
Novel Missing Data Imputation Approaches Enhance Quantitative
Trait Loci Discovery in Multi-Omics Analysis

Zining Qi1,2, Alexandre Pelletier3, Jason Willwerscheid4, Xuewei Cao1, Xiao Wen5, Carlos
Cruchaga6,7,8, Philip De Jager9,10, Julia TCW3,*, and Gao Wang1,11,*

1Center for Statistical Genetics, The Gertrude H. Sergievsky Center, Columbia University, New York,
NY, USA
2Department of Biostatistics, Columbia University, New York, NY, USA
3Department of Pharmacology, Physiology & Biophysics, Chobanian & Avedisian School of Medicine,
Boston University, MA, USA
4Department of Mathematics & Computer Science, Providence College, Providence, Rhode Island,
USA
5Data Science Institute, Columbia University, New York, NY, USA
6Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
7NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO,
USA
8Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of
Medicine, St. Louis, MO, USA
9Department of Neurology, Center for Translational & Computational Neuroimmunology, Columbia
University Medical Center, New York, NY, USA
10Cell Circuits Program, Broad Institute, Cambridge, MA, USA
11Department of Neurology, Columbia University, New York, NY, USA
*Correspondence: Julia TCW, juliatcw@bu.edu; Gao Wang, wang.gao@columbia.edu

Abstract1

Handling missing values in multi-omics datasets is essential for a broad range of analyses. While2

several benchmarks for multi-omics data imputation methods have recommended certain approaches3

for practical applications, these recommendations are not widely adopted in real-world data analyses.4

Consequently, the practical reliability of these methods remains unclear. Furthermore, no existing5

benchmark has assessed the impact of missing data and imputation on molecular quantitative trait6

loci (xQTL) discoveries. To establish the best practice for xQTL analysis amidst missing values in7

multi-omics data, we have thoroughly benchmarked 16 imputation methods. This includes methods8

previously recommended and in use in the field, as well as two new approaches we developed by9

extending existing methods. Our analysis indicates that no established method consistently excels10

across all benchmarks; some can even result in significant false positives in xQTL analysis. However,11

our extension to a recent Bayesian matrix factorization method, FLASH , exhibits superior perfor-12

mance in multi-omics data imputation across various scenarios. Notably, it is both powerful and13

well-calibrated for xQTL discovery compared to all the other methods. To support researchers in prac-14

tically implementing our approach, we have integrated our extension to FLASH into the R package15

flashier , accessible at https://github.com/willwerscheid/flashier. Additionally, we provide a16

bioinformatics pipeline that implements FLASH and other methods compatible with xQTL discovery17

workflows based on tensorQTL, available at https://cumc.github.io/xqtl-pipeline/code/data_18

preprocessing/phenotype/phenotype_imputation.html.19

1. Introduction20

Technological advancements in recent years have greatly enhanced the availability of high-throughput21

biological tools for researchers at reduced cost. This has led to a dramatic increase in the rate of22

data generation particularly in the area of multi-omics data science, where multiple types of molecular23

phenotypes (or traits) are generated from the same set of samples. Each type of multi-omics data, such24

as methylation, proteomics, and metabolomics, offers unique insights into different layers of biological25

processes. Methylation studies, for example, sheds lights into the epigenetic aspects affecting gene26
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activity. Proteomics focuses on the variety and levels of proteins that emerge from the process of gene27

expression. Furthermore, metabolomics analyses metabolites as products of synergistic interactions28

among multiple genes, to provide a broader perspective on metabolic pathways relevant to complex29

traits and disease phenotypes [1].30

Multi-omics phenotypes are now routinely measured in diverse biological samples, spanning various31

cell types and tissues. These measurements, obtained through different platforms, often contain varying32

levels of missing data. Such gaps in multi-omics data can occur for multiple reasons: poor sample33

quality, limited sample size to observe low phenotypic values, technical limitations of measurement34

platforms, and other reasons for sample drop-out in quality control. Depending on data-type, missing35

values in multi-omics studies can range from 5% to as high as 80%, according to our literature review36

detailed in Table S1. Consequently, it warrants thorough investigation how missing data is addressed37

in multi-omics research. This is particularly crucial given unique nature of each different multi-omics38

studies that leads to varying degrees and patterns of missing data.39

Imputation is a widely accepted strategy for tackling missing data issues, facilitating statistical40

analyses on complete datasets without excluding samples or features that many statistical methods,41

not tailored for missing data, cannot handle. Several approaches have been documented in the existing42

