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Abbreviations: 

ALDH2:  Aldehyde Dehydrogenase 2 Family Member 

ANML:  Adaptive normalization by maximum likelihood 

BMI:  Body mass index 

CKB:  China Kadoorie Biobank 

CVD:  Cardiovascular disease 

DBP:  Diastolic blood pressure 

FDR:  False discovery rate 

GDF15:  Growth Differentiation Factor 15  

GHR:  Growth Hormone Receptor  

GO:  Gene Ontology 

GWAS:  Genome-wide association study 

HDL:  High-density lipoprotein 

IHD:  Ischaemic heart disease 

LD:  Linkage disequilibrium 

LOD:  Limit of detection 

MAC:  Minor allele count 

MAF:  Minor allele frequency 

MHC:  Major histocompatibility complex 

NRI:  Net Reclassification Index 

NPX:  Normalized Protein eXpression 

NRI:  Net reclassification index 

PLA2G7:  Phospholipase A2 Group VII 

pQTL:  Protein quantitative trait loci 

QC:  Quality control 

RFU:  Relative fluorescence units 

ROC:  Receiver operating characteristic 

SBP:  Systolic blood pressure 

SOMAmer:  Slow offrate modified aptamers 

TNC:  Tenascin C 
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Abstract (word count: 150 / max 150)  

Proteomics offers unique insights into human biology and drug development, but few 

studies have directly compared the utility of different proteomics platforms. We 

measured 2,168 plasma proteins in 3,976 Chinese adults using both OLINK and 

SomaScan platforms and compared their genetic determinants and associations with 

traits and disease risk. For 1,694 proteins with one-to-one matched reagents, there 

was a modest between platform correlation (median rho=0.20). OLINK-proteins had 

fewer trans-pQTLs (766 vs 812 proteins) but more cis-pQTLs (725 vs 565) than 

SomaScan-proteins, including 342 with colocalising cis-pQTLs. Moreover, 1,095 

OLINK- and 963 SomaScan-proteins showed significant associations with BMI, while 

279 and 165 proteins were significantly associated with IHD, respectively. Addition of 

these IHD-associated proteins to conventional risk factors yielded NRIs for IHD of 

15.3% and 17.1% for OLINK and SomaScan respectively. The results demonstrate 

the complementarity of different proteomic platforms and should inform assay 

selection in future population and clinical studies. 

Key words: Proteomics; Biobanks; Risk prediction; Genetic analyses; Assay 

platforms 
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Introduction 

Proteins play a key role in human health and most drugs target proteins, including 

enzymes, antibodies, transport, or structural proteins. Measurements of plasma 

levels of proteins, particularly when combined with genetic and phenotypic 

information, can help to understand biological mechanisms and disease aetiology, 

improve disease risk prediction, and evaluate novel protein targets for drug treatment 

of specific diseases. Advances in high-throughput proteomic assays now enable 

measurement of thousands of plasma proteins, and their application in population 

and clinical studies is likely to transform the development of precision medicine. 

The relative or absolute plasma levels of proteins can be measured using different 

technologies, including mass spectrometry and affinity-based methods. Mass 

spectrometry methods identify proteins based on peptides following enzymatic 

digestion and have been widely used for both targeted (focusing on a few hundred 

pre-defined proteins) and non-targeted (measuring up to 4,500 plasma proteins) 

approaches in clinical and population studies.1–3 However, due to the extensive pre-

fractionation required,4 application of mass spectrometry in large-scale population 

studies remains challenging. In contrast, advances in high-throughput affinity-based 

protein profiling technology using the antibody-based OLINK5 or the aptamer-based 

SomaScan6–8 platform have made it possible to measure plasma levels of several 

thousand different protein markers simultaneously in large numbers of samples. The 

OLINK platform measures protein levels using paired antibodies binding a single 

target protein,5 while SomaScan employs slow off-rate modified aptamers 

(SOMAmers) as protein-binding reagents.6–8 
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Both OLINK and SomaScan platforms have recently been used in large-scale 

population studies, helping to identify genetic variants associated with plasma 

protein levels (i.e. pQTLs) and biomarkers of traits (e.g. BMI), diseases, and their 

progression.9–12 The latest OLINK and SomaScan platforms now include >5,000 and 

>11,000 protein reagents, respectively, targeting a large number of overlapping 

proteins. A few studies have recently compared, directly or indirectly, the analytical 

performance of different platforms and generally showed only modest correlations 

between protein levels measured by OLINK and SomaScan.13–17 Moreover, the 

protein-phenotype associations and pQTLs identified in these studies have also 

varied between platforms.15–17 In a recent large study, the findings were based 

mainly on indirect comparisons of different individuals enrolled in the UK Biobank or 

the deCODE study.17 Most studies that compared the platforms directly within the 

same blood samples were constrained by small sample sizes, limited numbers of 

overlapping proteins often only of high abundance, involvement of primarily 

European ancestry populations, and lack of in-depth genetic or concomitant analyses 

of proteins with phenotypes.13–17 

We present direct comparative analyses of 2,168 proteins measured by both the 

OLINK Explore and SomaScan4.1 assays in ~4,000 participants from an ischaemic 

heart disease (IHD) case-subcohort study in the China Kadoorie Biobank (CKB). The 

main aims of this study were to: (i) examine the correlations between plasma protein 

levels measured by the two platforms; (ii) compare the pQTLs identified in genome-

wide association studies (GWAS); (iii) compare the associations of proteins with 

different traits (e.g. adiposity) and disease risks (e.g. IHD); and (iv) compare the 

performance of proteins for prediction of IHD risk, separately and in combination with 

conventional risk factors. 
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Methods 

