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Abstract 
Objectives 
Predicting antimicrobial resistance (AMR), a top global health threat, nationwide at a hospital 
level could help target interventions. Using machine learning, we exploit historical AMR and 
antimicrobial usage to predict future AMR. 
 
Methods 
Antimicrobial use and AMR prevalence in bloodstream infections in hospitals in England were 
obtained per hospital group (Trust) and financial year (FY, April-March) for 22 pathogen-
antibiotic combinations (FY2016-2017-FY2021-2022). XGBoost model predictions were 
compared in a to previous value taken forwards, difference between the previous two years taken 
forwards and linear trend forecasting (LTF). XGBoost feature importances were to aid 
interpretability. 
 
Results 
Relatively limited year-to-year variability in AMR prevalence within Trust-pathogen-antibiotic 
combinations meant previous value taken forwards achieved a low mean absolute error (MAE). 
XGBoost models performed similarly, while difference between the previous two years taken 
forwards and LTF were consistently worse. XGBoost considerably outperformed all other 
methods in Trusts with a larger change in AMR prevalence from FY2020-2021 (last training 
year) to FY2021-2022 (held-out test set). Feature importance values indicated that complex 
relationships were exploited for predictions. 
 
Conclusion 
Year-to-year resistance has generally changed little within Trust-pathogen-antibiotic 
combinations. In those with larger changes, XGBoost models could improve predictions, 
enabling informed decisions, efficient resource allocation, and targeted interventions. 
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Introduction 
Antimicrobial resistance is one of the top global health threats(1). Bloodstream infections are 
typically one of the most serious types of infection; given their high mortality/morbidity, they are 
generally treated in hospital and therefore are often used for surveillance of resistance. In high-
income countries any isolated pathogens will be tested for antimicrobial susceptibility against 
key antibiotics, while, unfortunately most low and many middle-income countries lack the 
laboratory capacity to test all bloodstream pathogens, if any(2). Being able to predict future 
antimicrobial resistance of bloodstream infections in networks of hospitals could help target 
interventions and allocate resources to those most at risk, with larger predicted resistance 
increases or absolute rates. While estimating associations between characteristics such as age, 
sex and probability of resistance is important at an individual level, it is not clear how a hospital 
should use this information. It may be simpler for hospitals to assume that their underlying 
populations are broadly similar from year-to-year and estimate resistance at an aggregate level. 
Further, empiric treatment recommendations are generally made across an entire hospital. 
 
Antibiotic usage is a well-known driver of antibiotic resistance(3). Several studies have 
investigated associations, for example using Spearman’s correlation coefficients between 
outpatient antibiotic usage and resistance in European countries, showing countries with higher 
usage had higher resistance percentages(4), or using multivariate transfer functions to 
demonstrate positive associations between antibiotic use and resistance rates in Pseudomonas 
aeruginosa in a German hospital. The latter also allowed a decrease in resistance following 
usage restriction to be identified(5). Studies have generally shown increases in usage associated 
with quite rapid increases in resistance, while decreases in usage were associated with no 
changes or very delayed and more subtle decreases[6],[7]. However, exceptions have also been 
observed, such as increased nitrofurantoin usage leading to no changes in nitrofurantoin 
resistance in E. coli urinary tract infections, while being associated with decreased trimethoprim 
resistance(8). The rarity of nitrofurantoin resistance has been explained genetically by the 
magnitude of the distance between two genes which require inactivation(9). A recent study used 
distributed lag-models to estimate the relationship between relative antibiotic usage (classified as 
a Z-score) and antibiotic resistance at a national and international level, using 11 years of data 
from 26 European countries. They showed that increases in antibiotic usage Z-score was 
associated with an immediate and persistent increase in resistant bacteria for the 4 following 
years, while decreases in usage Z-score had little impact on resistance on the same time-scale; 
antibiotic usage of neighbouring countries also affected resistance levels(10). To our knowledge, 
machine learning methods have not been widely used for predicting resistance at an aggregate 
level such as a hospital, a network of hospitals, or a country. One study considered a feed-
forward neural network with a single hidden layer, with each input neuron being a lagged time 
series(11); however, while this allows for nonlinearity, it models only one time series at a 
time(12). 
 
In England, National Health Service hospitals are grouped into Trusts, which are organisational 
units serving a geographical area or a specific specialty, therefore with multiple Trusts able to 
serve the same geographical area. Trusts have different antibiotic usage policies and have 
different resistance patterns in the population they serve. Most studies so far have focused on 
individual pathogens, and on understanding specifically associations between antibiotic use and 
antibiotic resistance in individual pathogens, with some, but not all, identifying such 
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associations. Here, we shift focus and try to predict future resistance at a Trust-level, exploiting 
all historical aggregate information that we have on each specific Trust, namely historical 
antibiotic usage for a variety of antibiotics, and historical antibiotic resistance to the pathogen-
antibiotic of interest in bloodstream infections, but also resistance in other pathogen-antibiotic 
combinations and the complexity of these relationships. We explore whether a well-understood 
and typically successful machine learning model, namely XGBoost, can outperform base 
comparators such as carrying the last value forwards, carrying the difference between the 
previous two years forwards and linear trend forecasting. The hypothesis is that this type of 
model can exploit interactions such as decreasing use of one antibiotic leading to increasing use 
of another as patients still need to be treated (e.g. ciprofloxacin use declined as it was selecting 
for Clostridium difficile, and consequently amoxicillin/clavulanic acid usage increased(13)), as 
well as sharing of resistance mechanisms between different antibiotics and pathogens(14–16). 
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Materials and Methods 
National antibiotic resistance data, at a per hospital group (Trust) level, was obtained by 
aggregating data in the UK Health Security Agency’s (UKHSA) Second Generation Surveillance 
System (SGSS), containing laboratory data supplied electronically by approximately 98% of 
hospital microbiology laboratories in England. We studied pathogens isolated from bloodstream 
infections subject to mandatory surveillance (from different calendar dates, see below), and 
specific pathogen-antibiotic combinations, namely: 

• methicillin susceptible Coagulase-positive Staphylococcus species (MSSA) (Apr2016-
Mar2021): doxycycline/tetracyclines, erythromycin, clarithromycin, clindamycin, 
vancomycin 

• Escherichia coli (Apr2016-Mar2021) and Klebsiella species (Apr2017-Mar2021): 
ciprofloxacin, third generation cephalosporins (resistance to any of cefotaxime, 
ceftazidime, cefpodoxime and ceftriaxone), gentamicin, carbapenems (either meropenem 
or imipenem; or ertapenem where meropenem and imipenem not tested), co-amoxiclav, 
piperacillin/tazobactam. 

