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Abstract

Introduction: The role of the right atrium (RA) in atrial fibrillation (AF) has

long been overlooked. Computer models of the atria can aid in assessing how the

RA influences arrhythmia vulnerability and in studying the role of RA drivers

in the induction of AF, both aspects challenging to assess in living patients. It

remains unclear if incorporating the RA influences the reentry inducibility of

the model. As personalized ablation strategies rely on non-inducibility crite-

ria, the adequacy of left atrium (LA)-only models for developing such ablation

tools is uncertain. Aim: To evaluate the e↵ect of incorporating the RA in

3D patient-specific computer models on arrhythmia vulnerability. Methods:

Imaging data from 8 subjects were obtained to generate patient-specific com-

puter models. We created 2 models for each subject: a monoatrial with only the

LA and a biatrial with both the RA and LA. We considered 3 di↵erent states

of substrate remodeling: healthy (H), mild (M), and severe (S). The Courte-

manche et al. cellular model was modified from control conditions to a setup

representing AF-induced remodeling with 0%, 50%, and 100% changes for H,

M, and S, respectively. Conduction velocity was set to 1.2, 1.0, and 0.8m/s

for each remodeling state. Fibrosis extent corresponded to Utah 2 (5-20%) and

Utah 4 (>35%) stages for M and S, while the H state was modeled without

fibrosis. Arrhythmia vulnerability was assessed by virtual S1S2 pacing from

di↵erent points separated by 2cm using openCARP. A point was classified as
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inducing arrhythmia if reentry was maintained for at least 1 s. The vulnerability

ratio was defined as the number of inducing points divided by the number of

stimulation points. The mean tachycardia cycle length (TCL) was assessed at

the stimulation site. We compared LA vulnerability ratios in monoatrial and

biatrial models. Results: Incorporating the RA increased the mean LA vul-

nerability ratio by 115.8% (0.19 ± 0.13 to 0.41 ± 0.22, p = 0.033) in state M

and 29.0% in state S (0.31 ± 0.14 to 0.40 ± 0.15, p = 0.219). No arrhythmia

was induced in the H models. RA inclusion increased the TCL of LA reentries

by 5.5% (186.9± 13.3ms to 197.2± 18.3ms, p = 0.006) in scenario M and de-

creased it by 7.2% (224.3 ± 27.6ms to 208.2 ± 34.8ms, p = 0.010) in scenario

S. RA inclusion increased LA inducibility revealing 5.5 ± 3.0 new points per

patient in the LA for the biatrial model, which did not induce reentry in the

monoatrial model. Conclusions: LA reentry vulnerability in a biatrial model

is higher than in a monoatrial model. Incorporating the RA in patient-specific

computational models unmasked potential inducing points in the LA. The RA

had a substrate-dependent e↵ect on reentry dynamics, altering the TCL of LA-

induced reentries. Our results provide evidence for an important role of the RA

in the maintenance and induction of arrhythmia in patient-specific computa-

tional models, thus suggesting the use of biatrial models.

Keywords: Right Atrium, Arrhythmia Vulnerability, Atrial Fibrillation,
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1. Introduction

The role of the right atrium (RA) in atrial fibrillation (AF) has long been

overlooked. Multiple studies have examined clinical conditions associated with

AF, such as atrial enlargement, fibrosis extent, electrical remodeling, and wall

thickening, but have been mainly concentrated on the left atrium (LA) [1, 2, 3,

4]. The focus on the LA in AF research can be attributed to two paradigms:

First, it is now well established that the most frequent mechanism for AF onset

is triggering activity from sources located in the pulmonary veins (PVs) of the

LA [5]. The second paradigm refers to comorbidities associated with AF that
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primarily a↵ect the left side of the heart, such as hypertension, valvular disease,

and heart failure, which in combination increase mortality and reduce quality

of life [6, 7]. Thus AF research continues to focus mostly on the LA, and as a

consequence, the role of RA in AF is barely understood [8].

Computer models of the atria are becoming valuable tools for enhancing

our understanding of intricate interactions during AF. These models provide a

controlled and reproducible environment, enabling the study of specific research

questions. For instance, these models can aid in assessing how the RA influences

arrhythmia vulnerability and also in studying the role of RA drivers in the

induction of AF, both aspects that would be challenging to assess in living

patients until now. This work assesses the ”Creative Concept” of incorporating

the RA in computational arrhythmia studies.