Study population and design 

The CKB is a prospective cohort study with >512,000 adults recruited during 2004-

08 from 10 geographically diverse areas.18 At baseline and subsequent periodic 

resurveys of a random subset of participants, detailed data were collected from 

participants using laptop-based questionnaires (e.g. socio-demographic 

characteristics, medical history, and lifestyle habits) and physical measurements 

(e.g. anthropometry, blood pressure, heart rate, lung function). Non-fasting (with time 

since the last meal recorded) blood samples were collected, processed, aliquoted, 

and then stored in liquid nitrogen. After the initial baseline survey, the long-term 

health of the participants was monitored by linkage with local death or disease 

registries and with the national health insurance systems that record any episodes of 

hospitalisation.18 The study was approved by international, national, and local ethics 

committees, and all participants provided written informed consent.  

The present analysis involved a case-subcohort study of 3,977 unrelated participants 

(1,951 incident IHD cases and 2,026 subcohort participants) who were genotyped, 

and had no prior history of cardiovascular diseases.19 

Genotyping 

A total of 100,706 CKB participants were genotyped using a custom Affymetrix array, 

with 531,565 variants passing quality control (QC). They were converted to genome 

build 38 using CrossMap v0.6.120 and checked for consistency by reversing the 

process (liftUnder). Variants were excluded if they were not mapped, mapped to 

different chromosomes, or not mapped back to the same locations after liftUnder, 
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leaving 531,542 remaining variants for further analyses. They were pre-phased using 

SHAPEIT v4.2 (SHAPEIT v2.904 for chromosome X)21 and uploaded to the 

TOPMed22 or Westlake Biobank for Chinese23 server for imputation. Two sets of the 

imputed data were merged by selecting the imputed genotype with a higher 

imputation INFO score for each variant. Variants with an INFO score<0.3 or a minor 

allele frequency (MAF)=0 were excluded. Details of the genotyping and QC 

procedures have been previously described.24 

Proteomic assays 

For the OLINK Explore 3072 assay, stored baseline plasma samples for 3,977 

participants were retrieved from liquid nitrogen and thawed, and 40µl plasma was 

aliquoted into 96-well plates (including 8 wells per plate for external QC samples). 

Plates were shipped in two batches for assay at OLINK Laboratories (first batch, 

1472 proteins in Uppsala, Sweden; and second batch, 1469 proteins in Boston, 

USA). Protein levels were normalised based on inter-plate controls and transformed 

using a pre-determined correction factor. The limit of detection (LOD) for reagents 

was defined using external QC samples. QC warnings for participant samples and 

assay warnings for plates were flagged based on deviations in the QC samples.25 

Protein levels were provided in the arbitrary Normalized Protein eXpression (NPX) 

unit on a log2 scale. Among a total of 2,941 protein reagents, six were replicated 

across all four panels, resulting in 2,923 unique reagents. Only one measure for 

each duplicated OLINK reagent was used for the comparative analysis, as replicated 

protein levels had high correlations between panels (r>0.8). 

For the SomaScan v4.1 assay, 60µl plasma aliquots in 2D-barcoded microtubes for 

the same 3,977 participants were sent to the Somalogic Laboratory in Colorado, 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 1, 2023. ; https://doi.org/10.1101/2023.12.01.23299236doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.01.23299236
http://creativecommons.org/licenses/by/4.0/


8 
 

USA for profiling by SomaScan Assay v4.1, which covers a total of 7,596 

SOMAmers, including 7,335 targeting human proteins. Samples were randomised at 

the Somalogic laboratory and aliquoted into 96-well plates (11 wells allocated for 

external control samples, including 5 calibrator, 3 QC, and 3 buffer samples). One 

subcohort participant was excluded due to insufficient sample volume. For 91 

participants with higher sample volumes, samples were split and run in duplicate. 

Only one measure from each duplicated sample was used for the comparative 

analyses as protein levels between duplicate samples were highly correlated 

(median rho>0.8). The raw SomaScan assay results were standardised based on 

external control samples to control for variability in microarrays and variation within 

and across plates. This also included an optional step of adaptive normalization by 

maximum likelihood (ANML) to an external reference to control for inter-sample 

variability.26 The final SomaScan data were supplied in both ANML and non-ANML 

versions in relative fluorescence units (RFU), which were further log-transformed 

(natural log) in the main analyses. The LOD for SOMAmers was defined using 

external buffer samples. QC checks were performed by comparing the median of QC 

samples on each plate to the reference, and a cross-plate QC check measure 

(pass/flag) was assigned to each SOMAmer.  

