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Summary 

Metastatic castration-resistant prostate cancer (mCRPC) resistant to androgen receptor (AR)-

targeted agents is often lethal. Unfortunately, biomarkers for this deadly disease remain under 

investigation, and underpinning mechanisms are ill-understood. Here, we applied deep 

sequencing to ~100 mCRPC patients prior to the initiation of first-line AR-targeted therapy, which 

detected AR/enhancer alterations in over a third of patients, which correlated with lethality. To 

delve into the mechanism underlying why these patients with cell-free AR/enhancer alterations 

developed more lethal prostate cancer, we next performed genome-wide cell-free DNA 

epigenomics. Strikingly, we found that binding sites for transcription factors associated with 

developmental stemness were nucleosomally more accessible. These results were corroborated 

using cell-free DNA methylation data, as well as tumor RNA sequencing from a held-out cohort 

of mCRPC patients. Thus, we validated the importance of AR/enhancer alterations as a 

prognostic biomarker in lethal mCRPC, and showed that the underlying mechanism for lethality 

involves reprogramming developmental states toward increased stemness. 

Keywords: lethal prostate cancer, mCRPC, plasma, cell-free DNA, epigenomics, 

fragmentomics, methylation, stemness, next-generation sequencing, androgen receptor  
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Introduction 

AR-directed therapies such as abiraterone and enzalutamide have significantly improved survival 

for men with metastatic castration-resistant prostate cancer (mCRPC).1-4 However, approximately 

one-third of patients develop lethal prostate cancer that does not respond well to treatment, with 

very little known about determinants of resistance in this more lethal form of mCRPC.5,6  

Underlying mechanisms for developing this more lethal and resistant form of mCRPC are 

amplification and structural variation in the androgen receptor (AR) locus including its upstream 

enhancer. 7-10 Importantly, we previously showed that amplification and alteration of AR in plasma, 

including its upstream enhancer region, was associated with significantly worse survival outcomes 

in mCRPC patients treated with AR-directed therapy. While compelling, our prior results did not 

include any pre-treatment timepoints, with all patients analyzed either on- or post-treatment with 

AR-directed therapy, making it challenging to determine how predictive this liquid biopsy 

biomarker could be. 

Given this major limitation of our prior study, the primary objective of our current study was to 

validate whether genomic alterations in the AR locus including the upstream enhancer could 

predict significantly worse survival outcomes, including in the pre-treatment setting. After 

validating this finding, critical for downstream clinical translation, we also sought to identify 

mechanisms potentially driving worse survival in these liquid biopsy biomarker-positive patients. 

We thus harnessed the power of cell-free DNA epigenomics and performed both fragmentomics 

and methylation sequencing to delve deeper into the underlying biology of lethal mCRPC. Our 

findings here have the potential to lead to powerfully predictive biomarkers in patients with lethal 

mCRPC, one of the deadliest forms of cancer in men worldwide, with mechanistic insights that 

could inform an entirely new class of therapeutics in the future. 
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Results:  

AR/enhancer and PTEN alterations are associated with lethal mCRPC 

Plasma was collected from 102 mCRPC patients from two institutions, 99 of which were treated 

with AR-selective inhibitors (ARSIs) (Figure 1; Table S1), with a median follow-up time of 34 

months (Table S2). Plasma samples were collected prior to ARSI initiation in 63 patients, and 

during treatment in 36 patients (Table S2). All patients had targeted hybrid-capture NGS 

performed on collected plasma samples using the EnhanceAR-Seq platform, which focuses on 

AR, its upstream enhancer and 84 other genes important to prostate cancer7 (Table S3-S5). 

EnhanceAR-Seq detected AR/enhancer alterations in 35% (35/99) of all analyzed plasma 

samples (Figure 2A and Figure S1). Further, applying EnhanceAR-Seq to pre-treatment plasma, 

AR/enhancer alterations were detected in 44% (28/63) of samples, which correlated with 

significantly worse progression-free survival (PFS) (HR = 2.12, p = 0.01) and overall survival (OS) 

(HR = 2.48, p = 0.02) (Figure 2B and 2C). AR/enhancer alterations detected in 19% (7/36) of 

samples collected during ARSI were also associated with profoundly worse PFS (HR = 15.38, p 

= 0.0003) and OS (HR = 15.53, p = 0.002) (Figure 2D and 2E), directly validating our previously 

published results.7 Survival outcomes were also effectively stratified when restricting our analysis 

to just the AR enhancer region or AR gene body (Figure S2).  