• Pseudomonas aeruginosa (Apr2017-Mar2021): ciprofloxacin, ceftazidime, gentamicin, 
carbapenems, piperacillin/tazobactam. 

The Trust was obtained through linkage to mandatory surveillance data collected via the 
Healthcare-associated Infections Data Capture System. Percentages of isolates with resistance to 
each antibiotic were calculated per Trust per financial year (FY, i.e. April to March), to keep 
winter months together in the same year. There was no missing data, in that every Trust had a 
number of pathogens tested and resistant in each year, even if both were zero. Small numbers of 
isolates/month for some Trusts and key pathogen-antibiotic combinations meant monthly data 
had to be aggregated to years to avoid large fluctuations. Isolates tested are assumed 
representative of bloodstream infections in each specific Trust, as ascertainment is presumed to 
be high given the severity of bloodstream infections. Intermediate susceptibility results were 
considered susceptible following the current definition of intermediate, susceptible under 
increased exposure(17), and for resistance percentages to be comparable over time. 
 
From UKHSA, we also obtained data collected by IQVIA on monthly antibiotic usage (drug, 
quantity, concentration) (pharmacy dispensing) at a Trust level from April 2014(18), and used 
defined daily doses (DDDs)(19) per antibiotic per Trust per FY to align different 
drugs/concentrations. We standardised antibiotic consumption to account for Trust size(20) using 
Trust bed occupancy data (number of day and overnight occupied beds)(21). For example, 
antibiotic usage of 40 DDDs amoxicillin per 100 bed-days means 40% of inpatients receive one 
DDD of amoxicillin every day, an estimate of the therapeutic intensity. Trust mergers were 
carried backwards in time, such that results are presented based on Trusts existing as distinct 
entities in 2021(22). In the commonly used antibiotics, data was available for all trusts across all 
FYs, with very few exceptions, namely, one trust missing data usage across all antibiotics in 
2019-2020 and a further two in 2020-2021 (Table S1). In the less commonly used antibiotics, 
missing data was very common, although this may indicate zero usage for those years. In our 
models we only included the top 34 antibiotics (based on mean usage across all Trust-FYs >1%) 
plus ertapenem (mean usage just below 1%, but an antibiotic of interest as it is a carbapenem, the 
broadest spectrum antibiotic class currently in reasonably wide usage).  
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Our main goal was to predict future antibiotic resistance for each Trust and pathogen-antibiotic 
combination based on historical resistance and antibiotic usage. We fit separate models for each 
pathogen-antibiotic combination as the outcome, but included prior antibiotic consumption data 
for all antibiotics and prior resistance data for all pathogen-antibiotic combinations in each 
model. We also explored the predictive performance of historical usage alone. Hence, each Trust 
contributed a training example to each model, containing information on all annual usage and 
pathogen-antibiotic resistance prevalences. We explored whether a previously highly successful 
machine learning model with the ability to learn non-linear relationships and interactions 
between different features, namely XGBoost(23), could outperform base comparators. XGBoost 
is not designed for time series, but with appropriate feature engineering and setup can be used for 
time series forecasting, especially as our time series are very short. We compared XGBoost with 
carrying the last value forwards, carrying the difference between the previous two years forwards 
and linear trend forecasting (LTF) which only considers one time series from a single Trust at a 
time (compared to XGBoost models which consider data across all Trusts, as well as multiple 
time series for each Trust as features). We explored whether including previous resistance to 
other pathogen-antibiotic combinations and/or usage to other antibiotics in the previous 1 vs 2 vs 
3 years as features improved performance vs base comparators.  
 
We used a training-test data split based on calendar time to train models and evaluate 
performance. We used percentage resistance in FY2020-2021 as our outcome for our training 
dataset, using all data available from prior years, and in FY2021-2022 as our outcome for our 
test set (excluding the first year of data for each feature), excluding Trusts testing <100 isolates 
per year throughout the period studied and Trust-pathogen-antibiotic-FYs with ≤10 susceptbility 
results to avoid fluctuations due to small numbers unduly influencing results (arbitrary 
thresholds). 6 FYs of historical antibiotic usage were available for training (from April 2014), 4 
FYs of historical resistance (from April 2016) for E. coli and MSSA, and 3 FYs (from April 
2017) of data respectively for both Klebsiella sp. and P. aeruginosa. When exploring predictive 
performance with 3, 2 and 1 FY(s) historical data, we increased the size of the training dataset by 
considering previous years as additional outcomes. As the test dataset remained unchanged, 
predictive performance results were comparable. XGBoost models were fitted with both default 
and tuned hyperpameters. To improve generalisability, 3-fold cross-validation on the training 
dataset was used to tune model hyperparameters, i.e., the number of estimators, the maximum 
depth and the minimum child weight (see Supplementary Methods for full details). We also 
explored whether re-fitting models choosing only features with feature importance above white 
noise improved performance. Feature importance was captured using mean absolute SHapley 
Additive exPlanations (SHAP)(24) computed on the train dataset. We explored including 
observed values and/or means and/or differences and/or standard deviations (data not shown as 
performance was similar).  
 