Protein target mapping and reagent matching 

We mapped OLINK reagents and SOMAmers to proteins based on their UniProt27 

IDs provided by OLINK and SomaScan.27 If two reagents from different platforms 

mapped to the same UniProt ID, we considered them to be an OLINK-SomaScan 

reagent pair. The main analysis focused on reagent pairs where one unique OLINK 

reagent was matched to one unique SOMAmer. Separate analyses were also 
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undertaken to investigate proteins for which single SOMAmers matched to multiple 

OLINK reagents and single OLINK reagents matched to multiple SOMAmers. 

Statistical analyses 

We calculated Spearman’s and Pearson’s correlation coefficients for each OLINK-

SomaScan reagent pair, using both ANML and non-ANML SomaScan data. We 

annotated all OLINK-SomaScan reagent pairs in four areas, including: (i) OLINK or 

SomaScan assay-related factors (e.g. batch, dilution factor); (ii) OLINK or SomaScan 

data-related measures (e.g. % outliers [> 4 SD from the mean], % below LOD); (iii) 

protein characteristics retrieved from the UniProt Knowledgebase27 (e.g. presence of 

a transmembrane domain); and (iv) Gene Ontology (GO) annotations.28 Following 

the method used in Pietzner et al15, we employed Boruta feature selection,29 a 

random-forest-based machine learning approach, to identify factors that were 

predictive of Spearman’s rho. We included a total of 88 features in Boruta (for GO, 

the top 10 most annotated terms from each GO category), with a p-value threshold 

of 0.01 and maximal number of 50,000 runs. An importance measure was generated 

for each variable after each run. For features confirmed by Boruta, we further tested 

their associations with Spearman’s rho using linear regression to determine the 

direction of their effect. 

We performed GWAS of each protein, with genotyping array version, age, age2, sex, 

study area, and ten national genomic principal components included as covariates. 

GWAS were conducted using BOLT-LMM30 (SNPTEST31 when BOLT-LMM failed) 

for OLINK and REGENIE32 for SomaScan. Only SNPs with INFO>0.3 and minor 

allele count (MAC)>20 were included. Associated loci were defined by genome-wide 

significant variants (p<5x10-8) after linkage disequilibrium (LD) clumping using 
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PLINK33,34 (initial window +/- 10 Mbp [40 Mbp for the MHC region], p<0.05, r2>0.05), 

with an internal LD reference of 40,000 unrelated CKB participants. Overlapping loci 

were merged and extended by +/- 10 kb, and the variant with the lowest p-value was 

identified as the sentinel variant. pQTLs within 500 kb on either side of the protein-

encoding gene were defined as cis-pQTLs, while pQTLs outside this window were 

defined as trans-pQTLs. We performed fine-mapping using SuSiE (v0.12.16)35 to 

identify independent 95% credible sets. Colocalisation was performed using coloc 

(v5.2.1)36 for proteins with at least one cis-pQTL in either platform, to identify shared 

signals between OLINK and SomaScan with a posterior probability>0.8 across fine-

mapped credible sets. 

We conducted linear regression analyses to examine cross-sectional associations 

between protein levels and selected baseline traits, with scaled protein levels (i.e. 

divided by SD) as the outcome and traits of interest (e.g. BMI, heart rate, smoking) 

as explanatory variables. The models were adjusted for age, age2, sex, ambient 

temperature (at sample collection) and its square, time since last meal and its 

square, and plate ID. We employed the Benjamini–Hochberg method to control the 

false discovery rate (FDR) in multiple testing within each trait and each platform.37 

The main analyses included all participants with additional sensitivity analyses 

restricted to the subcohort participants only.  

We used the Prentice pseudo-partial likelihood Cox regression method for analyses 

of associations of levels of proteins with incident IHD (ICD-10 codes: I20, I22-I25).38  

All models were adjusted for age, age2, sex, ambient temperature and its square, 

time since last meal and its square, plate ID, education, physical activity, alcohol 
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intake, smoking, SBP, diabetes, and BMI. Sub-cohort participants were censored at 

time of any other IHD diagnosis.39 

For risk prediction of IHD, we used LASSO logistic regression models using three 

sets of proteins: (i) all matched proteins; (ii) significant proteins in each platform after 

FDR correction; (iii) significant proteins that were shared between platforms. We 

calculated the Harrell’s concordance index (C-statistic)40–42 for each model using 