Looking beyond AR, the most frequent genomic events detected in pre-treatment plasma cell-

free DNA (cfDNA) were in KMT2D (46%) and CHD1 (24%), consistent with previous genomic 

studies of mCRPC (Figure 2A and Figure S1).7-9 We also detected TMPRSS2::ERG gene fusions 

in the pre-treatment plasma of 10 patients (16%) (Figure 2A and Figure S1), and observed 

mutations in distinct biological pathways (Figure S3). Still, other than AR, we did not observe any 

association of these gene mutations with prognosis except for PTEN (Figure S4). Indeed, PTEN 
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copy number loss was significantly associated with decreased PFS and OS (Figure S4A and 

S4B). This association remained significant when including cases with PTEN mutation (Figure 

S4C and S4D). Strikingly, patients with alterations in both AR and PTEN genes had even shorter 

PFS and OS (Figure S4E and S4F). These findings suggest that mCRPC patients with AR and 

PTEN alterations detected in pre-treatment plasma have more lethal mCRPC (corroborating prior 

tumor tissue sequencing data11) and could be candidates for escalated upfront therapy.  

Stemness features underpinnings of AR/enhancer altered lethal mCRPC 

Given our previously published7 and newly validated findings showing that AR/enhancer alteration 

in plasma cell-free DNA is associated with significantly worse survival in mCRPC, we next queried 

the underlying epigenomic mechanism for this increased lethality. We thus performed genome-

wide enzymatic methylation sequencing (EM-seq) on 43 patient plasma samples collected before 

starting ARSI treatment (Table S6). We began by investigating nucleosome occupancy across 

transcription factor (TF) binding sites genome-wide for 377 TFs obtained from the Gene 

Transcription Regulation Database (GTRD)).12 Binding sites for 52 TFs were more accessible 

compared to 325 being less accessible in the plasma cfDNA of AR/enhancer altered lethal 

mCRPC (Table S7 and S8). For example, binding sites for the developmental regulator HOXB13 

were more accessible in AR/enhancer altered lethal mCRPC patients (Figure 3A and 3B). 

Conversely, binding sites for another developmental regulator, FOXO1, were less accessible in 

AR/enhancer altered lethal mCRPC (Figure 3C and 3D).  

We were intrigued by the differential nucleosomal accessibility of these developmentally oriented 

transcription factors, and thus broadened our analysis. Looking across the 20 most accessible 

TFs in plasma cfDNA (Figure 3E) which we further validated in tissue using TCGA (Figure S5), 

we performed gene set enrichment analysis and strikingly observed enrichment for pathways 

associated with stem cell development (Figure 3F).  
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We then wondered if we could more formally query stemness in these lethal mCRPC patients 

using cfDNA. We hypothesized that we might be able to infer stemness genomically, in a manner 

analogous to the gene counts-based methodology (CytoTRACE) applied to single-cell RNA 

sequencing data by Gulati et al.13 (Figure 4A). We thus began by applying CytoTRACE to publicly 

available single-cell RNA-seq data from 14 mCRPC patients.14 The prostate adenocarcinoma 

cluster of cells (n = 835) was identified in this dataset based on expression of the AR and KLK3 

genes (Figure 4B). Using CytoTRACE, we then obtained a developmental stemness score for 

each adenocarcinoma tumor cell within this dataset, with cells having a high CytoTRACE score 

being more stem-like, and those with a low score being less stem-like.13 Next we identified the 

genes most differentially expressed in these more stem-like versus less stem-like mCRPC 

adenocarcinoma cells (Figure 4C). Corroborating expected biology, these included genes known 

to play major roles in the processes associated with stemness, cellular proliferation, and self-

renewal.15-19 Further, suggesting a connection with AR/enhancer altered lethal mCRPC, the ten 

genes most associated with stemness were promoter hypo-methylated in this more lethal disease 

state, while the ten genes least associated with stemness were promoter hyper-methylated 

(Figure 4D and 4E). 

Stemness, inferred from cell-free DNA, predicts worse survival outcomes in mCRPC 

Having identified a stemness signature from external single-cell RNA sequencing data and 

connecting it to AR/altered lethal mCRPC, we next wondered if this stemness signature was also 

prognostic. We thus queried pre-treatment plasma cfDNA, and found that stemness-enriched 

mCRPC patients had worse survival outcomes (Figure 4F and 4G) including in multivariate 

analysis with eight covariates that included ctDNA and PSA levels (Table S9). We next, 

importantly, applied our stemness signature to a completely held-out validation cohort of 80 

mCRPC patients profiled by tumor tissue RNA-seq.20 Strikingly, despite differences in cohorts, 

sequencing substrate and sequencing modality, the 20-gene stemness signature again validated 
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prognostically, with stemness-high patients again having significantly worse survival than 

stemness-low patients (Figure 4H). 