multi-omics literature for missing value imputation [2]. Simple methods like mean imputation replace43

missing values with the average of observed data, whereas the lowest of detection (LOD) method uses44

the smallest observed value for filling in missing entries. Mean imputation and its more sophisticated45

derivatives — such as the K Nearest Neighbors (KNN) that leverages closest observed samples —46

are extensively utilized in various multi-omics studies [3,4]. Advanced methods — including low-rank47

approximation via matrix factorization [5–7] along with sophisticated regression methods that combine48

single or multiple imputation (SI/MI) with machine learning strategies [8] — have shown better perfor-49

mance than KNN in simulation benchmark studies [9], yet they are not as commonly adopted as KNN50

or other simpler methods in practice. For a comprehensive list of multi-omics imputation method51

benchmarks and the recommended approaches derived from these benchmarks, please refer to Table52

S2.53

We have identified several gaps between methodological work in the literature and their practical54

applications to multi-omics data. Firstly, as indicated in Tables S1 and S2, it is evident that real-world55

multi-omics studies (even high-impact ones) frequently opt for simpler imputation techniques over56

more advanced methods [10,11]. This trend raises questions about the practical reliability of advanced57

methods in various multi-omics research contexts, such as clustering, differential expression analysis,58

and molecular quantitative trait loci (xQTL) discoveries. Secondly, most existing benchmarks focus59

narrowly on specific types of multi-omics data. There are only a few that comprehensively address a60

broad spectrum of data types with varying sample sizes, extents, and patterns of missing data [12–14].61

Furthermore, these benchmarks often rely on synthetic data such as simulations based on real data to62

assess methods performance, leaving uncertainties about how these findings translate to reliability and63

robustness in real-world studies. Lastly, to our knowledge there is not yet a benchmark specifically64

tailored for xQTL analysis. This gap became apparent in our search for methodological guidance to65

impute multi-omics data for xQTL analysis, posing challenges in making informed decisions for several66

of our ongoing research projects.67

Driven by the practical need to tackle missing data issues in xQTL analysis, we conducted an exten-68

sive evaluation of 16 methods as detailed in Table S3 Promising results from some existing methods in69

our preliminary benchmarks motivated us to develop new enhancements using similar models and al-70

gorithms. We utilized data across three cohorts/biobanks, focusing on three types of multi-omics data71

known for wide-spread missing values (methylation, proteomics, and metabolomics). Our approach72

involves conducting simulation studies to assess imputation accuracy, xQTL discovery power and cal-73

ibration, along with real-world xQTL discovery and subsequent replication studies. We show that our74

extension to a recent empirical Bayes matrix factorization approach, FLASH , outperforms other meth-75

ods in almost every scenario we examined, is reasonably fast for large-scale multi-omics datasets, and76

producing outputs that are more straightforward to interpret compared to various machine learning77

approaches.78
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2. Results79

2.1. Overview of multi-omics imputation and xQTL discovery benchmark design80

We developed a comprehensive benchmark for simulation and real data analysis to evaluate methods81

across three multi-omics modalities — proteomics, metabolomics, and DNA methylation — in three82

multi-omics resources including the Religious Orders Study/Memory and Aging Project (ROSMAP),83

Knight Alzheimer Disease Research Center (Knight), and Mount Sinai Brain Bank (MSBB). These84

datasets underwent standard quality control (QC) and normalization, as previously detailed for these85

specific datasets [15–17]. By offering a diverse range of sample sizes, molecular features, measurement86

platforms, and missing data patterns, these datasets enables us to create an extensive framework for87

missing data methods assessment (Details see Section 4).88

As illustrated in Figure 1, the multi-omics imputation and QTL analysis benchmark in our study89

consists of several key steps. We began by simulating missing data patterns completely at random90

(MCAR) across various rates, from a minimal 5% to an extreme 50%, reflecting both literature reports91

(Table S1) and the characteristics of our own data-sets (Figure S1). To more accurately approximate92

real-world multi-omics data with realistic missing patterns, we developed a descriptive model based93

on data from ROSMAP, Knight, and MSBB to generate missing values not at random (MNAR) for94

the three modalities assessed (Section 4.2.1). Beyond benchmarking imputation accuracy, we further95

conducted numerical studies for xQTL discovery. This involved simulating genotypic associations96

(xQTL) with realistic molecular phenotypes, and applying statistical fine-mapping to determine the97

impact of imputation methods on identifying true non-zero genotypic effects. We then applied these98

methods to discover xQTL in our datasets, focusing on pQTL and metaQTL, and compared significant99

genes identified by each method. To validate the robustness of our findings, we carried out replication100

studies for pQTL discovery among the three resources.101

Fig. 1. Overview of multi-omics imputation methods and xQTL discovery benchmark. This workflow summarize the
datasets, imputation methods and key steps of evaluating imputation methods in the context of xQTL studies, using both
simulated and real-world multi-omics data.

