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Abstract 

Noninvasive dynamic brain imaging of neural oscillations provides valuable insights into 
both physiological and pathological brain states. Yet, challenges remain due to the ill-posed 
nature of the problem and high complexity of the solution space, which can be alleviated by 
advanced computational models. Here, we investigated the capability of a novel deep learning-
based source imaging framework (DeepSIF) for imaging ictal activities from high-density 
electroencephalogram (EEG) recordings in drug-resistant focal epilepsy patients. The neural 
mass model of ictal oscillations was adopted to generate synthetic training data with spatio-
temporal-spectra features similar to ictal dynamics. We rigorously validated the trained DeepSIF 
model using computer simulations and in a cohort of 33 drug-resistant focal epilepsy patients. 
The DeepSIF ictal source imaging was compared with interictal source imaging and three 
conventional imaging methods as benchmark comparisons. Our findings show that the trained 
DeepSIF model outperforms other methods in estimating the spatial and temporal information of 
ictal sources. It achieves a high spatial specificity of 96% and a low spatial dispersion of 3.80 ± 
5.74 mm when compared to the resection region. The noninvasive source imaging results also 
demonstrate good coverage of seizure-onset-zone (SOZ), with an average distance of 10.89 ± 
10.14 mm (from the SOZ to the reconstruction). These promising results suggest that DeepSIF 
has significant potential for advancing noninvasive imaging of ictal activities in patients with focal 
epilepsy. By providing valuable insights into the spatiotemporal dynamics of seizure activity, 
DeepSIF promises to help guide clinical decisions and improve treatment outcomes for epilepsy 
patients.  
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Introduction 
Neural information processing is encoded by rhythmic oscillations. Noninvasive imaging 

of network dynamics of such neural rhythms is of significance for elucidating the mechanism of 
brain function and aiding clinical management of brain disorders. Epilepsy is a common 
neurological disorder affecting around 70 million patients worldwide [1], one third of whom cannot 
be managed by medication alone. For focal drug resistant epilepsy (DRE), in which seizures are 
originated in a focal region of the brain, surgery to remove the epileptogenic zone (EZ) has proven 
to be the most effective treatment option [2]. Accurately identifying the epileptogenic tissue is of 
great importance to the diagnosis and treatment planning for these patients. Patients selected for 
surgical treatment usually undergo multi-day (sometimes even weeks) intracranial EEG (iEEG) 
monitoring to determine the epileptogenic tissue from invasive ictal recordings, which is a close 
approximation of the EZ [3]. However, iEEG sometimes is limited by its spatial coverage, as well 
as the risk and discomfort associated with the invasive procedure [4]. There is a clinical need for 
noninvasive imaging techniques with high spatiotemporal resolution, to identify and localize 
seizure generating tissues with high accuracy. 

Electroencephalography and magnetoencephalography (E/MEG) are noninvasive 
techniques that can record neural activities with high temporal resolution. However, limited spatial 
information can be inferred from the scalp measurements because of the low signal to noise ratio 
(SNR), small sensor counts, and the volume conduction effects. Electrophysiological source 
imaging (ESI) techniques have been developed to  boost the spatial resolution of E/MEG by 
estimating the underlying brain dynamics from E/MEG recordings [5–11]. ESI involves solving the 
forward problem and the inverse problem. The forward problem models the source space as a 
distribution of current dipoles, and its mapping relationship to the sensor space as a linear 
projection [12]. Since the number of scalp measurements is much smaller than the number of 
current dipoles, a regularization procedure is conventionally used to solve the underdetermined 
inverse problem. However, the performance of the ESI solution is limited by the representation 
power of the regularization term [13].  

Deep learning (DL) - based source imaging approaches solve the ESI problem under a 
different framework. Instead of being formulated explicitly as a regularization term, source 
dynamics can be implicitly embedded in the training data and learned by the neural networks 
through the training process. It is, however, challenging to acquire enough simultaneously 
recorded iEEG and scalp data to train such a model. Computational models can serve as a 
powerful alternative to introduce the source dynamics into training data, if the source models are 
realistic enough for source imaging tasks. DL-based source imaging framework (DeepSIF) is 
recently proposed as a general ESI framework unitizing dynamic brain network models as the 
source model in the forward problem, and the deep neural networks (DNN) to solve the inverse 
problem [14,15]. Different source models can be selected based on source signal properties and 
the modalities of the measurements, to generate various types of source-sensor signal pairs as 
the training data. It has been successfully applied to image transient activities such as evoked 
potentials or interictal spike activities from EEG or MEG signals, demonstrating powerful 
generalization capabilities cross subjects and modalities. 