Discussion 

Despite the clinical success of second-generation AR-directed therapies such as abiraterone and 

enzalutamide in mCRPC, approximately one-third of patients invariably develop lethal resistant 

disease2,5. In this study, we first validated our previously published finding that AR/enhancer 

alterations in cell-free DNA are highly prognostic,7 extending upon our earlier findings by further 

showing that pre-treatment AR/enhancer alterations are also strikingly prognostic. We further 

learned that PTEN alterations measured from cell-free DNA are associated with worse survival 

outcomes, consistent with the published tumor tissue sequencing literature11,21-24.  

While others have also observed alterations in AR/enhancer associating with lethal disease8,10 , 

it remains unclear what the underlying mechanism for this increased lethality is. To query this 

practically, we performed genome-wide cell-free DNA EM-seq to learn the epigenomic differences 

between AR/enhancer altered lethal disease and its less deadly AR-wild-type counterpart. We 

learned that not only were there stark epigenomic differences between these mCRPC subtypes, 

but there appeared to be an underlying pattern based on stemness pathways. Delving more 

deeply using externally available RNA sequencing data, we learned and validated a stem cell 

signature, which was also enriched in our own cell-free DNA data from AR/enhancer altered lethal 

mCRPC. 

Indeed, it has been shown that stemness features are associated with cancer 

aggressiveness, therapeutic resistance, and increased lethality.13,25-27  Gulati and colleagues used 

technology analogous to ours, applied to breast cancer, and observed an aggressive cancer stem 

cell state, with genomic markers that could be selectively inhibited to induce tumor cytotoxicity.13 

Recently, we also applied similar technology to pancreatic cancer, and identified a stem-like state 
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there that was associated with significantly worse survival outcomes.27 Despite these prior studies 

in other cancer types, the work here in mCRPC is novel, as we were able to validate our stem-

like signature using cell-free DNA data, while the prior works relied on tumor tissue RNA 

sequencing data for validation. 

We acknowledge certain limitations of our study. First, we included patient samples from 

two separate institutions which could introduce unintended biases. Nevertheless, we see this as 

more of a strength than a weakness, as it suggests that our results are more likely to further 

validate in a broader multi-institutional setting. Second, while our risk stratification was based on 

AR/enhancer locus alterations, other genomic alterations involving PTEN, RB1, TMPRSS2::ERG 

and DNA damage repair genes could have been used for risk stratification as well. Indeed, while 

we show data here that mCRPC patients with PTEN alterations in cell-free DNA also had 

significantly worse outcomes, we wanted to remain rather focused on AR/enhancer altered versus 

wild-type mCRPC, to cleanly validate our previously published results7 while delving more deeply 

into underpinning mechanisms. Third, the stemness signature genes obtained in our study are 

not purely canonical in nature, for example it does not include the previously published Yamanaka 

factors.28 Nevertheless, we identified this stemness signature in a highly objective fashion using 

completely external data, and it includes genes shown to be important in development, cellular 

proliferation, and epithelial-mesenchymal transition.15-19 

In conclusion, our study provides further evidence that genomic alterations in the AR locus 

including the upstream enhancer region are remarkably prognostic, with pre-treatment predictive 

potential. Delving deeper into the underlying mechanism, we identify cancer stemness as a 

lethality factor that could explain why these AR/enhancer altered patients have such worse 

survival outcomes. Interestingly, we were able to infer cancer stemness from the cell-free DNA 

liquid biopsy results themselves, representing a significant methodological advancement for the 

field in addition to the important biological implications. 
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Figures legends 

Figure 1. Study overview. Blood samples were collected from 102 mCRPC patients from two 

independent institutions, including samples collected prior to the initiation of AR-targeted therapy 

and during treatment. EnhanceAR-Seq applied to plasma cell-free DNA was used for the 

detection of genomic alterations and risk stratification of mCRPC patients. Genome-wide EM-seq 

for 43 patients was done using plasma collected prior to the initiation of first-line AR-targeted 

therapy. Nucleosome profiling of binding sites for 377 transcription factors in plasma cfDNA was 
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done using Griffin to identify pathways enriched in AR-altered lethal mCRPC patients. scRNA-

seq data from 14 separate mCRPC patients was analyzed to identify stemness markers using 

CytoTRACE, which were used to define a stemness signature that was validated in both plasma 

EM-seq and tumor tissue bulk RNA-seq data. AR, androgen receptor gene; EM-seq, enzymatic 

methylation sequencing; EnhanceAR-Seq, Enhancer and neighboring loci of Androgen Receptor 

Sequencing; mCRPC, metastatic castration-resistant prostate cancer; RNA-seq, RNA 

sequencing; scRNA-seq, single-cell RNA sequencing. 