We assessed imputation accuracy, xQTL detection power, false discovery rate control, real-world102

xQTL discovery, replication, and runtime across 16 methods (Table S3). This selection represents major103

imputation techniques in the multi-omics field (Table S1 and S2), covering: 1) observed value based104

methods such as MeanImpute, LOD, KNN ; 2) low-rank approximation methods such as SoftImpute [5]
105
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and FLASH [18]; and 3) machine learning regression approaches incorporated to single or multiple106

imputation frameworks [19,20] such as MissForest [8], and LR [21].107

We also introduce two new methods by extending existing ones. The first, MissXGB, is an adap-108

tation of MissForest, using XGBoost [22] for machine learning regression instead of traditional random109

forest regression trees. The second, and optimized version of FLASH , enhances computational ef-110

ficiency and imputation accuracy through a genome-wide FLASH approach that explicitly models111

chromosome-specific and global factors. Further details about MissXGB and the modified FLASH are112

provided in Section 4.1.113

After exploring various parameter settings for the methods under consideration, such as the num-114

ber of neighbors (K) in KNN, the regularization and threshold parameters in SoftImpute, and the115

choice of priors in FLASH , we finalized a selection of seven methods for comprehensive benchmarking116

as described earlier. These methods are summarized with their respective abbreviations in the box117

“Imputation” on Figure 1. Key findings from our simulation studies are summarized in Figures 2, 3,118

4, with additional details in Table S4. Real-world data analysis results are summarized in Figure 5119

and Table 1, with additional details in Figures S1 and S2.120

2.2. FLASH outperforms other methods in imputation accuracy for multi-omics data121

We gauged the efficacy of various imputation methods using metrics such as NRMSE, NMAE, and R2,122

the definitions of which are provided in Section 4.2.2. Our evaluation focused on individual molecular123

features, including protein levels for specific genes, metabolite measurements, and CpG site intensities.124

Aggregated performance across multiple molecular features are shown as box plots (Figure 2 and 3).125

For each dataset we evaluated a range of missing rates of MCAR scenarios, along with dataset-specific126

MNAR patterns. Interestingly, we observed that the pattern of missing data was less influential than127

the sample size and the number of features. Therefore, in our analysis, we present MCAR scenarios at128

50% as an example of a moderate to high level of missing data, a situation frequently encountered in129

real-world settings (Table S1, Figures S1 and S2).130

We found that widely used observation based methods like KNN (demonstrated here as KNN10131

with K = 10) and MeanImpute consistently underperform across various scenarios, especially when132

compared to low-rank approximation and machine learning regression techniques. The new imputation133

tool we developed, MissXGB, showed comparable or slightly superior performance to MissForest. We134

also noted that SoftImpute is effective for larger datasets (in terms of samples and features) compared135

to MissForest and MissXGB. However, its performance suffers in datasets with fewer samples and136

features, such as Knight proteomics and ROSMAP metabolomics, though it still surpasses KNN10 and137

MeanImpute. Our enhanced FLASH method proved capable of efficiently handling both large and138

small multi-omics datasets, consistently outperforming other methods in all evaluated scenarios.139
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Fig. 2. Imputation accuracy for Proteomics and Metabolomics data. Panel a-f summarize the performance of methods
on imputation accuracy for proteomics and metabolomics data. Missing patterns are displayed for different scenario and
datasets, followed by boxplots showing feature-wise accuracy using 3 metrics. Panel a, c, e illustrate ROSMAP proteomics,
Knight proteomics, and ROSMAP metabolomics data with MCAR. Panel b, d, f illustrate ROSMAP proteomics, Knight
proteomics, and ROSMAP metabolomics data with MNAR.
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Fig. 3. Imputation accuracy for Methylation data. Similar to Figure 2, panel a and c illustrates ROSMAP methylation and
MSBB methylation with MCAR. Panel b and d illustrate ROSMAP methylation, MSBB methylation with MNAR.
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2.3. FLASH demonstrates increased power and improved false discovery control in xQTL studies140