Prentice weighting43 and stratified the calculation by region. The C-statistic assesses 

a model’s discrimination ability within region and was estimated using repeated 10-

fold cross-validation with 5 repeats in the present study. We used the net 

reclassification index (NRI)44,45 to assess the improvement gained by adding different 

sets of proteins to the conventional risk factors risk prediction model for IHD 

(including age, sex, smoking, type 2 diabetes, SBP, and waist circumference) 

previously developed in CKB.46 All analyses were conducted in R.47 

Results 

Of the 3,976 participants in the study (one participant excluded due to insufficient 

sample volume), 53.7% were female and the mean (SD) age at baseline was 60.3 

(11.5) years and the mean (SD) BMI was 23.9 (3.6) kg/m2. At sample collection, the 

mean ambient temperature was 15.7°C (SD 10.5), and the mean time since last 

meal was 4.7 (SD 4.7) hours. Further details of participant characteristics by case-

subcohort ascertainment are shown in Table 1. 

After excluding duplicated reagents and reagents without corresponding UniProt IDs, 

there were 2,923 OLINK Explore 3072 reagents (mapped to 2,923 UniProt IDs), and 

7,301 SomaScan Assay v4.1 SOMAmers targeting human proteins (mapped to 

6,397 UniProt IDs). We identified 2,749 OLINK-SomaScan reagent pairs, 
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corresponding to 2,168 UniProt IDs (Figure 1), including 1,694 reagent pairs for 

which one unique SOMAmer was matched to one unique OLINK reagent.  

Observational correlations and associated factors 

For the 1,694 one-to-one matched OLINK-SomaScan reagent pairs, we found a 

median rho of 0.20 between OLINK and SomaScan-ANML proteins, and a median 

rho of 0.26 between OLINK and SomaScan-non-ANML proteins. Histograms suggest 

a bimodal distribution of Spearman’s rho, with a peak centred around 0 and another 

closer to 0.8 (Figure 2a). There was a strong correlation between SomaScan-ANML 

and SomaScan-non-ANML data (median rho=0.84; eFigure 1). Analysis restricted to 

2,025 subcohort participants yielded similar results (eFigure 2). Log-transformation 

of the SomaScan data increased the median Pearson’s r with OLINK from 0.05/0.08 

to 0.15/0.20 (for ANML/non-ANML; eFigure 3). Therefore, all subsequent analyses 

were based on natural log-transformed SomaScan data. 

Using Boruta feature selection, several assay- and sample-related factors were 

predictive of Spearman’s correlation coefficients (Figure 2b). Higher protein 

abundance (i.e. higher mean values and dilution factors; eFigures 4 and 5) and 

higher data quality (i.e. lower % below LOD and lower % of samples with QC 

warnings) were predictive of higher correlations between platforms. Negative 

skewness (more values on the right side of the distribution) and platykurtic 

distributions (fewer extreme values, also indicated by lower % outliers) data were 

also associated with stronger correlations. Proteins in OLINK batch 1 (typically 

higher in abundance) were predictive of higher Spearman’s rho. The findings were 

consistent across ANML and non-ANML SomaScan data. In contrast, protein 
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characteristics retrieved from the UniProt Knowledgebase and GO annotations were 

generally not predictive of correlations (eTables 1 and 2). 

Comparisons of pQTLs 

In GWAS of the 1,694 reagent pairs, there were 725 (42.8%), 565 (33.4%), and 519 

(30.6%) proteins with cis-pQTLs identified in OLINK, SomaScan-ANML, and 

SomaScan-non-ANML, respectively, corresponding to 762, 587, and 539 sentinel 

cis-pQTL variants (Figure 2c). Moreover, there were 766 (45.2%), 812 (47.9%), and 

718 (42.4%) proteins with trans-pQTLs, respectively, corresponding to 1,257, 1,249, 

and 1,085 sentinel trans-pQTL variants. The comparisons of -log10(p-value) for pQTL 

sentinel variants between platforms are shown in eFigure6. 

In colocalisation analysis of 856 proteins with cis-pQTLs discovered in either OLINK 

or SomaScan-ANML (Figure 2d), 342 (40.0%) proteins had cis-pQTLs which 

colocalised between platforms. When restricting the analysis to 434 proteins with cis-

pQTLs identified in both platforms, 329 (75.8%) showed evidence for colocalisation 

between OLINK and SomaScan-ANML platforms. In contrast, for proteins with cis-

pQTLs identified in only one platform, only 3.1% showed evidence for colocalisation 

with the other platform. Proteins with colocalising cis-pQTLs also had higher 

between-platform correlations (median rho=0.67; Figure 2a). Colocalisation analysis 

of cis-pQTLs between OLINK and SomaScan-non-ANML yielded similar results 

(Figure 2d). The proportion of cis-pQTLs that colocalised was high between ANML 

and non-ANML SomaScan data (eFigure 7).  