We chose to minimise the mean absolute error (mean of absolute difference between true and 
predicted value) as it is easily interpretable and less influenced by outliers than root mean 
squared error. XGBoost handles missing values by default, by learning at a split of a decision 
tree which classification of the missing value group into each split minimises the mean absolute 
error, and making that classification. Missing data was present in resistance because of excluding 
Trust-pathogen-antibiotic-FYs with <10 results (Tables S3-S4), and in usage for only a few 
Trusts in the highest usage antibiotics (Table S1). When comparing performance between 
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different models, if, for example, the previous value was missing and therefore a prediction 
could not be made for this model, these Trust-pathogen-antibiotic-FYs were dropped and mean 
absolute errors were calculated only in Trust-pathogen-antibiotic-FYs for which predictions 
could be made for all models being compared. To aid model interpretability, global feature 
importance was captured through mean absolute SHAP values, which measure the impact each 
feature has on the individual predictions, therefore higher values indicate more influential 
features. These were computed on the test set for each Trust in each individual pathogen-
antibiotic combination model.    
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Results 
Susceptibility data were available for 138 hospital groups (Trusts) for FYs between April 2016 
and March 2022 for E. coli and MSSA, and April 2017 and March 2022 for Klebsiella sp. and P. 
aeruginosa. 19 Trusts with maximum <100 tested isolates/FY across all pathogen-antibiotic 
combinations were excluded completely, as small sample sizes made resistance percentages 
highly variable from year-to-year (Table S2). 16/19 excluded Trusts were specialist Trusts with 
typically much lower rates of bloodstream infection. Trust-pathogen-antibiotic-FYs with ≤10 
susceptibility results were also excluded (Tables S3-S4) for similar reasons (Figure S1).  
 
Antibiotic resistance prevalence varied by pathogen, antibiotic, and between Trusts over the 
study period (Figure 1A). For example, within E. coli the median overall resistance prevalence 
for amoxicillin/clavulanic acid was 43%, versus 9% for piperacillin/tazobactam, but with wide 
interquartile ranges (IQR) (36-49% and 6-12% respectively), reflecting Trust-level variation. 
However, there was much less variability within each Trust over time for a given pathogen-
antibiotic combination, with >75% of Trusts having a standard deviation (across annual 
resistance prevalences) of <8% even for those pathogen-antibiotic combinations with the highest 
standard deviations (E. coli-amoxicillin/clavulanic acid and Klebsiella sp.-amoxicillin/clavulanic 
acid, Figure 1B). We observed uncommon outliers which may indicate data quality issues; these 
were not excluded from analyses as they could also represent outbreaks. Distributions of 
antibiotic resistance within a pathogen-antibiotic combination were broadly similar across the 
FYs (Figure S2).  
 
Over all Trust-FYs, the median difference between current and previous resistance prevalence 
within each pathogen-antibiotic combination was always within ±1%; 18/22 pathogen-antibiotic 
combinations had median within ±0.5% (Figure 2A). Considering individual years, 95% of 
Trust-pathogen-antibiotic-FYs differed in the resistance prevalence compared with the previous 
year by <10% and 84% <5%. The largest absolute differences were observed for 
amoxicillin/clavulanic acid resistance in Klebsiella sp., but even there 43% of Trust-FYs had 
absolute differences <5%. Distributions and percentages were broadly similar over time (Figures 
S3-S4). The median LTF estimated change between FYs 2016-2017 and 2021-2022 was <2.5% 
for 18/22 pathogen-antibiotic combinations and <5% for the remaining 4; 82% of Trust-
pathogen-antibiotic-FYs combinations had an LTF-estimated absolute change across the 6 FYs 
<10%, and 60% <5% (Figure 2B).  
 
Antibiotic usage rates were available for all 119 Trusts from 2014-2015 to 2020-2021. Similarly 
to resistance prevalences, antibiotic usage rates varied between the different antibiotics (Figure 
S5), but with relatively little change over time for many antibiotics (Figure S6). Of the most 
commonly used antibiotics, there was a small increase in amoxicillin/clavulanic acid usage 
(median across Trusts 24% (IQR 15%-33%) in FY2014-2015 to 32% (22%-42%) in FY2020-
2021), a decrease in trimethoprim usage (median 8% (5%-10%) to 3% (2%-5%) respectively), 
and a corresponding increase in sulfamethoxazole/trimethoprim (median 3% (2%-5%) to 6% 
(4%-9%) respectively) and in nitrofurantoin (median 2% (2%-4%) to 5% (4%-7%) respectively) 
(reflecting change in antibiotic recommendations for treating urinary tract infections). There was 
a decrease in piperacillin/tazobactam usage in FY2017-2018 to median 3% (2%-4%) (vs 5% 
(4%-7%) in FY2014-2015), resulting from shortages due to an explosion at a Chinese antibiotics 
factory(25), followed by a slow rise back to similar levels by FY2020-2021 (median 5% (3%-
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7%)). There was very little difference from year-to-year within a Trust, except for a few outliers, 
that may indicate potential data quality issues rather than true changes, potentially excepting 
supply interruptions and/or COVID-19 impacts (Figures S7-S8).  
 
The mean absolute error from using the previous resistance prevalence taken forwards by 
pathogen-antibiotic-FY over the Trusts was similar over time (Figure 3) and approximately 
proportional to the mean resistance level across Trusts (Figure S9). Previous value taken 
forwards, XGBoost with default hyperparameters, and with tuned hyperparameters, as well as 
XGBoost models with historical antibiotic usage alone (no resistance) as features generally had a 
very similar performance, with no single method having the smallest mean absolute error 
consistently across all pathogen-antibiotic combinations (Figure 3, Figure S10). The largest 
differences between previous value taken forwards and XGBoost were when XGBoost 
outperformed previous value taken forwards, eg for P. aeruginosa ceftazidime (2% difference, 
from 4% to 6%). Taking the difference between the previous two years forwards performed the 
worst across all pathogen-antibiotic combinations, having the highest mean absolute error, 
followed by LTF. For 3 pathogen-antibiotic combinations, carbapenem resistance in E. coli and 
Klebsiella sp. and vancomycin resistance in MSSA, most Trusts had 0% resistance for all 
available FYs (Table S5). This was reflected in the considerably lower mean absolute error. 
XGBoost models with 3, 2 and 1 FY(s) historical data, both usage and resistance (but increased 
size of the training dataset by considering previous years as additional outcomes) had very 
similar performance (Figure S10). Differences in performance between XGBoost with and 
without feature selection where very small and neither outperformed the other across all 
pathogen-antibiotic combinations (Figure S11). 
 