Prior investigations tried to elucidate the role of the RA by proposing quan-

titative biatrial AF biomarkers. Using 3D transthoracic biatrial echocardiogra-

phy, Soulat-Dufour et al. observed that AF remodeling is a biatrial process [9].

The same was observed invasively as a significant correlation in the remodeling

state when comparing low-voltage areas in endocardial recordings from both

chambers [10]. However, the findings reported by Chang et al. suggested that

the LA had more areas of low voltage than the RA [11]. More recently, Hopman

et al. showed that fibrosis burden in the RA is strongly correlated with the LA

fibrosis extent based on late gadolinium enhancement (LGE) cardiac magnetic

resonance imaging (MRI) [12]. Hasbe et al. described a case of paroxysmal AF

initiated and maintained in the RA after adenosine infusion [13].

Another attempt to improve our understanding of the role of the RA in

AF is to study sources beyond the PVs. Prior to the adoption of PV isolation

as the standard treatment for AF, ablation of the RA was also investigated

[14]. Several researchers have identified the presence of sources in the RA in-

cluding the coronary sinus (CS), the superior vena cava (SVC), the right atrial

appendage (RAA), the cavo-tricuspid isthmus (CTI), and the crista terminalis

(CT) [15, 16, 17, 18]. To date, no approach was able to demonstrate consis-

tent additional benefit when comparing the ablation of these regions with the

ablation of PVs alone. The evidence for the role of the RA in AF remains

inconclusive.
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With the advent of personalized medicine, patient-specific computer models

of the atria have already been used to identify ablation targets, tailor ablation

strategies, and predict recurrence in AF patients [19, 20, 21, 22]. Nevertheless,

those methodologies did not specifically focus on the role of the RA, with some

excluding RA tissue and others neglecting the assessment of AF induction or

maintenance from RA sources. In this study, we aim to evaluate the e↵ect

of incorporating the RA in 3D patient-specific computer models in the assess-

ment of arrhythmia vulnerability based on 1398 virtual pacing sequences in 48

computational models.

2. Methods

A general overview of the study methodology is provided in Figure 1. Details

on the 3 main steps are given in the following subsections.

Biatrial Monoatrial
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Figure 1: Study methodology. Left: generation of the virtual cohort considering (1) biatrial

and monoatrial scenarios (2) at three di↵erent remodeling levels (3) for the assessment of ar-

rhythmia vulnerability. Right: details of the fibrotic substrate modeling approach (H: healthy,

M: mild, S: severe) considering changes in conduction velocity (CV), electrical remodeling,

and fibrosis extent.

2.1. Patient-specific anatomical modeling

Imaging data from 8 subjects (S1-S8) were obtained as described in [23]

and used to generate the biatrial personalized anatomical models. Subjects

provided written informed consent and the study protocol was reviewed and

approved by the ethical committee of Guy’s Hospital, London, UK, and Univer-

sity Hospital Heidelberg, Heidelberg, Germany. The cohort characteristics are
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described in Table S1 in the supplementary material. The personalized anatom-

ical models were generated following the methodology described by Azzolin et

al. [24]. Briefly, the veins and valves were manually removed from the endo-

cardial surface, then the meshes were resampled to an average edge length of

400 µm. Subsequently, 4 inter-atrial connections (IAC) were automatically gen-

erated to link the RA and LA [25]. Next, a rule-based approach based on the

solution of Laplacian equations was employed to define preferential myocyte ori-

entation. Multiple anatomical regions such as the CT, pectinate muscles (PM),

and Bachmann’s bundle (BB) were automatically annotated to consider elec-

trophysiological heterogeneity [26]. Finally, to take into account wall thickness,

bilayer meshes were generated by extruding the endocardium and connecting it

to the epicardium as described in [27]. For each subject, we created two mod-

els: one consisting only of the LA, which we will refer to as monoatrial, and

one model consisting of both the RA and LA, which we will refer to as biatrial.

Cellular electrophysiology of atrial myocytes was modeled using the mathemat-

ical model of Courtemanche-Ramirez-Nattel (CRN) [28]. To compute electrical

propagation in the human atria we solved the monodomain equation using the

electrophysiology simulator openCARP [29, 30]. A carputils bundle containing

the openCARP experiment is publicly available [31].