Figure 2. Genomic characterization of mCRPC plasma cell-free DNA. (A) Genomic alterations 

detected in plasma cfDNA including the androgen receptor (AR) and enhancer region upstream 

of AR in pre-ARSI and on-ARSI plasma collected from mCRPC patients. Progression-free and 

overall survival Kaplan-Meier analysis according to AR/enhancer alteration status in plasma 

collected (B-C) before starting first-line ARSIs and (D-E) during first-line ARSIs. p values were 

calculated by the log-rank test and hazard ratios (HRs) by the Mantel-Haenszel method. ARSI, 

androgen-receptor signaling inhibitor; cfDNA, cell-free DNA; mCRPC, metastatic castration-

resistant prostate cancer.  

Figure 3. Nucleosome profiling of plasma cell-free DNA in AR/enhancer altered lethal 

mCRPC patients. Nucleosome profiling of 10,000 TFBSs associated with 377 transcription 

factors from GTRD (Methods) to infer transcription factor activity from plasma cfDNA. Central 

coverage profiles for transcription factors (A,B) HOXB13 and (C,D) FOXO1 in AR/enhancer 

altered lethal versus AR/enhancer wild-type mCRPC patients. Data in B,D are represented as 

box and whisker plots, with p values calculated by Student’s t test. (E) Top 20 transcription factors 

with binding sites found to be most accessible in AR/enhancer altered lethal mCRPC patients 

versus AR/enhancer wild-type mCRPC, and (F) gene set enrichment analysis of these 20 

transcription factors with –log10(q) and hit count in the query list shown. AR, androgen receptor 
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gene; cfDNA, cell-free DNA; GTRD, Gene Transcription Regulation Database; mCRPC, 

metastatic castration-resistant prostate cancer; TFBS, transcription factor binding site.  

Figure 4. Prognostic stemness signatures associated with lethal mCRPC. (A) Schema 

describing the stemness analysis workflow. (B) UMAP decomposition of scRNA-seq data from 14 

mCRPC patients with the adenocarcinoma cluster comprised of 835 cells highlighted. (C) Top 10 

differentially expressed genes in most stem-like cells and least stem-like cells after single-cell 

analysis of mCRPC adenocarcinoma cells by CytoTRACE (Methods). Comparison of promoter-

level methylation of the (D) most and (E) least stem-like genes with mCRPC type after metagene 

analysis (Methods). Data are shown as box and whisker plots, with p values calculated by 

Student’s t test. (F-G) Stemness measured from plasma EM-seq (Methods) correlated with worse 

survival outcomes by Kaplan-Meier analysis. (H) Validation of the stemness signature in an 

external cohort of 80 mCRPC patients with tumor tissue profiled by bulk RNA-seq. For Kaplan-

Meier analyses, p values were calculated by the log-rank test and hazard ratios (HRs) by the 

Mantel-Haenszel method. EM-seq, enzymatic methylation sequencing; mCRPC, metastatic 

castration-resistant prostate cancer; RNA-seq, RNA sequencing; scRNA-seq, single-cell RNA 

sequencing; TFBS, transcription factor binding site; UMAP, Uniform Manifold Approximation and 

Projection. 
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Methods:   

Study design and patient enrollment 

In this multi-institutional study, plasma samples from 102 mCRPC patients were collected from 

two independent institutions (n = 55 from Tulane, n = 47 from WashU). Plasma samples were 

collected prior to the initiation of first-line AR-targeted therapy (n = 63) and during treatment (n = 

36). The WashU cohort, comprised of 47 patient samples, was prospectively enrolled between 

February 2019 and September 2021. Of the 47 patients enrolled, 19 received abiraterone and 28 

received enzalutamide. The Tulane cohort, comprised of 55 patient samples, was collected 

between March 2015 and January 2020. Three patients from the Tulane cohort were excluded, 

as they had already received AR-directed therapy and samples were collected post-treatment. Of 

the remaining 52 patients, 46 received abiraterone and 6 received enzalutamide. All patients were 

maintained on standard androgen deprivation therapy (i.e., luteinizing hormone-releasing 

hormone receptor agonist or antagonist). Prior treatment with other systemic agents, including 

chemotherapy, was allowed. Patients with evidence of any active non-prostate malignancy other 

than localized skin cancer were excluded from the study. All samples were collected with informed 

consent and institutional review board approval (IRB) (Washington University IRB # 201411135 

and Tulane IRB # 992885) in accordance with the Declaration of Helsinki. Sample IDs in the 

manuscript or in supplemental data are not known to anyone outside of the research group. 