Focusing on evaluating performance in those Trusts where there was the biggest absolute 
difference between the resistance prevalence in FYs 2021-2022 and 2020-2021, considering an 
arbitrary threshold of >10% (Figure 4), XGBoost outperformed previous value taken forwards in 
all but one pathogen-antibiotic combination (E. coli-gentamicin). Performance gains were 
substantially larger in magnitude in this subgroup, while there was little to no difference in the 
mean absolute error in the remaining Trusts (≤10% difference). Results were similar for 
thresholds for the difference between resistance prevalence of 7.5% and 5%, where the 
outperformance by XGBoost occurred across all pathogen-antibiotic combinations including E. 
coli-gentamicin (Figure S12). In Trusts where the absolute difference was >10%, there were 
both increases and decreases from the previous resistance prevalence in 17/22 pathogen-
antibiotic combinations. Performance gains in mean absolute error were observed both in Trusts 
with positive and negative differences between current and previous resistance prevalences 
(Figure S13). 
 
Considering model interpretability, generally previous resistance prevalence to the same 
pathogen-antibiotic combination as the outcome was among the top 10 features ranked according 
to their mean absolute SHAP values (Table 1). Previous resistance prevalence to the same 
antibiotic but in a different pathogen, as well as usage of the same antibiotic were also generally 
among the top 10 features, and similarly for other antibiotics from the same class.  
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Conclusions 
While associations between antibiotic usage and antibiotic resistance are widely accepted, here 
we have built a model that allows us to take advantage of the complex relationship between the 
usage of different antibiotics, and between different resistance mechanisms being responsible for 
resistance to multiple antibiotics or in multiple pathogens, with the goal of predicting future 
resistance at an aggregate level for a hospital group. Features with the highest contributions to 
the prediction illustrated that such complex relationships were very likely captured and exploited 
by the models. One key challenge is that changes in resistance were small for many pathogen-
antibiotic combinations we considered. Training the model on all Trusts, but evaluating 
performance in the subgroup of Trusts where changes from one financial year to the next were 
the largest, we achieved better predictive performance when considering the mean absolute error, 
without compromising predictive performance in those where the changes were minimal.  
 
Relatively few studies have considered multiple pathogen-antibiotics simultaneously. One 
previous study considered forecasting quarterly resistance in E. coli bloodstream infections to 
third-generation cephalosporins, ciprofloxacin, gentamicin, and piperacillin/tazobactam per 
clinical commissioning group (CCG, groups of general practices) in England using data from 
October 2015 to October 2018, as well as annual resistance in European countries to 
carbapenems and fluoroquinolones in K. pneumoniae, E. coli, P. aeruginosa, and Acinetobacter 
spp. using data from 2012-2016(12). They compared last value taken forwards with single time 
series models allowing for more complexity including autoregressive integrated moving average 
(ARIMA), Expected-Trend-Seasonal, and a feed-forward neural network with a single hidden 
layer, with each input neuron being a lagged time series, as well as fitting an integrated nested 
Laplace approximations spatiotemporal model to all groups (CCGs or countries) and forecasting 
for each individual time series, while also including covariates such as antibiotic usage. They 
found that the median root mean square error across each pathogen-antibiotic combination was 
relatively small (range 0%-7%). Similarly to our study, last value taken forward outperformed 
the other predictors when considering aggregate performance measures for yearly European 
resistance data, despite the spatiotemporal model being able to capture and account for 
associations between antibiotic usage and resistance. At the CCG level, the more complex 
Expected-Trend-Seasonal model captured some seasonality and improved predictive 
performance, but only very slightly compared to previous value taken forwards. Traditional time 
series generally consider modelling one time series at a time, and while this has advantages, 
information on other time series or covariates can often be helpful for prediction. ARIMA is one 
such model, while VARIMA is an extension that considers multiple time series for forecasting. 
While the number of E. coli bloodstream infections per quarter would have also been reasonable 
outcome to predict for our models, we wanted to apply the same method across all pathogens 
under mandatory surveillance. As the numbers of isolates tested for susceptibility per quarter for 
all other pathogens were considerably smaller (Figure S1), and given the short length of our time 
series, we did not consider these models.  
 
While XGBoost was not designed with time series in mind, with the right feature engineering we 
could use it to address our problem, providing for each Trust-pathogen-antibiotic outcome, input 
features comprising the historical resistance for that Trust for all available pathogen-antibiotic 
combinations (not just the outcome), as well as all historical antibiotic usage rates for that Trust. 
One strength of our analysis is our in-depth domain knowledge: standardising usage for 
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comparison between different Trusts, antibiotics and antibiotic formulations, and financial years, 
by using DDDs and number of occupied beds, rather than data-agnostic standardising methods; 
using resistance prevalences which are appropriate to answer questions about resistance in the 
population at risk. We also carefully considered the changes that we could expect to be able to 
predict from year-to-year in the context of the distribution of resistance prevalences, allowing us 
to demonstrate that XGBoost models indeed achieve better predictive performance in those 
Trusts where there were larger changes, without impairing performance in those where changes 
were smaller. Taking the difference between the previous two years forwards was the worst 
performing model across all pathogen-antibiotic combinations, followed by LTF regression, 
indicating that some of the year-on-year observed differences may have been artefactual, related 
to the small numbers of isolates being tested and lack of representativeness of the population at 
risk. While LTF regression mitigated some of these fluctuations, it was either still influenced to a 
certain extent by the outliers and/or the linear model was not a good fit. For example, previous 
work found evidence for a sigmoid pattern in resistance trends, that is a fast rise following an 
initial period of low resistance levels, followed by a stable trend once a certain resistance 
percentage (below 100%) was reached(26). However, for antibiotics that have been widely used 
for a long period of time, our period likely only covered the stable trend, not requiring a sigmoid. 
Given how little year-to-year variation there was, it was difficult for average measures of 
performance to massively outperform previous value taken forwards, despite their ability to learn 
from previous resistance prevalences for all pathogen-antibiotic combinations, as well as 
previous antibiotic usage rates. Further, the hyperparameter tuning, feature selection, and feature 
engineering that we considered to improve generalisability did not improve performance (even 
though overfitting was reduced), with minimal decrease in mean absolute error in only some 
pathogen-antibiotic combinations and occasionally very small increases in some others. This is 
likely due to the reasonably small number of training examples which did not provide enough 
power to allow for learning of better hyperparameters than the default ones, which were set by 
the author of XGBoost based on empirical experimentation to work well on a diverse range of 
datasets. 
 