On the other hand, the oscillatory activities in EEG signals are fundamental for inferring 
physiological or pathological information about specific brain states or disorders and have 
increasingly gained attention [16,17]. One example is the occurrence of strong rhythmic patterns 
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during seizures and the origin of these patterns is a major piece of evidence used for determining 
the EZ. Studies have shown that ictal ESI could be more informative than interictal ESI results 
[18–20]. However, ictal EEG recordings are usually contaminated by large artifacts. Although 
independent component analysis (ICA) can remove some artifacts, ictal oscillations still have low 
SNR due to non-ictal brain rhythms, making the analysis of these patterns challenging [21]. To 
overcome these issues, several approaches have been proposed, such as transforming the data 
into the frequency domain [22,23], or averaging the signal at the peak of the ictal oscillations to 
increase the SNR of the ictal recordings [24], albeit at the expense of temporal resolution. 
Averaging the EEG over time, while effective in improving SNR, can reduce the spatial specificity 
of the ESI results. Thus, it is important to develop a robust spatiotemporal imaging method that 
can model the ictal neural oscillations when analyzing the ictal EEG data.   

As a general ESI framework, DeepSIF has been shown to provide excellent 
spatiotemporal ESI results on non-oscillatory activities at low SNR. In this work, we expanded the 
capability of DeepSIF to imaging oscillatory activities, specifically, the ictal oscillations. The overall 
study design is illustrated in Fig. 1. Ictal spatial and temporal source models were developed to 
generate synthetic training data for the DNN. The trained network was then utilized to image and 
localize seizure generating tissues from scalp recorded high density ictal EEG in 33 focal DRE 
patients. To evaluate the performance of DeepSIF in imaging ictal activities, the resulting images 
were compared to iEEG defined seizure onset zones (SOZ) and/or resection volumes. In addition, 
the DeepSIF based ictal source imaging is rigorously evaluated against interictal source imaging, 
as well as three conventional source imaging methods. The present study found that DeepSIF 
could successfully image ictal activities with a high degree of temporal correlation with the scalp 
recordings and high spatial precision that concorded with the clinical ground truth. These results 
suggest that DeepSIF has great potential in advancing the noninvasive imaging of ictal activities 
in patients with focal epilepsy, which could provide valuable insights to guide clinical decisions 
and improve treatment outcomes. 
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Figure 1. Schematic diagram of study design. Brain activities are modeled by the spatiotemporal source model, 
consisting of interconnected neural mass models. Ictal oscillations are generated and projected to the scalp to train 
a deep neural network. The trained model can be directly used to estimate seizure dynamics at the major ictal 
frequency band. 

Results 
Ictal Oscillation Simulations 

The modified Jansen-Rit model [25], a neural mass model (NMM), was adopted as the 
temporal model for the ictal signal. Fig. 2a shows the typical waveforms in each of the 6 signal 
groups: normal activity, sporadic spikes, sustained discharge of spikes, rhythmic activity, low 
voltage rapid activity and quasi-sinusoidal activity. A typical example of the NMM simulation result 
is shown in Fig. 2b. The color represents the signal type transition when varying the time constant 
𝑎 and 𝑏. With these sets of NMM parameters, NMM can generate five types of signals typical in 
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ictal oscillations with different temporal and spectra features. Fig. 2c shows the waveforms 
generated by the corresponding 𝑎, 𝑏 parameters in Fig. 2b. Although the signals share similar 
temporal features within each signal type/category, their major frequency gradually changes with 
different time constant values, providing more variations for the training dataset. 

 

Figure 2. Ictal oscillation patterns generated by the modified Jansen-Rit Model. a, 5 seconds of typical waveforms for 
each signal type. b, Signal type classification example when varying the 𝑎, 𝑏  values. The signal type labels 1-6 
correspond to the event labels in a.  c, 2 seconds of waveform examples when varying 𝑎, 𝑏 values. The color denotes 
the major frequency of the ictal oscillations defined as the frequency with maximum power. Grey color denotes the 
normal activity, and the major frequency is not calculated.  