Sample collection and processing 

For the WashU cohort, peripheral blood samples between 10 and 20 ml were collected from each 

patient in K2EDTA vacutainer tubes (Becton Dickinson, Franklin Lakes, NJ) at the time of study 

enrollment. Plasma was separated by centrifugation at 1,200g for 10 minutes at room 

temperature. Plasma-depleted whole blood (PDWB) was collected and frozen at -800C for 

isolation of germline DNA. Plasma was collected, followed by another spin at 1,800g for 5 minutes. 



14 
 

As previously described, both plasma and PDWB were frozen at −80°C before the isolation of 

cfDNA and germline gDNA, respectively. Double-spun plasma and PDWB were similarly obtained 

from patients in the Tulane cohort. 

Nucleic acid isolation 

Circulating cfDNA was isolated from plasma using the QIAamp Circulating Nucleic Acid Kit 

(Qiagen, Hilden, Germany) according to the manufacturer’s instructions. Germline DNA was 

extracted from PDWB using the QIAamp DNA Blood Mini Kit (Qiagen). DNA was then quantified 

by the Qubit dsDNA High Sensitivity Assay (Thermo Fisher Scientific, Waltham, Massachusetts) 

and quality was further assessed using an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa 

Clara, California). 

Enhancer and neighboring loci of Androgen Receptor sequencing (EnhanceAR-Seq) 

EnhanceAR-Seq was performed on plasma cfDNA along with matched germline DNA as 

previously described.7 Briefly, a median of 32 ng of plasma cfDNA was input into sequencing 

library preparation based on the percentage of cfDNA in the 70-450 bp region of the Bioanalyzer 

electropherogram. Corresponding germline DNA was fragmented to ~180 bp size fragments prior 

to library preparation using a LE220 focused ultrasonicator (Covaris, Woburn, Massachusetts). 

32 ng of sheared germline DNA along with unsheared plasma cfDNA was used for library 

preparation using the KAPA HyperPrep kit (Roche, Basel, Switzerland) with barcoded adapters 

containing demultiplexing, deduplicating and duplexing unique molecular identifiers. Targeted 

hybrid capture was performed per the standard CAPP-Seq method.29-31 We used a focused gene 

panel to target the complete AR gene body (including introns), 30 kb of the AR enhancer, and 

exons of 84 other genes that have been shown to harbor genomic alterations in mCRPC.8 

EnhanceAR-Seq libraries were then sequenced, as previously described,7 on an Illumina 
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HiSeq4000 with 2x150 bp paired-end reads with 12 samples sequenced per lane, dedicating 

approximately 50 million total reads per sample .  

cfDNA sequencing data pre-processing 

Cell-free DNA sequencing reads were mapped to the hg19 human reference genome using bwa 

mem. Fgbio was then used to group reads by unique molecular identifiers, requiring a minimum 

mapping quality score of 10. Consensus reads were called, requiring a base quality Phred score 

> 30. Consensus reads were then re-mapped using bwa mem for downstream analysis (including 

structural variation, copy number alteration and single nucleotide variant calling). 

Structural variation (SV), copy number alteration (CNA) and small mutation analysis 

We used PACT, a standardized ctDNA pipeline for detection of SVs, CNAs and small mutations 

recently published by our group.32 Plasma cfDNA structural variant calling was performed using 

the default settings of the PACT workflow. Briefly, SV candidates were called using an ensemble 

of SV callers, including Delly33, Lumpy34 and Manta35, and consensus calls were then filtered 

based on their overlap with regions included in the targeted panel and by excluding SVs that 

overlapped with blacklisted or low complexity regions. Sequencing/alignment artifacts and 

possible germline events were then removed by filtering out any SV with read support in matched 

controls (PDWB) or in a panel of samples from 24 healthy individuals. Finally, ≥1 split read and 

≥1 supporting discordant paired-end read were required. SVs that passed these filters were then 

annotated using snpEff.36 

Copy number alteration (CNA) calling was also performed using the default settings of the PACT 

workflow. First the log-transformed ratio of sequencing depth between cfDNA and matched 

control (PDWB) samples was calculated, while correcting for repeat content and GC content 

biases. Then, recentralization of log depth ratios was performed using copy number control 

regions to account for depth biases resulting as an artifact of targeted sequencing. This task was 
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accomplished using the recommended CNVkit workflow.37 Finally, regions with a log depth ratio 

deviating from the control regions by >3 standard deviations from the mean were considered 

CNAs. 