2.2. Electrophysiological modeling

We defined 3 di↵erent levels of atrial fibrillation-induced remodeling, namely:

healthy (H), mild (M), and severe (S) by reducing the conductance of a set of

ionic channels as described in [32] with 0%, 50% and 100% changes for H, M and

S, respectively. The maximum scaling of the ionic conductances has an e↵ect on

the action potential in line with the changes observed in human atrial myocytes

in patients su↵ering from persistent AF [33]. The model was parameterized to

yield a conduction velocity (CV) along the myocyte preferential direction of 1.2,

1.0, and 0.8m/s for each remodeling level, respectively. Intra- and extracellular

conductivities were scaled⇥3 for the BB and⇥2 for the CT and PM. Anisotropic

wave propagation was modeled using regional ratios as in [34].

2.3. Fibrotic substrate modeling

The fibrotic substrate was modeled following the methodology described by

Nagel et al. [35]. Briefly, we manually placed 6 seeds on each biatrial model,
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3 in the LA and 3 in the RA, which correspond to regions with most frequent

enhancement (IIR>1.2) in LGE-MRI [36, 37, 38, 39]: the posterior LA wall

close to the inferior PV, the inferior wall in proximity to the inferior PV, and

the lateral wall. In the RA: close to the IVC junction, the septal wall, and

in the venous component (see Figure S1 in the supplementary material). The

Utah stage classification [40] was used to define the ranges of fibrosis in each

remodeling level. The M and S fibrotic substrate levels corresponded to the

Utah 2 and Utah 4 stages, respectively. The proportion of RA and LA fibrosis

extent was based on the percentages reported by Akoum et al. [41]. The fibrotic

regions were modeled with 30% of the elements non-conductive and the rest

with TGF-�1-induced electrical remodeling [20, 42, 43].

2.4. Arrhythmia vulnerability

Arrhythmia vulnerability was assessed by an S1-S2 pacing protocol [44] from

a set of stimulation points with 2 cm inter-point distance on the atrial surface.

Stimulation points and earliest activation sites on the LA remained consistent

between monoatrial and biatrial configurations. A point was classified as induc-

ing if reentry was initiated and maintained for at least 1 s. The vulnerability

ratio was defined as the number of inducing points divided by the number of

stimulation points. The mean tachycardia cycle length (TCL) of the induced

reentries was further assessed at the stimulation site.

2.5. Statistical Analysis

Data are reported as mean ± SD. To evaluate statistical significance between

the sample means, we conducted a two-sampled t-test. A p-value < 0.05 was

considered statistically significant.

3. Results

The 8 biatrial anatomical models and the number of stimulation points in

each chamber are shown in Figure 2. The mean fibrotic extent in the LA was

12.20% ± 0.68 and 44.01% ± 2.6, for the M and S states, respectively. For the

RA, the fibrosis extent was 5.31%± 0.13 and 12.96%± 0.68 for M and S states,

respectively. The amount of fibrosis for each subject in each stage is shown in

Table S2 in the supplementary material.
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(a)Patient-specific biatrial models derived from CT and MR segmentations (b) Stimulation points for the 
vulnerability protocol

Figure 2: Personalized models and the total number of stimulation points used for the as-

sessment of arrhythmia vulnerability. (CT: computed tomography, MR: magnetic resonance).

3.1. Monoatrial configuration

We ran 444 monoatrial simulations, from a total of 148 stimulation points

⇥ 3 remodeling states, to assess arrhythmia vulnerability in the 8 LA models.

The number of inducing points and the vulnerability ratio VLA for each subject

are shown in Figure 3a. A total of 79 reentry episodes were induced, of which

32 episodes were in the M state and 47 in the S state. No reentries were induced

in the H state. The vulnerability ratio VLA among all subjects in the M and S

states was 0.19± 0.13 and 0.31± 0.14, respectively. There was a 20.0% increase

in the TCL between states M and S (186.94 ± 13.3 vs. 224.32 ± 27.6ms), as

illustrated in Figure 4a.

(a) Monoatrial (b) Biatrial

S8S7S6S5S4S3S2S1
Subjects
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TotalLALALALALALALALA
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Figure 3: Vulnerability of the left atrium (LA) in monoatrial (a) and biatrial (b) configura-

tions with respect to each remodeling scenario. H: healthy, M: mild, S: severe. ILA: Inducing

points in the LA, SLA: Inducing points in the LA. The dashed lines represent the mean vul-

nerability ratio for each remodeling level.
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The number of inducing points was higher in state S than M for 5 subjects