After conducting fine-mapping on simulated xQTL data, as explained in Section 4.3, we assessed power141

and false discovery rates using precision-recall and ROC curves at various posterior inclusion probability142

thresholds. This was done under the challenging conditions of 50% MCAR settings, reflecting moderate143

to high missing rates commonly seen in practice. Consistent with our predictions, the effectiveness of144

imputation methods in xQTL discovery power aligns with our earlier evaluation of their imputation145

performance. For moderately sized multi-omics data, FLASH outperforms other methods, closely146

followed by SoftImpute. Both MissForest and MissXGB show similar results and are notably more147

effective than KNN10, MeanImpute, and LOD (Figures 4, panel a, d, e). Performance of SoftImpute148

declines in smaller data-sets (Figures 4, panel b, c). We noticed that in simulations of Knight-based149

pQTL studies with small sample and feature sizes, KNN10 outperforms MissXGB in terms of power.150

We also evaluated the calibration of fine-mapping credible sets (CS) by their coverage, defined as151

the proportion of CS capturing the true simulated effects. For well-calibrated 95% CS, the coverage152

is expected to be at least 95%. Our findings indicate that not all imputation methods lead to well-153

calibrated CS. As shown in Figure 4, panel a-c, LOD and MeanImpute have inadequate false discovery154

rate (FDR) control. SoftImpute also fails to control FDR in smaller datasets. Even KNN10 and155

MissXGB exhibit slightly inflated 95% CS under certain conditions. Reassuringly, both FLASH and156

MissForest demonstrate well-controlled FDR. Moreover, compared toMissForest, 95% CS from FLASH157

attain higher observed coverage.158

The outcomes of our numerical xQTL studies highlight that FLASH -based imputation of molec-159

ular phenotype measurements is the most powerful for xQTL discovery, while also being the most160

conservative in terms of FDR.161
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Fig. 4. Impact of imputation methods on xQTL discoveries. Fine-mapping posterior inclusion probability and credible
sets (CS) comparison of imputation methods are summarized as PR/ROC curves and bar plots. Panel a is results for
ROSMAP Proteomics. The PR and ROC curves are calculated based on PIP result from SuSiE [23]. The red dashed line on
ROC curves are false positive rate at 0.05. Coverage can be interpreted as 1− FDR; the red dashed line on the coverage
plots is 0.95 corresponding to FDR at 0.05 for fine-mapping CS. Panel b, c, d, e summarize the performance for Knight
proteomics, ROSMAP metabolomics, ROSMAP methylation, and MSBB methylation respectively.
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2.4. FLASH yields additional and robust xQTL discoveries in real-world multi-omics data analysis162

2.4.1. Statistical analysis for xQTL association163

We applied seven imputation methods to proteomics data from ROSMAP (totaling 7,712 genes) and164

Knight (1,181 genes), along with metabolomics data from ROSMAP (635 metabolites). These datasets165

were then processed using the FunGen-xQTL analysis protocol described in Section 4.4. Following166

standard xQTL study practices, we present a gene-level summary of pQTL discovery. This involves167

permutation testing for each gene within the cis-window to adjust for multiple testing of many genetic168

variants [24,25], and genome-wide false discovery rate control at gene level using the qvalue method [26].169

For the metabolomics data, we conducted a GWAS for each metabolite, counting significant metaQTLs170

as those with p-values below the standard GWAS threshold of 5×10−8, without additional adjustments171

for multiple testing at metabolites level. xQTL discoveries are summarized in Table 1. We selected172

KNN10 as a baseline for comparison due to its popularity in multi-omics literature, and relatively173

calibrated results across evaluated scenarios as shown in Figure 4.174

In the ROSMAP proteomics data, FLASH led to the identification of the most pGenes (genes with at175

least one pQTL), closely followed by SoftImpute, MissXGB, and MissForest. While MeanImpute and176

LOD detected more pGenes than KNN10, these results warrant caution given their potential for inflated177

false discoveries as previously demonstrated. In the smaller Knight dataset, FLASH proved to be the178

most conservative, yielding the fewest pGenes. Conversely, SoftImpute, which has shown a propensity179

for false positives, identified nearly double the pGenes compared to FLASH , while MeanImpute found180

over three times more. The most striking result was from LOD, reporting 1,056 pGenes — 91.7% of181

all genes in the Knight proteomics dataset — which likely includes many false positives.182

Table 1. Analysis of pQTL data: discovery from ROSMAP. The first column summarizes the number of
pQTL genes identified by each method and their proportion compared to the total gene counts in ROSMAP. The
second column compares each method to KNN10, showing the percentage increase or decrease in the number
of significant genes identified. The last column summarizes genes uniquely identified by each method.