 

DeepSIF Performance in Computer Simulations 

A DeepSIF model with skip connections and recurrent layers was trained with synthetic 
ictal data, comprising of source-sensor paired signal activities generated by the NMM. Then, the 
ability for DeepSIF to detect temporal dynamics variations in time and in space was evaluated on 
two test datasets and is shown in Fig. 3. High spatial specificity and sensitivity can be achieved 
for both test datasets. When the oscillation pattern varies over time, DeepSIF can identify the 
change and provide the correct temporal estimation with high linear correlation with the simulated 
signal (0.98±0.04). Note that in the training data, ictal type remains constant over time for one 
training sample. However, due to the presence of various ictal types in the training dataset through 
different samples, the DNN still has the capability to accurately image the source even when the 
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oscillation pattern varies. It is more challenging when two different dynamics are presented in one 
patch. As illustrated in the example in Fig. 3b, a single patch contains two sinusoidal oscillations 
with a phase difference, and DeepSIF can provide distinct temporal estimates for each source. At 
around 200 ms, the source signal phases are reversed, resulting in less accurate estimations 
from DeepSIF due to signal cancellation in the sensor space. However, the recurrent structure 
allows DeepSIF to utilize information from previous time points in order to provide more reliable 
estimations for ambiguous time points. The temporal correlation of the simulated and estimated 
signal remains high (0.92±0.07) for this test dataset, despite the temporal inferences inside the 
source patch. This highlights the model's ability to adapt and maintain accuracy even in 
challenging situations. The aggregated results for the two test datasets at different SNR are 
described in Fig. 3c, demonstrating consistent performance across all SNR levels. The simulation 
study demonstrated that DeepSIF can deliver accurate and robust source estimates for sources 
exhibiting a wide range of spatiotemporal patterns, emphasizing its reliability and adaptability in 
varying conditions. 
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Figure 3. Model performance in simulations. a, Results on test dataset with temporal dynamics varying in time (n = 
23,856). Left: Simulation results. Spatial specificity, spatial sensitivity, localization error, and temporal correlation. 
The distributions are demarcated within the 10th to 90th percentile. The gray bars span the 25th to 75th percentile, 
the white circle is the median and the colored horizontal bar is the mean of the distribution. Right: Imaging examples. 
Source locations and waveforms (1 second) of the simulated and reconstructed sources are plotted. b, Results on test 
dataset with temporal dynamics varying in space. Left: Simulation results. Spatial specificity, spatial sensitivity, 
localization error, and temporal correlation. Right: Imaging examples. Two dynamics are presented in one patch 
denoted by red and yellow. The reconstructed spatial maps for the two dynamics (T1 and T2) are denoted by the 
colorbar and the temporal waveform are plotted in the corresponding color as the simulated source. c, Imaging 
performance for the two datasets at different SNR.   

Patient Data Analysis  

The DeepSIF performance for imaging real ictal signals was evaluated in a cohort of 33 
focal DRE patients. Fig. 4b presents examples of ictal imaging, showcasing the excellent 
performance of DeepSIF when compared to surgical resection outcomes and iEEG-defined SOZ. 
A high spatial specificity is obtained (0.96 ± 0.90), indicating that the noninvasive DeepSIF source 
imaging results have minimum spurious activities extending outside the epileptogenic region, as 
also evident by the low spatial dispersion value (3.80 ± 5.74 mm). The average distance from the 
SOZ electrode to the reconstruction area is 10.89 ± 10.14 mm for all patients and 8.03 ± 9.01 mm 
for seizure-free patients. Furthermore, the reconstructed waveform exhibits a high temporal 
correlation (0.81 ± 0.14) with the EEG signals, demonstrating DeepSIF's capability in 
reconstructing the temporal dynamics from EEG traces. 
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Figure 4. Clinical validation in drug-resistant epilepsy patients in comparison to surgical resection and iEEG-defined  
SOZ. a, Quantitative ictal-imaging results. The horizontal solid line shows the mean, the dashed line shows the median, 
the boxes span the 25th to 75th percentile of the data, the vertical bars span the 10th to 90th percentile of the data, 
and each circle represents individual patients. b, Examples of ictal-imaging results along with the surgical resection 
outcome and iEEG defined SOZ. The green channel is the channel with the maximum energy and its traces are plotted 
in green. The topographical maps are plotted at the maximum time point of the segment.   
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Figure 5. Comparing ictal imaging with spike imaging results. a, Spatial specificity. b, Spatial sensitivity. c, Spatial 
dispersion (mm). d, SOZ localization error (mm). Paired one-sided Wilcoxon signed rank test was used with statistical 
significance cutoffs of (*P<0.05, **P<0.01). e, Examples of ictal and spike imaging results. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted December 1, 2023. ; https://doi.org/10.1101/2023.11.30.23299218doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.30.23299218


   