(S2, S4, S6, S7, and S8), while for 2 of them (S3 and S5), the number of inducing

points was higher in the M state. One subject (S1) exhibited no change in

vulnerability ratio when increasing substrate extent from M to S. In state M,

subjects S3 and S5 had the highest VLA = 0.33, while in state S, S7 had the

highest VLA = 0.48. Increased remodeling from M to S revealed 4.3 ± 2.9 new

inducing points in the LA per patient, as shown in Figure 5a. The points became

inducing when going from M to S due to rotational activity near the fibrotic

regions. Deceleration of the wavefront and a shortened action potential in S

enabled propagation within the fibrotic region. In contrast, in M, the faster

wavefront encountered refractory tissue and failed to activate the surrounding

tissue.
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Figure 4: Impact of the right atrium (RA) on arrhythmia vulnerability ratio (a) and tachy-

cardia cycle length (TCL) (b). Left atrium (LA) monoatrial refers to the LA in monoatrial

configuration. Each bar corresponds to the vulnerability ratio, calculated as the number of

induced points relative to the total points in each chamber across all 8 subject models. Each

violin plot represents the probability density of TCL measurements. Medians are marked with

horizontal lines inside the violins. Scatter points on top represent each reentry measurement.

* p-value <0.05 is considered statistically significant ** p-value <0.01 (ns: not statistically

significant).

3.2. Biatrial configuration

A total of 954 biatrial simulations, from a total of 318 stimulation points

⇥ 3 remodeling states, were performed to evaluate vulnerability in the 8 bia-

trial models. The number of inducing points in both chambers are shown in

Figure 3b and the vulnerability ratio in the biatrial scenario for each chamber is

shown in Figure 4a. A total of 281 reentry episodes were induced in the biatrial

configuration, of which 130 were induced by pacing from the LA and 151 by
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pacing from the RA. In the H state, only one reentry was induced by pacing

from the anterior wall of the LA in the proximity of the mitral valve in S6.

0

5

10

15

20

25

30

S1 S2 S3 S4 S5 S6 S7 S8

Non-inducing
M-S common
S unique
M unique

N
um

be
r o

f p
oi

nt
s

0

5

10

15

20

25

30

S1 S2 S3 S4 S5 S6 S7 S8

Vu
ln

er
ab

ili
ty

 R
at

io

Non-inducing
Mono+Bi common
LA biatrial unique
LA monoatrial unique

Different remodelling states (M vs S) Different configurations (Monoatrial vs Biatrial)(b)(a)

N
um

be
r o

f p
oi

nt
s

S1 S2 S3 S4 S5 S6 S7 S8
!!"#"_%"%&' 2 2 8 10 13 6 18 7 8.3 ± 5.4
!()_%"%&' 8 2 9 13 19 16 21 10 12.3 ± 6.3

!!"#"_*#)+*, 0 1 2 2 1 1 4 1 1.5 ± 1.2
!()_*#)+*, 6 1 3 5 7 11 7 4 5.5 ± 3.0
!-"!!"# 2 1 6 8 12 5 14 6 6.8 ± 4.5
"-"!!"# 6 4 7 3 4 7 4 4 4.9 ± 1.6

S1 S2 S3 S4 S5 S6 S7 S8
!._%"%&' 2 0 6 4 8 2 9 1 4.0 ± 3.3
!/_%"%&' 2 2 3 8 7 4 14 7 5.9 ± 4.1
!._*#)+*, 0 0 5 2 6 2 4 0 2.4 ± 2.4
!/_*#)+*, 0 2 2 6 5 4 9 6 4.3 ± 1.9
!-"!!"# 2 0 1 2 2 0 5 1 1.6 ± 1.6
"-"!!"# 12 5 10 8 11 17 11 8 10.3 ± 3.5

!!"_$%"&$'
!()%)_$%"&$'

!*_$%"&$'
!+_$%"&$'

Figure 5: Proportion of inducing (I) and non-inducing (N) points in the left atrium (LA)

shows higher inducibility due to increased remodeling in the monoatrial (mono) configuration

(a) and higher inducibility due to the incorporation of the right atrium in biatrial (bi) config-

uration (b). Unique refers to points that exclusively induce in a specific setup. (M: mild, S:

severe).

The vulnerability ratio of the RA (VRA) is shown in Figure 4a. There was

a 111.1% increase between states M and S in VRA (0.27 ± 0.18 vs. 0.57 ±

0.19). The mean TCL of the RA-induced reentries for the M and S state was

201.33± 23.0ms and 207.87± 41.6ms (p = 0.295), as shown in Figure 4b. The

vulnerability ratio of LA-induced reentries between the M and S states showed

minimal changes (0.41 ± 0.22 vs. 0.40 ± 0.15). The mean TCL of LA-induced

reentries in the biatrial configuration showed a significant di↵erence between

the M and S states (197.24± 18.3 ms vs. 208.24± 34.8 ms, p = 0.026).