One limitation of our study is the assumption that the bloodstream infections whose pathogens 
are tested for antibiotic susceptibility in each Trust are representative of the population being 
served by each Trust. For a high-income country, this may be reasonable given the severity of 
bloodstream infections means the vast majority of at-risk patients would have blood cultures 
taken, unlike low and middle-income countries where blood cultures are often only taken after 
empirical treatment failure(27). Another limitation is the imperfect denominator for antibiotic 
usage as not everyone who occupied a day or overnight bed would have received antibiotics; 
however, this follows World Health Organisation recommendations(21), and makes features 
comparable both over time and between Trusts for our prediction models. Another limitation is 
the data aggregation to financial years, as previous studies have shown seasonality in the usage 
of many antibiotics and resistance in many pathogen-antibiotic combinations in the 
community[6],[21]. Studies in the community rather than hospitals found the highest correlations 
with the antibiotics that were used most and that peaked during winter[21],[22]. Unfortunately, 
numbers were too small in our study for us to analyse the data quarterly across all pathogens 
considered; however, we did consider financial years to keep the winter months together. One 
alternative could have been to use smaller time periods and use both estimated resistance 
prevalence and some confidence limits on this (e.g. 90% CI) to represent uncertainty: however, 
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we already had a large number of features for the number of observations. We also decided to 
predict resistance in FY2020-2021, despite this potentially being affected by COVID-19, given 
relatively limited variation in usage over time (Figure S9). We only tried to predict resistance 
one year into the future due to our short time series. 
 
Antibiotic usage in the community, and agriculture(30), has also been shown to be associated 
with antimicrobial resistance. Future work could add these features into the models, although 
community use would need to be assigned to Trusts. While some antibiotics we considered are 
not used in the community, others, e.g. amoxicillin, will be very common. The small variability 
we observed in resistance prevalence within Trust-pathogen-antibiotic combinations could be 
due to the (short) length of our time series, but it could reflect a plateau if resistance had already 
been increasing for quite a few years before our study(26), or resistance had become balanced 
with antibiotic usage in most Trusts, perhaps due to antibiotic stewardship practices(31). One 
study used non-linear time series analysis to model relationships between antibiotic usage and 
resistance in five different populations in Europe for different pathogen-antibiotic combinations, 
as well as identify minimum usage thresholds specific to each population to guide effective 
antimicrobial usage, balancing effectively treating the patient with preserving the effectiveness 
of antibiotics(32). We note that both this study, as well as previous studies considering non-
linear time series analyses to identify antibiotic usage thresholds below which no further 
reduction in incidence of resistance were observed, considered much longer time periods than we 
unfortunately had available[25],[26].  
 
In summary, the change in resistance prevalence from year-to-year in a Trust-pathogen-antibiotic 
combination was generally small from FY2016-2017 onwards. However, focusing on those 
Trusts with larger changes, XGBoost, a machine learning model, provided better predictions of 
future resistance from historical antibiotic usage and historical resistance patterns in a variety of 
antibiotics and pathogens. Features with the highest overall contribution to predictions suggest 
that complex relationships were captured to achieve this performance. We therefore have a 
model that could be further tested and even deployed in a real-world setting to predict resistance 
prevalence in the next financial year, informing appropriate targeting of interventions and 
allocation of resources, in settings where notable changes in resistance prevalence take place. 
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Figure 1 Distribution of mean resistance prevalence (A) and standard deviation (B) per Trust-pathogen-antibiotic across available financial years (Apr2016
Mar2022 for E. coli and MSSA and Apr2017-Mar2022 for Klebsiella sp. and P. aeruginosa). 

Note: one point per Trust. Outliers outside of x-axis scale (>50 left panel, >10 right panel) were truncated.  
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Figure 2 Distribution of difference in resistance prevalence between the current and previous financial year (A) and linear trend forecasting (LTF) estimate
change over the study period (B), per pathogen-antibiotic combination across all Trusts and financial years. Percentages of Trust-FYs that have an absolut
difference <5%, <7.5% and <10% between the current and the previous financial year are also given by pathogen-antibiotic combination (A), and an absol
LTF estimated change <5%, <7.5% and <10% (B).  

Note: one point per Trust-year. Distribution split by financial year available in Figure S3. Percentage of trusts with absolute difference in resistance prevale
<5%, <7.5%, and <10% split by financial year in Figure S4. Outliers outside of x-axis scale (absolute value >20) were truncated.  
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Figure 3 Mean absolute error for prediction on test set (resistance prevalence in FY2021-2022) for 6 different prediction models: taking the previous value 
forwards, taking the difference forwards, LTF, XGboost with default parameters, XGboost with tuned hyperparameters, and XGboost with previous antibiotic 
usage alone as input features (no information on previous resistance prevalence). 

Note: 70 residuals that had either missing previous value or previous difference were excluded for comparability of performance measures between the models, 
although XGboost also made these predictions. 

 . 
C

C
-B

Y
 4.0 International license

It is m
ade available under a 

 is the author/funder, w
ho has granted m

edR
xiv a license to display the preprint in perpetuity.