For single nucleotide variant (SNV) calling, we again used the default settings of the PACT 

workflow. The workflow began by creating a list of candidate SNVs using Mutect38, Strelka39, 

VarScan40 and Pindel41. Additionally, samples were genotyped using GATK’s HaplotypeCaller42 

and the DoCM database v3.2.43 Results from the four SNV callers and from HaplotypeCaller were 

then combined and decomposed using Vt’s decompose function.44 Read counts were re-

calculated using bam-readcount45 and filtering was performed based on frequency in gnomAD 

(<0.1% population frequency), mapping quality (<15% reads with mapq0), read depth (>8), read 

support (>2) and allele frequency (>0.1%). To address the false positives likely to occur due to 

deep sequencing and low expected allele frequencies, background error suppression was 

performed by genotyping remaining variants in our panel of healthy normal individuals (n = 24) 

using HaplotypeCaller.  Any event with read support in >2 healthy individuals was removed. SNVs 

were annotated using vep v100.46 

Enzymatic Methylation sequencing (EM-Seq) library preparation 

EM-seq libraries were prepared from plasma cfDNA collected prior to AR-targeted therapy in 43 

mCRPC patients using the NEB Next Enzymatic Methyl-seq kit (New England Biolabs, Ipswitch, 

Massachusetts) following the manufacturer’s instructions. Briefly, 10ng of plasma cfDNA was 

mixed with 1% (0.1ng) of unmethylated lambda DNA (used as spike-in for quality control). EM-

seq libraries were then sequenced on a NovaSeq 6000 sequencer (Illumina, San Diego, 

California) in paired-end 150 bp mode with a median of ~16x genome-wide read coverage. 

Sequencing metrics are provided in Table S6. 

Alignment of methylation samples 



17 
 

We used BISCUIT for EM-seq next-generation sequencing alignment and methylation calling. 

After trimming adapters using flexbar47, paired Fastq files were provided to the BISCUIT align sub 

command with hg38 human genome as the reference. After alignment, BISCUIT pileup was used 

to compute cytosine retention with base quality ≥ 20 and mapping quality ≥ 40. The outputted vcf 

file was then converted to a bed file using BISCUIT vcf2bed. 

EM-seq bioinformatic quality control 

To check the quality of the aligned samples, we primarily used samtools-flagstat.48 Samtools-

flagstat provides several important quality-control metrics such as total reads, duplicate reads, 

and mapping percentage.48 By generating histograms, we further checked fragment length 

distributions to confirm that cell-free DNA sample sequencing was in the expected nucleosomal 

distribution. Using the samtools depth command, we found the median coverage across plasma 

cell-free DNA samples was 16x (which is what we aimed for). 

To confirm the completeness of enzymatic methylation conversion for our EM-seq 

libraries, we utilized unmethylated control phage DNA that was included in each sample. We first 

used the BISCUIT align subcommand on the post-conversion paired Fastq files for each patient 

with the Enterobacteria phage lambda genome as the reference sequence. Duplicate reads were 

then marked using dupsifter. The resulting output SAM files were then converted to BAM files and 

subsequently indexed using samtools. BISCUIT pileup was then used to calculate cytosine 

retention with base quality ≥ 20 and mapping quality ≥ 40 for each BAM file, outputting a TSV file 

containing the average methylation beta values at each CG, CHG, CHH, and CH site for every 

sample. The average CG methylation beta values were then extracted from each VCF file and 

subtracted from 1 to obtain the conversion rate, which was >98% across the full cohort (Table 

S6).  

Cell-free DNA nucleosomal profiling 
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Here we adapted methodology of analyzing the cfDNA fragmentation pattern from which 

nucleosomes occupancy can be inferred using methylation data.49,50 Leveraging the Griffin 

framework51, we performed nucleosome profiling analysis on methylation bam files. Adhering to 

Griffin's guidelines, we first delineated the mappable regions for each sample, while also 

addressing potential GC bias. To this end, we utilized the Umap multi-read mappability tracks 

sourced from the UCSC genome browser, complemented by Griffin's dedicated wrapper, to 

pinpoint the mappable genomic regions. Recognizing the unique GC bias inherent to each 

sample, especially when working with cfDNA where fragment lengths can vary, we employed 

Griffin's 'fragment length model' based implementation for the requisite GC correction. 

We then delved into TF binding site analysis, employing 377 TFs with about 10,000 sites 

from the Gene Transcription Regulation Database (GTRD)12 as recommended.51 We selected 

central coverage as our primary output feature, consistent with published Griffin analyses due to 

its high sensitivity. For detailed Griffin execution, refer to https://github.com/adoebley/Griffin/wiki. 