3.3. Right atrium

To assess the role of the RA on LA inducibility in more detail, we addi-

tionally compared the arrhythmia vulnerability ratio and the TCL of the LA in

monoatrial vs. biatrial configurations. The incorporation of the RA led to an

increase in the mean LA vulnerability from 0.19±0.13 to 0.41±0.22 in state M

and from 0.31± 0.14 to 0.40± 0.15 in state S, as shown in Figure 4a. Addition-

ally, including the RA led to changes in the TCL of the LA-induced reentries

in the M scenario from 186.94± 13.3 ms to 197.24± 18.3 ms (p = 0.006) and in

the scenario S from 224.32± 27.6 ms to 208.24± 34.8 ms (p = 0.010).
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Figure 6: Increased inducibility in the left atrium (LA) due to incorporation of the right

atrium (RA). The meshes show the stimulation points in the LA inducing reentry in monoatrial

(yellow), biatrial (red), both (green) configurations, or non-inducing (white). The columns of

points illustrate the type of inducibility at each stimulation point for each subject. The Venn

diagram (right) depicts monoatrial and biatrial reentry distribution among all subjects. The

RA appears attenuated.

Furthermore, we assessed changes in the inducibility of the LA by comparing

points within the LA initiating reentry with and without the RA, as shown in

Figure 5b. The inclusion of the RA resulted in an elevated LA inducibility,

uncovering 5.5 ± 3.0 inducing points in the LA biatrial scenarios that did not

induce in the monoatrial configuration, as shown in Figure 6. The IAC at the

CS contributed to the increased reentry inducibility, as shown in Figure 7.
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-90
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V
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V
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Healthy
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Figure 7: Reentry induction in biatrial configuration aided by inter-atrial connections. View

of the posterior wall of the left atrium (LA). Stimulation point at the right superior pulmonary

vein (RSPV) of the LA, the reentrant pathway involved the inter-atrial connection via the

coronary sinus (CS) and fosa ovalis (not visible), and was therefore not supported by the

monoatrial setup.

4. Discussion

In this study, we evaluated 2 di↵erent chamber scenarios: monoatrial and

biatrial; and 3 di↵erent remodeling states: H, M, and S; in 8 di↵erent patient-

specific anatomical models resulting in 48 arrhythmia vulnerability assessments.

The main focus was to assess the role of the RA for arrhythmia vulnerability
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in a cohort of patient-specific anatomical models. Our study provides evidence

for the importance of the RA for the maintenance and induction of arrhythmia

and a reduction of the e↵ect of substrate remodeling in biatrial settings.

4.1. Impact of the right atrium

The notion that the RA could play a role in AF is not a novel concept, as

indicated by Nitta et al. [45]. However, the existing literature often neglects this

potential role and provides limited evidence regarding the extent to which the

RA contributes to the initiation and maintenance of AF. Scrutinizing the latest

guidelines for AF treatment reveals the absence of the term “right atrium” [46,

47]. This highlights a scarcity of comprehensive studies investigating the role of

the RA in the context of AF prevention and treatment.

To study the role of the RA as a potential initiator of or contributor to AF,

we evaluated the RA vulnerability ratio. Among all investigated configurations,

the RA was the chamber with the highest vulnerability in the S state. A possible

explanation could be the larger RA size and the increased electrophysiological

heterogeneity due to the presence of the PM, CT, and TV. Despite the lower

fibrotic extent in the RA compared to the LA, the RA was more vulnerable to

developing reentry upon stimulation than the LA.

In our simulations, we identified additional inducing points in the LA bia-

trial configuration which did not induce reentry in the LA-only model,as shown

in Figure 7. One hypothesis suggests that the IACs play an important role in

the maintenance of arrhythmia as mentioned by Roney et al. [43]. In terms

of arrhythmia mechanisms, for reentry to occur, there must be an excitable

gap, meaning that the wavelength must be shorter than the reentrant circuit

length [48]. The inclusion of the RA increased the likelihood of new reentrant

circuits influenced not only by larger atrial size but also CV and e↵ective re-

fractory period [49].