(w
h

ich
 w

as n
o

t certified
 b

y p
eer review

)
preprint 

T
he copyright holder for this

this version posted N
ovem

ber 30, 2023. 
; 

https://doi.org/10.1101/2023.11.30.23299234
doi: 

m
edR

xiv preprint 

https://doi.org/10.1101/2023.11.30.23299234
http://creativecommons.org/licenses/by/4.0/


 

Figure 4 Mean absolute error for prediction on test set (resistance prevalence in FY2021-2022) for 6 different prediction models split by absolute difference 
between FY2021-2022 and FY2020-2021 in resistance prevalence, >10% or ≤10%  

Note: 70 residuals that had either missing previous value or previous difference were excluded for comparability of performance measures between the models, 
although XGboost also made these predictions. Results using thresholds of 7.5% and 5% are illustrated in Figure S11. For 3 pathogen-antibiotic combinations: 
E. coli carbapenems, Klebsiella sp. carbapenems and MSSA vancomycin, most Trusts had 0% resistance prevalence for all available FYs (Table S3). 
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Table 1 Top 10 features ranked according to mean absolute SHapley Additive exPlanations (SHAP) values for each pathogen-antibiotic combination outcome, 
calculated on the test dataset. 

E. coli resistance 

Feature ranking by 

mean absolute SHAP 

values over Trusts 

amoxicillin/ 

clavulanic acid 
carbapenems 

3
rd

 generation 

cephalosporins 
ciprofloxacin gentamicin 

piperacillin/ 

tazobactam 

1 

E. coli 

amoxicillin/clavulanic 

acid-res, prev1 2.87 

Usage-colistin, prev1, 

0.06 

E. coli gentamicin-res, 

prev2, 1.01 

E. coli ciprofloxacin-res, 

prev1, 1.57 

E. coli gentamicin-res, 

prev1, 0.55 

E. coli 

piperacillin/tazobactam-

res, prev1, 2.1 

2 
Usage-cefalexin, prev6 

0.87 

Usage-pivmecillinam, 

prev3, 0.06 

Klebsiella sp. 

amoxicillin/clavulanic 

acid-res, prev2, 0.69 

E. coli ciprofloxacin-res, 

prev2, 1.47 

E. coli gentamicin-res, 

prev2, 0.45 

Klebsiella sp. 

gentamicin-res, prev3, 

0.72 

3 
E. coli gentamicin-res, 

prev1 0.38 

Usage-flucloxacillin, 

prev5, 0.06 

Klebsiella sp. 3rd 

generation 

cephalosporins-res, 

prev2, 0.61 

MSSA clindamycin-res, 

prev2, 0.49 

E. coli gentamicin-res, 

prev3, 0.44 

Usage-penicillin v, 

prev1, 0.46 

4 
Usage-cefuroxime, 

prev6 0.36 

E. coli carbapenems-res, 

prev3, 0.04 

E. coli 3rd generation 

cephalosporins-res, 

prev2, 0.6 

E. coli 3rd generation 

cephalosporins-res, 

prev2, 0.48 

Klebsiella sp. 

gentamicin-res, prev1, 

0.32 

Usage-meropenem, 

prev3, 0.42 

5 

P. aeruginosa 

gentamicin-res, prev1 

0.35 

Klebsiella sp. 

carbapenems-res, 

prev1, 0.04 

Usage-amoxicillin, 

prev1, 0.42 

Usage-cefotaxime, 

prev4, 0.4 

E. coli ciprofloxacin-res, 

prev3, 0.29 

Klebsiella sp. 

piperacillin/tazobactam-

res, prev3, 0.31 

6 
Usage-cefuroxime, 

prev3 0.3 

MSSA clindamycin-res, 

prev4, 0.04 

Usage-penicillin g, 

prev5, 0.37 

E. coli ciprofloxacin-res, 

prev3, 0.32 

Usage-tobramycin, 

prev2, 0.29 

P. aeruginosa 

ceftazidime-res, prev1, 

0.22 

7 

P. aeruginosa 

ciprofloxacin-res, prev1 

0.29 

Usage-azithromycin, 

prev6, 0.02 

E. coli gentamicin-res, 

prev3, 0.33 

Klebsiella sp. 

gentamicin-res, prev1, 

0.31 

Usage-lymecycline, 

prev5, 0.26 

Usage-penicillin v, 

prev5, 0.2 

8 
Usage-cefuroxime, 

prev1 0.29 

Klebsiella sp. 3rd 

generation 

cephalosporins-res, 

prev1, 0.02 

E. coli ciprofloxacin-res, 

prev3, 0.33 

Usage-moxifloxacin, 

prev5, 0.27 

Klebsiella sp. 

piperacillin/tazobactam-

res, prev2, 0.25 

Usage-moxifloxacin, 

prev5, 0.18 

9 
MSSA clindamycin-res, 

prev1 0.28 

MSSA clindamycin-res, 

prev1, 0.02 

Klebsiella sp. 3rd 

generation 

cephalosporins-res, 

prev3, 0.32 

Usage-penicillin v, 

prev6, 0.26 

Usage-cefuroxime, 

prev1, 0.21 

Usage-tobramycin, 

prev1, 0.18 

10 

E. coli 

amoxicillin/clavulanic 

acid-res, prev4 0.26 

E. coli gentamicin-res, 

prev1, 0.02 

E. coli ciprofloxacin-res, 

prev4, 0.28 

Klebsiella sp. 

carbapenems-res, 

prev1, 0.26 

Usage-linezolid, prev5, 

0.2 

Usage-meropenem, 

prev1, 0.17 

Legend Same pathogen-antibiotic Same antibiotic Same class antibiotic res = resistance prevX = X year(s) in the past 
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Klebsiella sp. resistance 

