10.2 (2.7) 0.59 

Age Mean (SD) 28.7 (7.8) 28.6 (5.3) 30.2 (5.3) 0.69 

BMI Mean (SD) 29.0 (7.2) 30.4 (6.6) 28.3 (7.5) 0.7 

Race/Ethnicity Hispanic 2 (12.5) 4 (25.0) 2 (11.8) 0.35 

 Non-Hispanic Black 10 (62.5) 6 (37.5) 6 (35.3)  

 Other/Unreported 4 (25.0) 6 (37.5) 9 (52.9)  

Health Insurance Federal Aide 14 (87.5) 10 (62.5) 13 (76.5) 0.26 

 Private 2 (12.5) 6 (37.5) 4 (23.5)  

Education Above College 1 (6.2) 4 (25.0) 5 (29.4) 0.34 

 Below College 6 (37.5) 4 (25.0) 7 (41.2)  

 College 9 (56.2) 8 (50.0) 5 (29.4)  

Employment 

Employed Part/Full 

Time 11 (68.8) 8 (50.0) 10 (58.8) 0.56 

 Unemployed 5 (31.2) 8 (50.0) 7 (41.2)  

Income $31-76k 2 (12.5) 3 (18.8) 2 (11.8) 0.78 

 $76k+ 1 (6.2) 3 (18.8) 2 (11.8)  

 <$31k 13 (81.2) 10 (62.5) 13 (76.5)  

Relationship Status Married/Relationship 7 (43.8) 11 (68.8) 11 (64.7) 0.3 

 Single 9 (56.2) 5 (31.2) 6 (35.3)  
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Planned Pregnancy No 6 (37.5) 1 (6.2) 2 (11.8) 0.17 

 Unreported 8 (50.0) 10 (62.5) 11 (64.7)  

 Yes 2 (12.5) 5 (31.2) 4 (23.5)  

 376 

 377 

 378 
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Table 2: Differences in nutritional intake by DII tertile. Reported mean (SD) nutrient 380 

values were normalized by total Energy intake per day (kcal/day). Vitamin A was 381 

reported in retinol equivalents (RE). 382 

Tertile 1 Tertile 2 Tertile 3 p 

Alcohol (g) 0.1 (0.3) 0.1 (0.2) 0.1 (0.5) 0.83 

Vitamin B12 (μg) 3.2 (1.1) 2.9 (1.2) 2.2 (0.9) 0.03 

Vitamin B6 (mg) 1.1 (0.4) 1.0 (0.3) 0.8 (0.2) 0.02 

β Carotene (μg) 1983.5 (1563.7) 1547.3 (1698.9) 1491.2 (1104.8) 0.58 

Caffeine (g) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.43 

Carbohydrate (g) 127.5 (25.0) 129.0 (28.0) 129.1 (33.9) 0.98 

Cholesterol (mg) 136.6 (66.6) 145.8 (64.5) 163.6 (113.8) 0.65 

Energy (kcal) 2988.0 (924.1) 1801.1 (409.1) 969.8 (333.8) 

Total fat (g) 39.5 (9.6) 40.3 (9.5) 39.9 (11.4) 0.98 

Fiber (g) 10.9 (2.4) 10.1 (3.3) 8.9 (2.2) 0.11 

Folic acid (μg) 168.4 (84.9) 165.8 (86.0) 128.7 (75.9) 0.31 

Iron (mg) 9.1 (3.4) 7.9 (2.8) 6.2 (1.7) 0.01 

Magnesium (mg) 171.2 (35.5) 147.1 (35.7) 143.2 (40.8) 0.08 

MUFA (g) 0.0 (0.0) 0.1 (0.0) 0.0 (0.0) 0.49 

Niacin (mg) 11.7 (3.1) 10.1 (2.1) 9.0 (2.8) 0.02 

Protein (g) 39.4 (6.1) 35.6 (7.0) 35.6 (11.4) 0.37 

PUFA (g) 8.2 (2.3) 7.9 (2.7) 8.1 (4.7) 0.97 

Riboflavin (mg) 1.3 (0.4) 1.1 (0.4) 0.9 (0.3) 0.02 

Saturated fat (g) 13.5 (3.5) 14.2 (4.1) 13.4 (4.3) 0.82 

Selenium (μg) 52.2 (10.2) 49.5 (11.6) 51.1 (19.5) 0.87 

Thiamin (mg) 0.9 (0.3) 0.8 (0.2) 0.7 (0.2) 0.11 
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Trans fat (g) 1.7 (0.5) 1.8 (0.6) 1.6 (0.7) 0.75 