11 
 

When comparing the results of ictal and spike imaging, statistically significant differences 
can be observed for all metrics except spatial dispersion. The spatial dispersion for spike imaging 
exhibits a bimodal distribution and can be divided into seizure-free (SZ-free) and non-seizure-free 
(non-SZ-free) groups. The spatial dispersion value is significantly lower for ictal imaging 
compared to spike imaging in the non-SZ-free group. This difference in significance can also be 
observed in the non-SZ-free group for spatial sensitivity and specificity. In general, the primary 
distinction between ictal imaging and spike imaging lies in the non-SZ-free group. This is 
predominantly due to the fact that many non-SZ-free patients experience multiple types of spikes, 
several of which are contralateral to the clinical ground truth. Even when the source can be 
lateralized before spike analysis, it remains challenging to differentiate between different spike 
groups, as demonstrated in the example shown in Fig. 5e. On the other hand, seizure onset 
locations tend to be more consistent, with fewer contralateral or discordant seizures. This 
consistency highlights the value of ictal imaging in providing a more accurate representation of 
seizure activity, particularly for non-SZ-free patients. Fig. 6 shows the comparison of DeepSIF 
with other benchmark ESI methods: sLORETA, FDI, and LCMV. DeepSIF demonstrated superior 
imaging performance, achieving a SOZ LE of 16.94 ± 9.08 mm, which is significantly better when 
compared to the benchmark methods. While LCMV and sLORETA can provide high sensitivity, 
their low specificity hampers their ability to accurately identify true epileptic regions. DeepSIF 
offers a balanced sensitivity and specificity value, allowing for a more accurate representation of 
the source extent without being excessively focal or overly diffused. DeepSIF offers a balanced 
sensitivity and specificity value, allowing for a more accurate representation of the source extent 
without being excessively focal or overly diffused. The geometric mean of the sensitivity and 
specificity can reflect the overall performance for estimating the resection regions, and it was 0.62 
± 0.22 (DeepSIF), 0.60 ± 0.15 (sLORETA), 0.54 ± 0.16 (FDI), and 0.47±0.17 (LCMV). Precision 
and recall are also important metrics to evaluate the overlap between two areas. The sensitivity 
is the same as the recall. The precision value compared to the resection area and the F1-score 
(the harmonic mean of the precision and recall) are shown in Supplementary Fig. S3, 
demonstrating that DeepSIF outperformed all other benchmark algorithms in terms of source 
extent imaging. 
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Figure 6. Ictal imaging results for DeepSIF, sLORETA, FDI, and LCMV. a, Spatial specificity; Spatial sensitivity; Spatial 
dispersion (mm); SOZ localization error (LE) (mm). Paired one-sided Wilcoxon signed rank test was used with 
statistical significance cutoffs of (*P<0.05, **P<0.01, ***P<0.001). b, Examples of spike-imaging results along with 
the surgical resection outcome and iEEG defined SOZ. 

Discussion 
We have developed a novel EEG source imaging approach by means of biophysically 

constraint deep neural networks, to robustly and accurately localize and image spatiotemporal 
distribution of seizure sources from EEG ictal recordings. The method has been rigorously 
validated in a cohort of 33 drug resistant focal epilepsy patients by comparing noninvasive source 
imaging results with clinical ground truth based on intracranial EEG defined seizure onset zone 
and successful surgical resection outcome. We also demonstrate the superior performance of our 
DL-based ictal source imaging approach with well-established conventional source imaging 
methods, and with interictal spike source imaging. 

DL-based ESI methods have shown great promise over the last few years. These methods 
are capable of implicitly learn the source distributions through data instead of explicitly formulating 
the regularization terms to constrain the solution space, which means more complex source 
models can be incorporated into the solution to achieve a more accurate and robust source 
estimate. There have been several recent attempts to image brain activities using deep neural 
networks [26–31]. They have shown excellent performance in computer simulations, 
demonstrating the power of DL-based ESI methods. DeepSIF as a DL-based ESI method, has 
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proven to be effective for imaging transit activities such as interictal spikes or evoked potentials 
in a large group of subjects [14,15]. It is a modular framework consisting of a forward source 
model, using neural mass models, to generate realistic synthetic training data, and an inverse 
neural network model to perform the ESI task based on the information in the training data. The 
two components are closely connected though the training data in a sense that enough high-
quality training data needs to be fed into the neural network for an optimal training result. However, 
they are also independent as the detailed implementations and assumptions in the source model 
are implicitly embedded into the training data and the complexity of the source model will not 
affect the optimization process for the inverse module. Thus, researchers can adopt different 
forward source models and inverse network structure for DeepSIF based on their tasks to achieve 
the optimal results.  