Associations with adiposity and other traits 
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Overall BMI was significantly associated at FDR<0.05 with 1,095 (64.6%), 963 

(56.8%), and 1,429 (84.4%) proteins, respectively, from OLINK, SomaScan-ANML, 

and SomaScan-non-ANML data (Figure 3a). Applying Bonferroni correction reduced 

the number of significant proteins proportionally across different platforms (eFigure 

8). There was a moderate correlation of effect sizes (beta coefficients) for BMI 

between the platforms (Pearson’s r=0.49 [95%CI: 0.46 to 0.53] for ANML and 0.51 

[95%CI: 0.47 to 0.54] for non-ANML with OLINK) (Figure 3c), and strongly 

correlated effect sizes (r=0.95; 95%CI: 0.95 to 0.95) between SomaScan-ANML and 

SomaScan-non-ANML data (eFigure 9).  

Of the 654 BMI-associated proteins in both OLINK and SomaScan-ANML, 510 

(78.0%) showed directionally consistent (i.e. shared) associations with BMI. For 

those with shared associations, the correlation of effect sizes between platforms was 

high (r=0.84; 95%CI: 0.82 to 0.87; Figure 3c). Proteins with shared associations with 

BMI had higher median Spearman’s correlations across platforms (Figure 3e). 

Among 342 proteins with colocalising cis-pQTLs between OLINK and SomaScan-

ANML, there was a high between-platform correlation of effect sizes for BMI (r=0.81; 

95%CI: 0.77 to 0.85), with 140 (40.9%) having shared associations with BMI. The 

results were similar for comparisons between OLINK and SomaScan-non-ANML 

platforms (Figure 3).  

The associations of proteins with a range of other traits are shown in eFigures 10-

19. 

Associations with incident IHD 

Overall, 279 (16.4%), 165 (9.7%) and 154 (9.1%) proteins were significantly 

associated at FDR<0.05 with risk of IHD from OLINK, SomaScan-ANML and 
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SomaScan-non-ANML data, respectively (Figure 3b). There were fewer significant 

associations with IHD after applying Bonferroni correction (eFigure 20). Of the 79 

proteins that were significantly associated with IHD in both OLINK and SomaScan-

ANML, 78 (98.7%) showed directionally concordant (shared) associations. For all 

overlapping proteins (n=1694), the between-platform correlation (Pearson’s r) of 

effect sizes was 0.38 (95%CI: 0.34 to 0.42), which increased to 0.83 (95%CI: 0.75 to 

0.89) when restricted to proteins with shared associations with IHD (Figure 3d). 

Proteins with shared associations with IHD had higher between-platform correlations 

(Figure 3f). When restricting the analyses to 342 proteins with colocalising cis-

pQTLs, 40 (11.7%) had shared associations with IHD with a strong correlation of 

effect sizes (r=0.70; 95%CI: 0.64 to 0.75). The comparisons between OLINK and 

SomaScan-non-ANML platform were similar to those between OLINK and 

SomaScan-ANML (Figure 3), and the ANML and non-ANML SomaScan data had 

remarkably consistent effect sizes with BMI (r=0.98; 95%CI: 0.98 to 0.98; eFigure 9). 

For prediction of incident IHD, models with more proteins typically performed better 

than those with fewer proteins, with the C-statistics ranging from 0.803 to 0.830 

(Figure 4), compared with 0.846 (95%CI: 0.830 to 0.863) for the risk prediction 

model that only included conventional risk factors. The addition of proteins to the 

conventional model increased the C-statistics to about 0.860 irrespective of the 

platform or number of proteins included. Although the NRI did not differ notably 

between different platforms, there was a tendency for SomaScan-ANML proteins to 

have greater NRI values than OLINK proteins, even with fewer proteins considered 

(e.g. 17.1% vs 15.3% for 165 and 279 FDR-significant proteins in SomaScan-ANML 

and OLINK, respectively).  
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Non-one-to-one matched reagent pairs 

Of the remaining 474 proteins matched to more than one reagent, 472 were targeted 

by one OLINK reagent and by 2 to 9 SOMAmers (1,037 unique SOMAmers in total), 

resulting in 1,053 OLINK-SomaScan reagent pairs. We found a moderate correlation 

between protein levels measured by different SOMAmers targeting the same protein 

(median rho=0.18/0.46 for ANML/non-ANML; eFigure 21). Likewise, there was only 

a moderate correlation between OLINK and SomaScan reagent pairs (median 

rho=0.31/0.37 for ANML/non-ANML; eFigure 22). In GWAS of these 474 proteins, 

cis-pQTLs were identified for 258 OLINK reagents, 427 ANML-SOMAmers, and 400 

non-ANML-SOMAmers, and trans-pQTLs were identified for 257, 566, and 500 

reagents, respectively. We found evidence for colocalisation of cis-pQTLs for 

181/174 proteins between OLINK reagents and varying numbers of their matched 

ANML- and non-ANML-SOMAmers (eTables 3 and 4).  

A further 18 proteins were targeted by one SOMAmer and two OLINK reagents (22 

unique OLINK reagents in total), resulting in 36 OLINK-SomaScan reagent pairs. 