Differential expression analysis of TFs in blood and localized prostate cancer patients 

We also employed RNA expression in tumor tissue and peripheral blood as an orthogonal 

validation method to cell-free DNA nucleosomal analysis. Using the UCSC Xena online tool52, we 

aimed to compare TF expression between localized prostate cancer and blood cells. Within this 

browser-based tool, we engaged with the 'main category' and 'study' options. Specifically, for the 

main category, we selected the differential gene expression analysis between 

TCGA_Prostate_Adenocarcinoma (n = 496) and GTEX_Blood (N = 337). Subsequently, the most 

versus least accessible TFs that we learned in mCRPC cell-free DNA was verified in 

TCGA_Prostate_Adenocarcinoma versus GTEX_Blood using the Student’s t  test (Figure S5). 

Gene set enrichment analysis of the top 20 most accessible TFs  

https://github.com/adoebley/Griffin/wiki
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Gene set enrichment analysis was performed with ToppFun53 using the 20 most accessible TFs 

in AR/enhancer altered lethal mCRPC cell-free DNA. Statistical significance was assessed with 

the Benjamini-Hochberg procedure, using an adjusted p-value cutoff of 0.05 (Figure 3F). 

Stemness analysis in tumor tissue and plasma 

Tumor tissue single-cell RNA-seq data from fourteen lethal prostate cancer patients were UMAP 

decomposed from He et al.14 We used AR and KLK3 gene expression to identify the dominant 

prostate adenocarcinoma cluster of 835 cells. There was a separate small cell carcinoma cluster 

of cells that was identified based on CHGA upregulation, and not further considered. Next, we 

log-transformed the prostate adenocarcinoma single-cell RNA-seq gene expression data, filtered 

out ribosomal genes and kept only the protein-coding genes. We then ran CytoTRACE13 to identify 

the genes most associated with stemness in the data. We took the top 500 most stem-like and 

500 least stem-like genes from this step and denoted these gene lists as Smore and Sless, 

respectively. 

Next, we calculated promoter methylation levels in the cell-free DNA EM-seq cohort by 

averaging CpG methylation levels in the promoter regions of Smore and Sless. We ranked these 

promoter methylation scores by variance and denoted this ranked list as M. Given the lists Smore 

and M, we took all the genes between the 75th and 98th percentiles of each, and denoted these 

as S’more and M’. Finally, we took the top 10 stem-associated genes from S’more ∩ M’ and called 

these signature genes SIGmore. Similarly, with Sless, we took the top 10 genes from S’less ∩ M’ and 

called them SIGless. 

To apply SIGmore to the pre-treatment cfDNA EM-seq data and stratify survival, we took 

the z-score of each gene corresponding to SIGmore and then created a metagene by combining 

them. We used a similar approach to stratify survival using SIGless. We then combined SIGmore and 

SIGless into SIGcombined. This was done by inverting the methylation value of SIGless and then taking 
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the z-score and creating a metagene by combining with SIGmore (Figure 4F and 4G). We then 

median-split the metagene data to make it categorical prior to Kaplan-Meier survival analysis. 

To further validate our stemness metagene in an external cohort, we used mCRPC tumor 

tissue bulk RNA-seq data from cBioPortal with previously calculated z-scores 

(prad_su2c_2019).20 Within this cohort, 80 patients were documented with overall survival data. 

Again, we inverted the z-score of the SIGless genes by multiplying by -1, and combined with SIGmore 

to yield the RNA-seq equivalent of SIGcombined. We again median-split the metagene data to make 

it categorical prior to Kaplan-Meier survival analysis (Figure 4H). 

Statistical analysis 

ToppFun53 was used for gene set enrichment analysis of the most accessible TFs discovered in 

the plasma of AR/enhancer altered lethal mCRPC patients. For combining methylation levels 

across gene promoters or expression levels across genes, z-score normalization was used. All 

two-group statistical analyses were conducted using the Student’s t test. The Benjamini Hochberg 

test was performed when multiple hypotheses testing was conducted. We used a 0.05 

significance threshold for all statistical tests employed. Survival plots were generated using 

Kaplan–Meier analysis, and the log-rank test was used to determine statistical significance, and 

Mantel-Haenszel method for calculating hazard ratios. Prism 9 (GraphPad Software, San Diego, 

California) was used for all clinical-correlative statistical and survival analyses, except for 

multivariate cox proportional hazards model analyses which were performed using the lifelines 

python package. 
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Supplemental Information 

 

Supplementary figures 

Figure S1. Genomic landscape of metastatic castration-resistant prostate cancer (mCRPC) 

samples profiled using EnhanceAR-seq. EnhanceAR-Seq, Enhancer and neighboring loci of 

Androgen Receptor Sequencing.  