Current development of DL-based ESI methods focuses on the spatial localization or 
imaging the transient spiking activities. Yet, noninvasive imaging of the spatiotemporal rhythmic 
signal has gained significant attention in recent years, as it offers valuable insights into the 
physiological and pathological brain states [16,17]. One important application is the recording and 
analysis of ictal activities during the presurgical evaluation for DRE patients in order to determine 
the EZ. Currently, invasive iEEG monitoring serves as the clinical gold standard for identifying the 
epileptogenic tissue [32], but the success rate of iEEG guided surgical treatment is limited when 
iEEG electrodes fail to cover the EZ. An accurate noninvasive ictal imaging technique could offer 
a clear hypothesis regarding the EZ area, which would subsequently facilitate iEEG implantation 
and may ultimately lead to the complete noninvasive source localization of seizure generating 
tissues, potentially leading to improved patient outcomes. Given the potential benefits in epilepsy 
treatment, extending DeepSIF to imaging rhythmic activities is of great importance, particularly 
for imaging ictal activities. As it has demonstrated promise in localizing the sources of brain activity 
with high accuracy and robustness, by developing DeepSIF for ictal activities, it is possible to 
create a more comprehensive and reliable methodology for identifying EZ noninvasively. 

To generate the training data for the ictal DeepSIF model, a modified Jansen-Rit model 
was adopted for generating training data with various spatio-temporal-spectra features. Multiple 
computational models have been proposed to describe and analyze the seizure dynamics [33]. 
Concepts of increased tissue excitability, impaired dendritic inhibition, coupling interactions  have 
been incorporated into models at various scales to provide insights regarding the biophysical 
mechanisms of seizure initiation, propagation and termination at micro-to-macro scales [25,34–
39]. Developing a seizure model that can fully describe the seizure process is an activate research 
area. Certain simplifications were made when selecting and constructing the source model for 
DeepSIF, with the primary focus being on reproducing realistic phenomena observed in the 
recorded signals, rather than elaborating on the underlying mechanisms. This approach prioritizes 
the practical application and performance of DeepSIF in real-world situations. First, the neural 
mass model (NMM) needs to be able to generate a wide range of ictal dynamics. Models have 
been proposed to model and explain certain types of ictal oscillations [35,37]. The modified 
Jansen-Rit model have demonstrated its ability to model different types of ictal oscillations [25], 
with a wide range of parameter sets for each type of signal. A large number of parameter sets 
were explored and included in the training data, making it a suitable model to build a training 
dataset with high varieties. Second, the parameters were manually modified for the transition 
between ictal signal types. Some models can autonomously transit between dynamical states by 
setting the NMM system close to the bifurcation and providing random fluctuations as the input 
[34,37]. However, this limits the possible parameter selections, thus the possible waveform 
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dynamics in the training data. As a trade-off, the transition between states were modeled by 
manually changing the NMM parameters to generate different ictal signal types. Similarly, the 
spatial dynamic variations are also modeled through manually changing the parameters. Only a 
short time segment of seizure was considered in the source model. As a seizure could last from 
a couple seconds to couple minutes, it is challenging to include all the possible temporal variation 
patterns and spatial propagation patterns in the training data through the whole course. We 
simplified the problem and assumed the ictal source is piece-wise stationary, which means in a 
short segment of time, the source is confined in a focal region. Then, the size and shape of the 
seizure source can be properly defined by a patch, and the spatial dynamic variations can be 
introduced by manually modifying the signal types in the center segments and neighboring 
segments of the source patch (Fig. 2b). These assumptions and simplifications provide a valid 
trade-off between the realism and the implementation feasibility of the source model, and it is 
suitable for the source imaging tasks.   

Generating realistic datasets has been one of the bottlenecks for the advancement of DL-
based ESI methods. The development of the spatiotemporal ictal source model provides a training 
dataset with enough spatio-temporal-spectra features, which is a critical step to provide an 
accurate ictal imaging result and demonstrated the capability of DeepSIF for seizure source 
imaging. The DeepSIF model was trained on a generic head model, and it was rigorously 
validated in computer simulations and in a cohort of 33 focal DRE patients. The trained DeepSIF 
model demonstrates superior robustness and generalizability on various test conditions, and it 
can be successfully applied to different patients with certain spatiotemporal robustness, which 
provides a high level of efficiency as single trained model can be directly applied at multiple test 
conditions.  The model can accurately estimate the spatial and temporal information of the ictal 
sources, providing a high temporal correlation value of 0.95 ± 0.07 in computer simulations, and 
of 0.81 ± 0.14 in patient data analysis. The model can also provide high spatial specificity (98% 
in simulations and 96% in patient data analysis) with decent spatial sensitivity (84% in simulations 
and 44% in patient analysis), which means the model can provide accurate localization without 
having nuisance spurious activities extended outside the resection region. Multiple factors can 
influence the resection volume in practice, including imaging and functional testing findings, 
patient’s treatment goals, encountered individual anatomical reality during an operation, 
neurosurgeon’s assessment of risks, the resection region is not necessary the ground truth for 
the ictal activities [40,41], however, it is still a valuable benchmark to validate our imaging results. 
It is challenging to achieve both high sensitivity and high specificity, as there is a tradeoff between 
providing sparse or diffused solutions. The well-established conventional ESI methods are known 
to have high sensitivity but low specificity. DeepSIF has a low sensitivity compared to some 
diffused conventional methods (like sLORETA and LCMV), however, DeepSIF has a significantly 
higher specificity, leading to a higher geometric mean value compared to benchmark methods. 
On the other hand, the ictal imaging results from DeepSIF had a good overlap with the iEEG SOZ 
electrodes. As the SOZ LE is defined as average of distance of each SOZ to the closest 
reconstruction and the distance of each reconstructed region to the closest SOZ, a solution needs 
to be close to the SOZ electrode groups and be neither too diffused nor too focal to achieve a low 
LE value. DeepSIF reached a LE of 16.94 ± 9.08 mm for all patients and 12.75 ± 5.80 mm for 
seizure free patients, which are statistically significantly smaller than the benchmark methods.  