There were moderate correlations between OLINK reagents targeting the same 

protein (median r=0.31; eFigure 23) and between OLINK and SomaScan reagent 

pairs (median rho=0.07/0.16 for ANML/non-ANML; eFigure 24). In GWAS of these 

18 proteins, cis-pQTLs were identified by 8 OLINK reagents, 5 ANML-SOMAmers, 

and 6 non-ANML-SOMAmers, while trans-pQTLs were identified by 15, 9, and 6 

reagents, respectively. There was evidence for colocalisation of cis-pQTLs for only 

two SOMAmers with one of their two matched OLINK reagents. 

Discussion 
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In this large-scale direct comparative analysis of 2,168 proteins assayed by both 

OLINK and SomaScan platforms in Chinese adults, we found only modest 

correlations between plasma levels of proteins measured by each platform. In 

GWAS, OLINK-proteins were more likely to have cis-pQTLs compared with 

SomaScan-proteins, with >70% proteins with overlapping cis-pQTLs colocalised. 

Both platforms yielded comparable numbers of proteins significantly associated with 

adiposity. There were more OLINK than SomaScan proteins significantly associated 

with incident IHD, but their performance for risk prediction of IHD was similar, with 

SomaScan proteins, irrespective of the number of proteins considered, showing 

slightly higher NRI values for IHD when added to conventional IHD risk factors.  

Previous studies designed to compare OLINK and SomaScan platforms had varying 

numbers of participants (10~1,514) and numbers of overlapping proteins 

(425~1,848). However, most studies reported only moderate correlations (median 

rho≈0.4) of protein levels between each platform.13–16 Two previous studies 

examined the concordance of pQTLs identified by the two platforms in the same 

sample, with one reporting half of the proteins with cis-pQTLs having signals 

discovered in both,16 while another reported that 64% of genomic region-protein 

associations were shared based on LD.15 The recent study by Eldjarn et al. reported 

that about half of the cis-pQTL signals in one platform had a corresponding pQTL in 

the other, although their pQTLs were identified in two different datasets.17 In contrast 

with the present study, previous studies did not analyse proteins separately targeted 

by multiple reagents, which showed different patterns of associations, nor assessed 

the consistency of pQTLs obtained by colocalisation analyses. In the present study, 

we found more modest correlations (median rho=0.20) between the two platforms 

than previous studies, possibly reflecting the inclusion of a higher proportion of low-
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abundance proteins in the present study. Indeed, in analyses stratified by protein 

abundance, there were stronger correlations (median rho≈0.6) for more highly 

abundant proteins (i.e. those with dilution factor<10%). In the present colocalisation 

analyses, we found that about 40% of the proteins with cis-pQTLs obtained by either 

platform colocalised between OLINK and SomaScan, with the proportion increasing 

to 70% when analyses were restricted to those with cis-pQTLs discovered in both 

platforms. In this East Asian population, we were also able to identify pQTLs that had 

not been previously reported in other populations due to MAF differences. For 

example, the cis-pQTL sentinel variant (rs671) for ALDH2 has an MAF=0.20 in East 

Asians but <0.001 in other populations, and is known to have a significant impact on 

alcohol metabolism.48,49 The missense variant rs76863441 (MAF=0.06 in East 

Asians but <0.001 in other populations) was a cis-pQTL for PLA2G7, which was 

found to be related to inflammation, CVD, and life span.50,51 The two cis-pQTLs were 

found in both OLINK and SomaScan and colocalised between platforms (eFigures 

25 and 26), which should facilitate future research on such questions. 

Few previous studies have systematically compared the associations of OLINK and 

SomaScan proteins with traits and risks of disease outcomes. In the present study, 

the two platforms yielded comparable numbers of significant associations with BMI 

and other traits. For incident IHD, however, the OLINK platform yielded more 

proteins that were significantly associated with disease risk than SomaScan. 

Nevertheless, most (~80%) proteins that were significantly associated with IHD in 

both platforms showed directionally consistent associations, with a high (r≥0.75) 

correlation of effect sizes. We found that proteins with high correlations between 

platforms or with colocalising cis-pQTLs tended to produce reproducible associations 

with traits and disease risk across platforms, as illustrated by GHR (associated with 
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BMI in both platforms) and GDF15 (associated with IHD in both platforms). Both 

proteins showed high concordance in their observational correlations and cis-pQTLs, 

and their associations with adiposity or with CVD have been previously reported.52–54 

The present study was the first study to directly compare the performance of OLINK 

and SomaScan proteins for risk prediction of major diseases in the same population. 

Although proteomic prediction models alone did not outperform the performance of 

the model with conventional risk factors for IHD in analyses of a set of proteins 

captured by both platforms, the addition of proteins, irrespective of the number 

considered, to conventional risk factors significantly improved risk prediction of IHD. 