Feature ranking by 

mean absolute SHAP 

values over Trusts 

amoxicillin/ 

clavulanic acid 
carbapenems 

3
rd

 generation 

cephalosporins 
ciprofloxacin gentamicin 

piperacillin/ 

tazobactam 

1 

Klebsiella sp. 3rd 

generation 

cephalosporins-res, 

prev1, 1.48 

E. coli carbapenems-res, 

prev2, 0.19 

Klebsiella sp. 3rd 

generation 

cephalosporins-res, 

prev1, 1.76 

Klebsiella sp. 

amoxicillin/clavulanic 

acid-res, prev2, 1.03 

Klebsiella sp. 

ciprofloxacin-res, prev1, 

0.77 

Klebsiella sp. 

piperacillin/tazobactam-

res, prev1, 1.4 

2 
Klebsiella sp. 

gentamicin-res, prev1, 1 

Usage-levofloxacin, 

prev5, 0.14 

Usage-ceftazidime, 

prev1, 0.73 

Klebsiella sp. 

ciprofloxacin-res, prev1, 

0.69 

Klebsiella sp. 

gentamicin-res, prev1, 

0.58 

E. coli gentamicin-res, 

prev2, 0.86 

3 

Klebsiella sp. 

amoxicillin/clavulanic 

acid-res, prev1, 0.97 

Usage-colistin, prev6, 

0.11 

Usage-penicillin v, 

prev3, 0.6 

Klebsiella sp. 3rd 

generation 

cephalosporins-res, 

prev1, 0.61 

E. coli 3rd generation 

cephalosporins-res, 

prev3, 0.51 

Klebsiella sp. 

amoxicillin/clavulanic 

acid-res, prev3, 0.82 

4 

Klebsiella sp. 

amoxicillin/clavulanic 

acid-res, prev2, 0.82 

Klebsiella sp. 

carbapenems-res, 

prev1, 0.1 

Klebsiella sp. 

ciprofloxacin-res, prev3, 

0.39 

Klebsiella sp. 

ciprofloxacin-res, prev3, 

0.53 

MSSA erythromycin-res, 

prev1, 0.29 

E. coli gentamicin-res, 

prev4, 0.6 

5 

E. coli 

amoxicillin/clavulanic 

acid-res, prev1, 0.51 

P. aeruginosa 

carbapenems-res, 

prev2, 0.1 

E. coli 

piperacillin/tazobactam-

res, prev1, 0.39 

Usage-ofloxacin, prev6, 

0.42 

Usage-ceftriaxone, 

prev3, 0.28 

Usage-

piperacillin/tazobactam, 

prev4, 0.46 

6 
Usage-teicoplanin, 

prev6, 0.46 

Usage-linezolid, prev6, 

0.1 

Klebsiella sp. 3rd 

generation 

cephalosporins-res, 

prev2, 0.38 

Klebsiella sp. 

gentamicin-res, prev3, 

0.39 

Usage-moxifloxacin, 

prev1, 0.27 

E. coli 

piperacillin/tazobactam-

res, prev1, 0.45 

7 
Usage-penicillin v, 

prev4, 0.41 

P. aeruginosa 

ceftazidime-res, prev2, 

0.1 

P. aeruginosa 

ceftazidime-res, prev1, 

0.31 

Usage-flucloxacillin, 

prev6, 0.37 

Usage-clarithromycin, 

prev1, 0.26 

Klebsiella sp. 

ciprofloxacin-res, prev3, 

0.43 

8 
Usage-ceftazidime, 

prev6, 0.37 

Klebsiella sp. 

carbapenems-res, 

prev3, 0.09 

E. coli 3rd generation 

cephalosporins-res, 

prev1, 0.31 

Usage-ofloxacin, prev4, 

0.34 

Usage-colistin, prev3, 

0.25 

Klebsiella sp. 

piperacillin/tazobactam-

res, prev2, 0.36 

9 
Usage-lymecycline, 

prev6, 0.35 

E. coli carbapenems-res, 

prev4, 0.08 

Usage-

piperacillin/tazobactam, 

prev4, 0.3 

Usage-linezolid, prev3, 

0.32 

E. coli 

amoxicillin/clavulanic 

acid-res, prev4, 0.24 

Klebsiella sp. 

ciprofloxacin-res, prev2, 

0.31 

10 
Usage-colistin, prev1, 

0.35 

MSSA clindamycin-res, 

prev2, 0.08 

Klebsiella sp. 

gentamicin-res, prev1, 

0.28 

Klebsiella sp. 3rd 

generation 

cephalosporins-res, 

prev2, 0.29 

P. aeruginosa 

piperacillin/tazobactam-

res, prev2, 0.21 

Klebsiella sp. 

amoxicillin/clavulanic 

acid-res, prev2, 0.28 

Legend Same pathogen-antibiotic Same antibiotic Same class antibiotic res = resistance prevX = X year(s) in the past 
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MSSA resistance 

Feature ranking by mean 

absolute SHAP values over 

Trusts 

clarithromycin clindamycin erythromycin tetracycline vancomycin 

1 
Usage-ertapenem, prev6, 

0.75 

Usage-lymecycline, prev4, 

1.21 

Usage-flucloxacillin, prev6, 

0.77 

E. coli ciprofloxacin-res, 

prev2, 0.42 

Klebsiella sp. carbapenems-

res, prev1, 0.08 

2 
P. aeruginosa carbapenems-

res, prev1, 0.72 

MSSA clindamycin-res, 

prev1, 0.81 

Klebsiella sp. 3rd generation 

cephalosporins-res, prev1, 

0.58 

Usage-

sulfamethoxazole/trimethop

rim, prev3, 0.4 

Usage-tobramycin, prev1, 

0.07 

3 
Usage-flucloxacillin, prev5, 

0.71 

P. aeruginosa gentamicin-

res, prev3, 0.62 

Klebsiella sp. 

amoxicillin/clavulanic acid-

res, prev1, 0.48 

Usage-

sulfamethoxazole/trimethop

rim, prev1, 0.37 

E. coli amoxicillin/clavulanic 

acid-res, prev4, 0.04 

4 

E. coli 

piperacillin/tazobactam-res, 

prev2, 0.65 

Usage-amoxicillin, prev1, 

0.44 

Usage-clarithromycin, prev6, 

0.39 

Usage-ciprofloxacin, prev1, 

0.29 

Klebsiella sp. 