Figure S2. Kaplan-Meier analysis based on plasma collected prior to first-line androgen receptor-

signaling inhibitor (ARSI) treatment according to (A,B) Androgen receptor (AR) gene body status 

and (C,D) AR enhancer region status in 63 patients with metastatic castration-resistant prostate 

cancer (mCRPC). p values were calculated by the log-rank test and hazard ratios (HRs) by the 

Mantel-Haenszel method.  

Figure S3. Summary of alterations in biologically relevant pathways found in pre-ARSI plasma 

cell-free DNA of 63 metastatic castration-resistant prostate cancer patients. 

Figure S4. Kaplan-Meier analysis based on plasma collected prior to first-line androgen receptor-

signaling inhibitor (ARSI) treatment in 63 mCRPC patients according to (A,B) PTEN copy number 

variation, (C,D) PTEN copy number variation or mutation, and (E,F) alteration in AR/Enhancer or 

PTEN. p values were calculated by the log-rank test and hazard ratios (HRs) by the Mantel-

Haenszel method.  

Figure S5. Transcription factor analysis in localized prostate cancer versus blood. Log2 fold 

change of the 20 TFs with most accessible binding sites in plasma cell-free DNA (see Fig. 3E) in 

localized prostate adenocarcinoma tumors from TCGA (n = 496) versus blood samples from 

GTEX (n = 337) (Methods). p value was calculated by Student’s t test. GTEX, The Genotype-

Tissue Expression project; TCGA, The Cancer Atlas Genome Atlas project; TF, transcription 

factor. 
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Supplementary Tables 

Table S1. Patient characteristics. 

Table S2. Patients-level clinical treatment and outcome details. 

Table S3. Mutations detected in patient cell-free DNA by EnhanceAR-Seq. 

Table S4. Copy number alterations detected in patient cell-free DNA by EnhanceAR-Seq. 

Table S5. Structural variations detected in patient cell-free DNA by EnhanceAR-Seq. 

Table S6. Patient plasma cell-free DNA methylation sequencing metrics. 

Table S7. Central coverage of transcription factor binding sites (TFBSs) for most accessible 

transcription factors in AR/enhancer altered lethal mCRPC. 

Table S8. Central coverage of transcription factor binding sites (TFBSs) for least accessible 

transcription factors in AR/enhancer altered lethal mCRPC. 

Table S9. Multivariate Cox regression for progression-free survival. 
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Figure S1. Genomic landscape of metastatic castration-resistant prostate cancer (mCRPC) samples profiled 
using EnhanceAR-seq. EnhanceAR-Seq, Enhancer and neighboring loci of Androgen Receptor Sequencing. 
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Figure S2. Kaplan-Meier analysis based on plasma collected prior to first-line androgen receptor-signaling inhibitor (ARSI) treatment 
according to (A,B) Androgen receptor (AR) gene body status and (C,D) AR enhancer region status in 63 patients with metastatic 
castration-resistant prostate cancer (mCRPC). p values were calculated by the log-rank test and hazard ratios (HRs) by the Man-
tel-Haenszel method. 
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Figure S3. Summary of alterations in biologically relevant pathways found in pre-ARSI plasma cell-free DNA of 63 metastatic castra-
tion-resistant prostate cancer patients.
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Figure S4. Kaplan-Meier analysis based on plasma collected prior to first-line androgen receptor-signaling inhibitor (ARSI) treatment in 63 
mCRPC patients according to (A,B) PTEN copy number variation, (C,D) PTEN copy number variation or mutation, and (E,F) alteration in 
AR or PTEN. p values were calculated by the log-rank test and hazard ratios (HRs) by the Mantel-Haenszel method.  mCRPC, metastatic 
castration-resistant prostate cancer. 
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Transcription factors expression in 496 prostate adenocarcinoma 
tumors in TCGA and 337 blood samples in GTEX

Figure S5. Transcription factor analysis in localized prostate cancer versus blood. Log2 fold change of the 20 TFs with 
most accessible binding sites in plasma cell-free DNA (see Figure 3E) in localized prostate adenocarcinoma tumors from TCGA 
(n = 496) versus blood samples from GTEX (n = 337) (Methods). p value was calculated by Student’s t test. GTEX, The Geno-
type-Tissue Expression project; TCGA, The Cancer Atlas Genome Atlas project; TF, transcription factor. 
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