Vitamin A (RE) 523.2 (192.7) 437.0 (191.1) 358.8 (150.4) 0.04 

Vitamin C (mg) 85.5 (42.4) 71.7 (47.2) 64.5 (53.1) 0.45 

Vitamin D (μg) 3.9 (1.9) 3.6 (2.0) 2.6 (1.7) 0.1 

Vitamin E (mg) 5.1 (2.1) 3.9 (1.2) 4.1 (1.8) 0.13 

Zinc (mg) 6.5 (1.8) 5.9 (1.4) 5.1 (1.4) 0.04 

 383 

  384 
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Figure 1: Components and drivers of DII scores. Spearman correlation (p < 0.05) 385 

among the 27 parameters used to calculate the DII scores for each subject. Dot size is 386 

proportional to the absolute correlation coefficient. See supplemental methods for more 387 

details (units and references). PUFA: polyunsaturated fatty acids; MUFA: 388 

monounsaturated fatty acids.  389 

 390 

A.  B.  
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Figure 2: Differentially abundant gut taxa and predicted gut produced enzymes 

as a function of DII scores. Top 10 CSS normalized taxa (A) and all predicted 

pathways (B) that were identified as statistically significant differentially abundant by 

DII after correction by participant age, estimated gestational weeks (EGA), BMI, and 

food frequency questionnaire type (DHQII or VioScreen), and sample type (adjusted p 

< 0.05 & adjusted p < 0.1). Taxa names are lowest identifiable rank. Full list of 

enriched ASVs can be found in Table S1. PWY-7376: Cob(II)yrinate a,c-diamide 

biosynthesis II; METHGLYUT-PWY: methylglyoxal detoxification super pathway. 

 391 

 392 

A. B. 
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Figure 3: Predicted microbial gene sets enrichment analysis in terms of DII 

scores. A: Top 15 predicted enzymes that were identified as differentially abundant 

by DII (adjusted p < 0.05). B: Gene set enrichment of enzymes grouped by those 

positively (N=194, p < 0.05) associated with DII score. Full list of enriched enzymes 

can be found in Table S2. Full list of enzymes by gene set term can be found in Table 

S3.  

 

Figure 4: Relationship between predicted enriched enzymes and dietary 

components. Differential abundance of top 15 predicted enzymes and the 27 dietary 

components of the DII (adjusted p < 0.05). Only significant associations are 

represented. 
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 395 

Supplementary Materials 396 

Supplemental Table 1: DII differentially abundant ASVs using zero-inflated 397 

generalized linear models. Corrected by subject age, gestational weeks, sample type, 398 

FFQ type, and BMI (adjusted p-value < 0.05). 399 

Attached excel file 400 

 401 

Supplemental Table 2: DII differentially abundant microbial enzymes using zero-402 

inflated generalized linear models. Corrected by subject age, gestational weeks, 403 

sample type, FFQ type, and BMI. Microbial enzymes were all increased (N=38) by DII. 404 

We employed the KEGG database as a reference.  405 

Attached excel file 406 

 407 

Supplemental Table 3: Microbial enzymes per term identified by Gene set 408 

enrichment by DII. Microbially enzymes that were positively associated with DII before 409 

multiple comparison adjustments (N=194).  410 

Attached excel file 411 

 412 

 413 

 414 

 415 

 416 
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 418 

A. B. 

  

 

C. D. 

  

E.  

Supplemental Figure 1: Alpha and beta diversity were not associated with 

assessment by DII score. A: Shannon and Simpson indexes as a function of DII 

scores. B: DII tertile (Wilcox Rank Sum p-value > 0.05). C: Beta diversity measured by 

Bray Curtis distance as a function of DII tertiles (PERMANOVA, p-value > 0.05). D: 

Beta diversity measured by UniFrac distance. Ellipses represent Tertile 1 and Tertile 

2/3.  
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