amoxicillin/clavulanic acid-

res, prev1, 0.03 

5 Usage-linezolid, prev5, 0.55 
Usage-azithromycin, prev4, 

0.37 

Usage-clarithromycin, prev1, 

0.38 

Klebsiella sp. ciprofloxacin-

res, prev2, 0.27 

Usage-tobramycin, prev3, 

0.02 

6 
MSSA erythromycin-res, 

prev2, 0.49 

MSSA clarithromycin-res, 

prev2, 0.34 

E. coli amoxicillin/clavulanic 

acid-res, prev4, 0.36 

MSSA clindamycin-res, 

prev3, 0.23 

E. coli 

piperacillin/tazobactam-res, 

prev1, 0.01 

7 Usage-colistin, prev1, 0.45 

E. coli 

piperacillin/tazobactam-res, 

prev1, 0.32 

E. coli gentamicin-res, prev3, 

0.35 

E. coli amoxicillin/clavulanic 

acid-res, prev1, 0.23 

P. aeruginosa ciprofloxacin-

res, prev2, 0.01 

8 
MSSA clarithromycin-res, 

prev2, 0.39 

MSSA erythromycin-res, 

prev2, 0.31 

MSSA clindamycin-res, 

prev1, 0.33 

E. coli 3rd generation 

cephalosporins-res, prev1, 

0.18 

Usage-gentamicin, prev6, 

0.01 

9 

Klebsiella sp. 

amoxicillin/clavulanic acid-

res, prev3, 0.33 

E. coli 3rd generation 

cephalosporins-res, prev4, 

0.3 

Klebsiella sp. ciprofloxacin-

res, prev1, 0.29 

MSSA erythromycin-res, 

prev2, 0.18 

P. aeruginosa ciprofloxacin-

res, prev1, 0.01 

10 
Usage-pivmecillinam, prev3, 

0.33 

Klebsiella sp. 

piperacillin/tazobactam-res, 

prev2, 0.26 

P. aeruginosa ciprofloxacin-

res, prev1, 0.28 

Usage-azithromycin, prev3, 

0.17 

Usage-cefotaxime, prev1, 

0.01 

Legend Same pathogen-antibiotic Same antibiotic Same class antibiotic res = resistance prevX = X year(s) in the past 
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P. aeruginosa resistance 

Feature ranking by mean 

absolute SHAP values over 

Trusts 

carbapenems ceftazidime ciprofloxacin gentamicin piperacillin/tazobactam 

1 
Usage-meropenem, prev6, 

1.07 

P. aeruginosa ciprofloxacin-

res, prev2, 0.56 

P. aeruginosa gentamicin-

res, prev1, 0.74 

P. aeruginosa gentamicin-

res, prev1, 0.98 

Usage-

sulfamethoxazole/trimethop

rim, prev2, 0.77 

2 
Usage-meropenem, prev1, 

0.71 

MSSA clindamycin-res, 

prev4, 0.44 

Usage-ciprofloxacin, prev4, 

0.67 

Usage-erythromycin, prev6, 

0.86 

MSSA clindamycin-res, 

prev1, 0.65 

3 
Usage-ciprofloxacin, prev1, 

0.71 

P. aeruginosa ciprofloxacin-

res, prev3, 0.38 

P. aeruginosa ceftazidime-

res, prev1, 0.62 

Usage-levofloxacin, prev5, 

0.45 

E. coli amoxicillin/clavulanic 

acid-res, prev1, 0.48 

4 
Usage-cefotaxime, prev2, 

0.49 

Usage-teicoplanin, prev4, 

0.31 

Usage-tobramycin, prev3, 

0.48 

Usage-erythromycin, prev1, 

0.28 

MSSA erythromycin-res, 

prev3, 0.46 

5 
Usage-cefuroxime, prev4, 

0.3 

Klebsiella sp. 3rd generation 

cephalosporins-res, prev2, 

0.3 

Usage-trimethoprim, prev3, 

0.45 

Usage-gentamicin, prev1, 

0.28 

Usage-

piperacillin/tazobactam, 

prev4, 0.43 

6 
Usage-nitrofurantoin, prev2, 

0.25 
Usage-cefalexin, prev1, 0.28 

MSSA erythromycin-res, 

prev1, 0.34 
Usage-colistin, prev4, 0.27 

Klebsiella sp. 

piperacillin/tazobactam-res, 

prev3, 0.33 

7 
Usage-cefotaxime, prev1, 

0.24 

P. aeruginosa carbapenems-

res, prev1, 0.26 

Usage-clarithromycin, prev1, 

0.33 

Usage-clindamycin, prev1, 

0.27 

MSSA erythromycin-res, 

prev1, 0.3 

8 

Klebsiella sp. 

piperacillin/tazobactam-res, 

prev3, 0.24 

Usage-tobramycin, prev1, 

0.26 

P. aeruginosa ceftazidime-

res, prev3, 0.31 

E. coli 

piperacillin/tazobactam-res, 

prev3, 0.24 

Usage-nitrofurantoin, prev1, 

0.29 

9 

Usage-

sulfamethoxazole/trimethop

rim, prev6, 0.22 

Klebsiella sp. ciprofloxacin-

res, prev1, 0.23 

Usage-vancomycin iv, prev5, 

0.31 

Usage-ceftazidime, prev6, 

0.23 

P. aeruginosa ceftazidime-

res, prev1, 0.29 

10 Usage-linezolid, prev6, 0.22 
MSSA clarithromycin-res, 

prev4, 0.23 

Usage-tobramycin, prev1, 

0.3 

E. coli carbapenems-res, 

prev1, 0.21 

MSSA clindamycin-res, 

prev4, 0.29 

Legend Same pathogen-antibiotic Same antibiotic Same class antibiotic res = resistance prevX = X year(s) in the past 
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