Our results also show that ictal imaging can more reliably estimate epileptogenic tissue 
compared to spike imaging. Several studies have demonstrated the advantage of ictal imaging 
over spike imaging [18,19,42]. By comparing the DeepSIF ictal and spike imaging results, we 
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found that the ictal imaging is statistically significantly more accurate than the spike imaging in 
terms of sensitivity, specificity and localization error based on iEEG defined SOZ. When 
separating the patient groups into seizure free and non-seizure free groups, it can be observed 
that the performance difference is mainly caused by the multiple interictal spike types, while 
seizure sources are usually consistent and ipsilateral to the clinical ground truth. Previous studies 
have also observed that interictal spike clusters could be discordant with iEEG findings [43,44], 
and spike imaging would fail to accurately identify the EZ in these cases. Ictal imaging results 
become more critical in this case to resolve the inconsistency in spike imaging. Our ictal imaging 
approach can provide valuable information during the surgical evaluation process regarding the 
location of the SOZ and EZ, by providing an accurate ictal imaging result with high spatial 
specificity.  

In sum, we have demonstrated that DeepSIF can provide robust extent, location, and 
temporal dynamics estimation for imaging ictal oscillations from scalp EEG in numerical 
experiments and real data analysis in 33 drug-resistant focal epilepsy patients. As a DL-based 
ESI method, it has the advantage of fast inference and no parameter tuning during the evaluation 
phase, while providing accurate and robust imaging results. The model's adaptability and 
reliability in handling diverse ictal patterns make it a promising tool for advancing noninvasive 
imaging of ictal activities in patients with epilepsy.  

Methods 

Ictal Oscillation Simulations Using Modified Jansen-Rit Model  

The neural mass model (NMM) is a “mean-field” computational model that describes the 
collective dynamics and interactions among groups of neurons and has been widely used as the 
source models for iEEG/EEG/MEG measurements [45,46]. Different types of NMMs have been 
proposed to model epilepsy-related activities [34,37,47]. Jansen-Rit and its modified version are 
among the most popular NMMs with physiologically meaningful parameters. The Jansen-Rit 
model contains three neural subpopulations, the primary neurons, the excitatory, and the 
inhibitory feedback interneurons [48]. Fast inhibitory interneurons are added in the modified 
Jansen-Rit model to model different types of ictal oscillations [25]. Each subpopulation is 
characterized by a dynamic impulse response function ℎ(𝑡) that transforms the pre-synaptic 
information (the average action potential firing rate) to the post-synaptic information (the mean 
membrane potential), and a static nonlinear activation function that transforms the mean 
membrane potential to an average firing rate. It has been shown that by modifying the synaptic 
gain parameters in the impulse response function, 6 types of signals can be simulated with the 
modified Jansen-Rit model: Normal activity (Type 1), sporadic spikes (Type 2), sustained 
discharge of spikes (Type 3), rhythmic activity (Type 4), low voltage rapid activity (Type 5) and 
quasi-sinusoidal activity (Type 6) [25,38]. Detailed NMM structures can be found in 
Supplementary Fig. 1. 