Previous computational model studies have established that the dynamics

of reentrant drivers are influenced by the extent and distribution of the fibrotic

substrate, in the RA [50] and LA [51]. Moreover, investigations by Boyle et

al. [19] and Zahid et al. [50] have identified reentrant drivers in the RA through

the utilization of biatrial models. In our simulations we also observed simultane-

ous interactions of multiple reentries (functional and anatomical) in our biatrial
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simulations, such as rotational activity around the tricuspid and mitral valves,

unidirectional blocks in the BB region, reentrant pathways aided by IACs, and

rotors associated with the fibrotic substrate. In summary, we propose that the

increased inducibility in the LA biatrial model, i.e. additional reentrant drivers,

resulted from the interplay between fibrosis characteristics and novel circuit

paths, as shown in Figure 8.

50 ms 100 ms 150 ms 200 ms

-90

20

(m
V)

Healthy
Fibrosis

Fibrotic tissue

Figure 8: Example of reentry induction from stimulation point in the right atrium (RA) in

S state. The distribution of fibrosis is shown on the left. The inducing point (star) is located

in the RA near the inferior vena cava. The reentry is anchored at the inferior wall of the left

atrium and the wave propagation slows down at the border of the fibrotic region.

An additional finding concerns changes in the LA vulnerability and the TCL

distribution. Without the RA, the vulnerability of the LA was markedly higher

in the S than in the M state. Once the RA was incorporated, this di↵erence of

LA vulnerability was markedly reduced. In terms of reentry dynamics, adding

the RA increased the mean TCL of LA reentries in the M state by 5.21%

(186.94 ± 13.3 vs. 197.24 ± 18.3), e.g. causing slower reentries, and on the

contrary, the RA led to faster LA reentries in the S state (224.32 ± 27.6 vs.

208.24± 34.8 ms). The observed changes suggest a state-dependent influence of

the RA on reentry dynamics in the LA. These results might be due to the TCL

of the LA in the biatrial configuration being similar to the TCL of the RA. This

could explain the state-dependent e↵ect of the RA as the detected increase in

the TCL in the LA might be due to additional reentrant activity promoted by

the RA substrate, rather than the LA. Also, faster reentries in the S state in

the biatrial configuration could be attributed to the lesser fibrotic burden in the

RA, therefore allowing faster propagation.
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One of the main implications of these findings lies in the development of tools

informing ablation therapy using computer models. It can be expected that the

arrhythmia vulnerability ratio calculated based on LA-only models changes once

the RA is incorporated. This is especially relevant as successful virtual ablation

therapies for AF are based on non-inducibility criteria. Therefore, performing

biatrial simulations appears advisable. In summary, the incorporation of the

RA increased the vulnerability of the LA and the increase in substrate extent

had a lesser e↵ect on the vulnerability of the LA.

4.2. Arrhythmia vulnerability in di↵erent remodeling states

The majority of subject models exhibited higher vulnerability in the S state.

Yet for some, the vulnerability ratio was higher in the M state. To understand

this behavior, we analyzed activation patterns of reentries induced only in the

M state. In the M state, the fibrotic substrate impeded wavefront propaga-

tion, causing unidirectional blocks and anchoring reentries. Conversely, in the S

state, increased fibrosis led to a slower wavefront progression, facilitating tissue

recovery and promoting regular activation. For the other cases where the S state

had a higher vulnerability, the faster wavefront in M encountered refractory tis-

sue and failed to activate the surrounding tissue. While in S, deceleration of

the wavefront and a shortened action potential enabled propagation within the

fibrotic region. The overall outcome was a combination of both e↵ects.

4.3. Limitations

To our knowledge, this study represents the first dedicated examination of

the role of the RA in arrhythmia vulnerability in patient-specific computer mod-

els, however the limited sample size may impact the generalization of our find-

ings. The IACs were modeled as structures connecting the LA and RA im-

plemented using rule-based definitions [25]. It is possible that di↵erent IAC

configurations, including di↵erent numbers of functional IACs and di↵erent lo-

cations, might a↵ect the maintenance of reentrant pathways. All virtual patient

models had a similar fibrosis pattern based on circular patches. Future studies

could include more complex patterns of fibrosis [52] to study their impact on

the vulnerability of biatrial models.
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5. Conclusions

LA reentry vulnerability in a biatrial model is higher than in a monoa-

trial model. Incorporating the RA in patient-specific computational models un-

masked potential inducing points in the LA. The RA had a substrate-dependent

e↵ect on reentry dynamics and a↵ected the TCL of the LA-induced reentries.

As virtual ablation strategies for AF are based on non-inducibility criteria, per-

forming biatrial simulations is advisable. Our study highlights the importance

of the RA for the maintenance and induction of arrhythmia in patient-specific

computational models.
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