Moreover, the NRI for SomaScan proteins, especially SomaScan-ANML, were 

somewhat higher than those obtained for OLINK proteins, which persisted even with 

a smaller number of FDR-significant proteins (165 vs 279 proteins; NRI: 17.1% vs 

15.3%). Importantly, the present analyses focused on the 1,694 overlapping proteins 

and the SomaScan platform captures more proteins than OLINK platform, which may 

yield improved risk prediction of IHD (and other diseases) when all proteins are 

considered.55,56  

In contrast with the present study, previous studies have focused on comparisons 

between OLINK and SomaScan-ANML, without due consideration of SomaScan-

non-ANML. Although most results were highly consistent, we found that SomaScan-

non-ANML yielded a larger number of significant associations with BMI (1,429 vs 

963) and particular baseline traits. The ANML procedure standardises the overall 

signal of each sample to an external reference, and while improving the data quality, 

this process may also suppress true extreme signals or outliers that are present in 

the general population, resulting in fewer significant associations.7,8 For incident IHD, 
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however, the findings differed, with comparable numbers of significant associations 

for SomaScan-ANML and SomaScan-non-ANML, but slightly greater NRI detected 

by SomaScan-ANML for risk prediction. These findings warrant corroboration in 

other ancestry populations given their potential importance for population health 

research. 

Consistent with previous studies,15 our Boruta feature selection analyses 

demonstrated that protein abundance and data quality (e.g. % below LOD, % 

outliers, QC warning) were the two most important factors that accounted for the 

concordance between measurements as well as differences in downstream genetic 

and observational analyses between OLINK and SomaScan platforms. Conversely, 

protein characteristics based on annotations from UniProt Knowledgebase and Gene 

Ontology contributed little to the differences between platforms, at least for the 1,694 

proteins with one-to-one matched single reagents. Nevertheless, differences in 

protein measurements may still be influenced by reagents binding to different 

proteoforms of the same protein, leading to epitope effects and discordant findings in 

pQTL analysis (i.e. genetic variation influencing reagent binding to protein epitopes 

due to changes in protein structure).10,17 Further in-depth analyses of 474 proteins 

matched to more than one reagent could explore possible epitope effects. For 

example, not all SOMAmers targeting TNC showed evidence for colocalisation of 

cis-pQTLs with the corresponding OLINK reagent (eFigures 27 and 28). This could 

be a result of those reagents targeting different structures of TNC, a protein known to 

have different isoforms.57,58 In the absence of any data on proteoforms for either 

platform, it was not possible to reliably assess this hypothesis. 
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The present study is the largest study to date that compares the diagnostic utility of 

antibody and aptamer-based proteomic platforms in identical blood samples. We 

assessed the agreement between platforms using both observational and genetic 

analyses, and compared analytical performance for their associations with traits and 

IHD, in addition to utility for risk prediction of IHD. In addition, this is the first such 

study to be conducted in East Asians, and this has enabled the identification of 

pQTLs that were not previously reported in other ancestry populations. However, the 

present study also had several limitations. First, we did not compare coefficients of 

variation as a measure of accuracy, as these are strongly influenced by the data 

distribution. Moreover, we were unable to adopt the CV ratio (i.e. CV in repeated 

samples divided by CV in unrelated samples) as proposed by Eldjarn et al to 

compare accuracy between platforms,17 due to the small number of duplicates of 

proteins/samples measured in the study. Second, the analyses chiefly focused on 

one-to-one matched OLINK-SomaScan reagent pairs, and further analyses of 

proteins assayed using different reagents targeting the same proteins may still offer 

additional insights, particularly analysis of possible epitope effects.15 Third, we only 

compared 2,168 overlapping proteins matched to the same UniProt ID based on the 

previous version of each platform. Recently, the number of proteins measured by 

OLINK has increased to over 5,000, while the latest SomaScan platform includes 

about 11,000 aptamers, and this is likely to increase the number of overlapping 

proteins between the platforms. Finally, we only compared two major affinity-based 

platforms. Future studies will be required to compare agreement with measurements 

from mass spectrometry platforms, which remains the ‘gold standard’ for protein 

identification and quantification. With advances in mass spectrometry that increase 
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assay throughput,59,60 future comparative studies of mass spectrometry with affinity-

based platform(s) are now warranted. 

Overall, this study assessed the analytical performance of two affinity-based 

proteomic platforms in a large study of Chinese adults. Each platform had different 

strengths and limitations and both were complementary with each other. The 

selection of platforms in future studies may depend on the study purpose (e.g. 

mechanistic investigation vs risk prediction), analytical approach (e.g. observational 

vs genetic), preferred breadth of coverage of the platform, and overall cost-

effectiveness. As affinity-based and mass spectrometry technologies are still growing 

and will likely capture more overlapping proteins between platforms, further studies 

are still needed to compare, both directly and indirectly, the utilities of different 

platforms that will inform large-scale population and clinical research. 
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Figure legends 

Figure 1: Summary of study design, analytic approaches and key findings. 