We explored the impact of the gain parameter A, 𝐵, 𝐺 and time delay constant 𝑎, 𝑏, 𝑔 in 
the impulse response function on the signal dynamics. To further reduce the parameter search 
space, simulations were first performed for different 𝐵 and 𝐺 parameters. Generated signals were 
then classified into 6 groups based on line-length, major frequency, and baseline voltage as 
proposed in [38]. 𝐵, 𝐺 pairs generating normal activities were removed from further simulations. 
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Then for each pair of valid 𝐵, 𝐺, a grid search of 𝑎, 𝑏, 𝑔 was performed. Five seconds of signal 
were generated with step size of 0.5 second for each parameter set in theVirtualBrain [46]. A total 
of around 210,000 sets of simulations were performed. Note that this is not an exhaustive 
exploration of the full parameter space of the modified Jansen-Rit model. The goal is to identify 
enough variations of the NMM parameter sets for the training data generation. Signal types 2-6 
were possible ictal dynamics and were included in the training data. To ensure a uniformed 
representation of different types of ictal signals, parameter sets for each signal type were 
resampled to 10,000. A total of 50,000 parameter sets were identified. 40,000 sets were used as 
the candidate parameter sets to generate the ictal training data, and 10, 000 sets were used for 
the ictal testing data.  

Model Training and Evaluation 

After identifying the parameter sets for a single NMM to generate the ictal oscillations, they 
were combined with the spatial-temporal source model to simulate the EEG signals during the 
ictal periods. A template magnetic resonance imaging (MRI) (fsaverage5) [49] was used to 
generate the head model and its cortical surface was segmented into 994 regions with each region 
modeled by one modified Jansen-Rit model. The spatial model is the region growing method 
described in [15], where the center segment was chosen randomly to determine the source 
location, and the source patch was created by randomly grouping the neighboring segments with 
the center segment. Each source patch consisted of two types of spatiotemporal dynamics. In the 
first type, the entire patch shared the same temporal waveform. In the second type, the source 
patch was separated into the center segment group and the neighboring segment group (Fig. 1, 
top right). Two groups had different temporal waveforms to simulate the phase differences or 
change of dynamics after the signal propagates to neighboring regions. The size of the center 
segment group was randomly selected, and the segments included were chosen using the region-
growing method. The remaining cortical segments in the source patch comprised the neighboring 
segment group. The NMM parameter for the source patch (entire patch, or the center/neighboring 
segment groups) was selected randomly from the parameter sets obtained from the previous step. 
Thus, source patches with different sizes, shapes, locations, and temporal dynamics were 
generated. The 76-channel electrode layout [50] based on a 10–10 montage was used as the 
EEG electrode configuration by projecting the template EEG cap onto the scalp surface of 
fsaverage5. The lead-field matrix was calculated using the 3-shell boundary element method 
(BEM) model with openMEEG [51] in Brainstorm with default settings [52].  

The network consisted of a spatial module to pre-filter the EEG signal and a temporal 
module to model the temporal dynamics. Detailed designs can be found in [15]. Both the source 
and sensor space signals were scaled by their maximum absolute value to have a maximum or 
minimum of 1 or -1. During training, the loss function was the mean square error loss (MSE) 
between the model output and the ground truth source activity. The whole network was 
implemented in PyTorch and trained on one NVIDIA Tesla V100 GPU [54]. 

The source patches in the test dataset were separately generated following the same 
protocol as the training data with different NMM parameters. Two test datasets were created with 
different temporal dynamics. In the first test dataset, the entire patch shared the same temporal 
waveform, but the ictal signal types changed within one test sample. In each test sample, the 
switch in the waveform dynamics, happened at a random time point. In the second test dataset, 
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similar to the training set, there were different temporal waveforms in one source patch. Each 
dataset contains single source data with 23,856 samples at 5-20 dB SNR levels. Samples in these 
two datasets were used as the input for the trained model, and the examples and results are 
shown in Fig. 3.   

The Otsu’s thresholding technique [55] was used to identify the boundary of the imaged 
source distribution. Modified spatial sensitivity and specificity [14,56] were used to evaluate the 
extent estimation accuracy. The localization error (LE) is defined as the average of the distance 
from the estimated source to the ground truth and the distance from the ground truth to the 
estimated source [57]. The correlation value is defined as the maximum Pearson correlation 
between reconstructed and simulated waveforms. One test sample consists of multiple cortical 
regions and the LE and correlation for one test sample is the mean values for all regions in the 
reconstructed source.  

 Ethics Statement 

Our clinical study including data collection and data analysis was approved by and 
performed in accordance with the regulations of the Institutional Review Boards (IRB) of Carnegie 
Mellon University and Mayo Clinic, Rochester. Patients gave their informed consent to participate 
in this study.  

Clinical Data Analysis 

Thirty-three focal drug-resistant epilepsy patients (20 females; ages 32 ±	14 y) were 
included in this study (Supplementary Table S1). All patients underwent EEG monitoring and a 
resective surgery at Mayo Clinic, Rochester. High-density EEG electrodes (76 in total) were glued 
individually following a 10–10 montage with the reference electrode at CPz. The EEG signals were 
recorded using the Xltek EEG amplifier (Natus Medical Incorporated, CA, USA) at 500 Hz 
sampling rate. Twenty-nine patients underwent iEEG implantation. Sixteen of them had the 
computed tomography (CT) images to localize the electrode locations, and 27 of them had the 
post-operative MRI to identify the resection region. The co-registrations of the pre- and post- CT 
and MRI images were performed in Curry (Compumedics, NC, USA). The outcome of the surgical 
intervention was scored based on the ILAE system by the physicians during the follow-up period 
(17 ± 7 months). Twenty-one patients were seizure-free (ILAE 1-2) after the resection.  

The pre-processing follows the steps described in [15,19]. The onset and offset times for 
each ictal activity were identified, and EEG signals between 10 seconds prior to the seizure onset, 
and 10 seconds after the seizure offset time were extracted for preprocessing. If the seizures 
lasted for more than 2 mins, only the first two minutes were extracted. The initial filtering of 0.5 – 
40 Hz was first performed. Independent component analysis were performed in EEGLAB [58] on 
the seizure segment to remove the eye and muscle artifacts. Other components were combined 
to produce the clean EEG recordings. The first three seconds [59,60] after the seizure onset were 
normalized to have a maximum or minimum of 1 or -1 and fed into the trained DeepSIF model for 
source estimation. The power spectrum of 10 seconds before and after the ictal onset were 
calculated for each EEG channel and the major frequency for each seizure was manually 
identified by comparing the averaged EEG power-spectrum between pre- and post- seizure onset. 
The DeepSIF output was filtered at the major frequency with a passband of at most 5 Hz. The 
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energy at each cortical segment was calculated over the three seconds and used as the spatial 
reconstruction of the seizure activity for evaluation. For interictal spikes analysis, 1 second of 
signal around the peak of the spikes were extracted and averaged for each patient and scaled by 
the maximum of the absolute value. The output source reconstruction was averaged for a 100 ms 
window around the peak of the spike. A threshold was determined using the Otsu’s thresholding 
technique [55] for ictal and interictal imaging results.  

The spatial sensitivity, specificity and spatial dispersion (SD) were calculated with respect 
to the resection region. The harmonic and geometric mean of the sensitivity and specificity were 
calculated as !"#

"$#
 and √𝑎𝑏 for 𝑎 and 𝑏 representing sensitivity and specificity. Spatial dispersion 

is defined as the weighted mean of the distance of each reconstructed region to the resection 
area. 𝑆𝐷 = ∑ &!	(",!!

∑ (",!!
, where 𝑑) is the minimum distance to the resection region for reconstructed 

region 𝑖, and 𝐽* is the estimated source map. The reconstructed waveforms in all reconstructed 
regions were averaged and the Pearson correlation between the averaged reconstructed 
waveform and the EEG channel with the maximum energy was calculated. When comparing to 
the SOZ electrodes, two LEs are calculated. The first LE is defined as the average distance of 
iEEG defined SOZ electrodes to the closest estimated source regions. The second LE is defined 
as the average distance of each estimated source region to the closest SOZ electrode. The SOZ 
LE is defined as the average value of these two LEs.  

The imaging results from three conventional methods were calculated for ictal signals: 
time domain standardized low resolution brain electromagnetic tomography (sLORETA) [61], 
frequency domain imaging with sLORETA (FDI) [18], and time domain linearly constrained 
minimum variance (LCMV) beamformer [62]. The denoised EEG signal was filtered at its major 
frequency with a passband of at most 5 Hz and used as the input for the time-domain methods. 
After filtering, the EEG channel with the maximum energy was used to detect the local maxima. 
Local maxima with magnitude larger than 0.5 of the global maxima were assumed to be the peak 
of the ictal oscillations. The ESI results were averaged at the peak of the ictal oscillations to 
calculate the reconstructed spatial map [24]. The Fourier Transforms of the ictal EEG signal were 
calculated for each channel for the time domain method. The real and imagery part of the 
frequency domain signal at the major ictal frequency can be treated as two scalp maps and ESI 
can be performed for these two maps. The real and imaginary ESI results can be combined by 
calculating the magnitude of the complex number. The data analysis results for sLORETA and 
LCMV were calculated using MNE-Python (version 0.22.0) [63]. The Otsu’s method was used to 
determine the extent of the source imaging solution. One-sided Wilcoxon signed rank test and 
rank sum test were used for the statistical tests. 
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