Main analyses were conducted on 1,694 one-to-one matched OLINK-SomaScan 

reagent pairs in 3,976 CKB participants. One subcohort participant was excluded 

due to insufficient sample volume. Results were corrected for multiple testing using 

false discovery rate within each platform. Risk prediction models for IHD were built 

using conventional risk factors (age, sex, smoking, T2D, SBP, and waist 

circumference) and significantly associated proteins. Abbreviations: CKB=China 

Kadoorie Biobank; ANML=adaptive normalization by maximum likelihood; BMI=body 

mass index; IHD=ischaemic heart disease. 

Figure 2: Observational correlations, associated factors, and comparison of 

pQTLs for 1,694 proteins measured using both OLINK and SomaScan 

platforms. a) Spearman’s correlation coefficients (rho) of protein levels between 

OLINK and SomaScan, with shaded areas indicating proteins with colocalising cis-

pQTLs. b) Features predictive of Spearman’s rho and their importance in Boruta 

feature selection. Colours indicate the direction of their associations with Spearman’s 

rho. Two features were selected using non-ANML data but rejected using ANML 

data. c) Number of sentinel pQTLs identified in each platform, with shaded areas 

indicating the number of proteins with pQTLs. d) Number of proteins with cis-pQTLs 

identified in each platform and proteins with colocalising cis-pQTLs across platforms. 

Abbreviations: ANML=adaptive normalization by maximum likelihood; pQTL=protein 

quantitative trait loci. 

Figure 3: Comparison of number of proteins significantly associated with BMI 

and risk of incident IHD and their effect sizes between OLINK and SomaScan 

platforms. Associations between protein levels and BMI (a) and IHD (b). 

Comparison of effect sizes (beta coefficients) between OLINK and SomaScan for 

associations with BMI (c) and IHD (d). Spearman’s correlation coefficients of protein 

levels between OLINK and SomaScan, with shaded areas indicating shared 

associations for BMI (e) and IHD (f). Results were corrected for multiple testing using 

false discovery rate within each platform. Abbreviations: ANML=adaptive 

normalization by maximum likelihood; BMI=body mass index; IHD=ischaemic heart 

disease. 

Figure 4: Performance of proteins measured using OLINK and SomaScan 

platforms for prediction of incident IHD. Conventional risk factors for 

cardiovascular disease included age, sex, smoking, T2D, SBP, and waist 

circumference. For each platform, three sets of proteins were used to construct risk 

prediction models: 1) all overlapping proteins; 2) out of the overlapping proteins, 

significant proteins after false discovery rate correction; 3) significant proteins that 

were shared between OLINK and SomaScan. Abbreviations: ANML=adaptive 

normalization by maximum likelihood; IHD=ischaemic heart disease; NRI=net 

reclassification index. FDR: false discovery rate. 
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Table 1: Baseline characteristics of IHD cases and subcohort participants who 

had no prior history of CVD at baseline 

Characteristics a 
IHD Cases 
 (n = 1,951) 

Subcohort 
(n = 2,025) 

Total 
(n = 3,976) 

Socio-demographics       

  Mean age (SD), years 66.1 (9.4) 54.7 (10.6) 60.3 (11.5) 

  Female, % 45.1 62.1 53.7 

  Urban residents, % 47.0 50.6 48.8 

  Married, % 79.9 91.3 85.7 

  ≥6 years education, % 46.3 39.3 42.7 

Clinical measurements, mean (SD)       

  Ambient temperature, °C 15.4 (10.5) 16.0 (10.5) 15.7 (10.5) 

  Time since last meal, hours 4.3 (4.4) 5.1 (5.0) 4.7 (4.7) 

  BMI, kg/m2 24.0 (3.8) 23.8 (3.4) 23.9 (3.6) 

  DBP, mmHg 80.4 (12.8) 78.0 (11.1) 79.2 (12.0) 

  SBP, mmHg 146.3 (24.6) 130.5 (21.4) 138.3 (24.3) 

  Heart rate, bpm 79.4 (12.5) 78.8 (11.7) 79.1 (12.1) 

  RPG, mmol/L 7.2 (3.9) 6.0 (2.3) 6.6 (3.3) 

Self-reported medical history, %       

  Poor self-rated health 14.6 8.3 11.4 

  Diabetes 10.3 3.1 6.6 

  Chronic kidney disease 1.4 1.3 1.4 

  Cancer 0.6 0.6 0.6 

Lifestyle habits, %       

  Physical activity (SD), MET-h/day 13.0 (10.5) 21.3 (14.5) 17.3 (13.3) 

  Ever regular smoking       

    Male 75.1 74.9 75.0 

    Female 9.3 3.3 5.8 

  Regular alcohol drinking       

    Male 25.0 36.2 29.7 

    Female 2.8 2.4 2.6 

a Adjusted for age, sex, and study area, where appropriate. 

Abbreviations: CVD=cardiovascular disease; SD=standard deviation; BMI=body mass index; DBP=diastolic 
blood pressure; SBP=systolic blood pressure; RPG=random plasma glucose. 
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