Method
ROSMAP

#(%) sig. genes diff. from KNN10 method specific

FLASH 2,811(37.8%) 18.8% 930
MissXGB 2,640(35.5%) 11.58% 759
MissForest 2,625(35.3%) 10.95% 744
KNN10 2,336(31.4%) 0.0% 455
SoftImpute 2,654(35.7%) 12.17% 773
MeanImpute 2,585(34.8%) 9.27% 704
LOD 2,527(34.0%) 6.80% 646

2.4.2. Replication analysis for pQTL results between Knight and ROSMAP183

In the context of real-world xQTL discoveries, the absence of known ground truth poses a challenge in184

validating the robustness different imputation methods for the xQTL signals obtained through them.185

To address this, we conduct replication analyses between Knight and ROSMAP data-sets. Specifically,186

we designated the pQTL data from the smaller Knight proteomics sample as the discovery set and the187

pQTL from the larger ROSMAP sample as the replication set. We incorporated cross-method results188

when defining these sets, aiming to create both reasonable discovery and robust replication data. The189

criteria for these sets were established as follows:190

• Method-specific discovery set: for genes that exist in both ROSMAP and Knight, we evaluate191

significant genes (permutation q-value < 0.05) in Knight pQTL reported by each of the 7 methods,192

which gives us 7 discovery sets.193

• Baseline discovery set: for genes that exist in both ROSMAP and Knight, we consider those194

reported significant (permutation q-value < 0.05) in Knight pQTL by 6 methods excluding LOD.195

This gives us 76 genes.196

• Joint discovery set: for genes that exist in both ROSMAP and Knight, we consider those reported197

significant (permutation q-value < 0.05) in Knight pQTL by any of those methods that shows well198
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calibrated coverage in simulation studies, including FLASH , MissForest, MissXGB and KNN10.199

This is a total of 78 genes.200

• Replication set: for genes that exist in both ROSMAP and Knight, we consider those reported201

significant (permutation q-value < 0.05) in ROSMAP pQTL by 6 methods excluding LOD. This202

is a total of 171 genes.203

• We compute replicate rate as #genes in both discovery and replication sets
#genes in discovery set . This gives us baseline repli-204

cation rate of 57.9% and joint replication rate of 56.4%.205

• We define relative replication rate as method specific replication rates divided by the joint repli-206

cation rate.207

Method-specific replication rates are shown in Figure 5. In these comparisons, FLASH continues208

to outperform, demonstrating the highest replication rates among the methods evaluated.209

Fig. 5. Analysis of pQTL data: replication and runtime. Panel a summarizes the absolute and relative replication rate for
each method in the pQTL replication study, comparing discoveries in Knight to those in ROSMAP. The relative replication
rate is calculated by absolute replication over replication of joint discovery set. Panel a shows the runtime of each method
for imputation on ROSMAP proteomics data.

Runtime benchmarks for all imputation methods were conducted using the ROSMAP proteomics210

data. Our findings indicate that while FLASH and MissXGB take longer to process than simpler211

methods like MeanImpute, LOD, and KNN10, they are still significantly faster than MissForest, and212

are practical for analyzing real-world datasets.213

3. Discussion214

Missing data in multi-omics studies is a common issue that poses practical challenges. Various algo-215

rithms, statistical models, and machine learning methods are theoretically available to impute miss-216

ing multi-omics data, but beyond simulation studies for imputation accuracy, the impact of missing217
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data and the choice of methods in specific contexts, such as molecular xQTL analysis, is not well-218

understood. This work demonstrates, through both simulation and data applications, the significant219

impact of missing data handling on xQTL discoveries. We recommend a Bayesian matrix factorization220

approach, FLASH , as a default choice for imputing missing data in certain types of multi-omics studies221

including proteomics, metabolomics and methylation.222

In our in-depth comparison of the selected seven imputation methods, we evaluated performance223

across three multi-omics data types with varying sample sizes, number of features, and missing patterns224

(MAR and MNAR). Our findings align with previously published benchmark on methylation data,225

which advised against using KNN for imputation and suggested regression-based imputation as a226

powerful strategy [27]. The pattern of missingness appears less critical than the nature of the data227

(types and size of multi-omics data). For xQTL studies, we found that the performance in power is228

consistent with accuracy. However, methods like MeanImpute, LOD, and sometimes KNN10, showed229

inflated type I errors, potentially leading to spurious xQTL signals in practice. In real data analysis,230

we examined xQTL in multi-omics data from three sources, finding that the choice of imputation231

method can lead to different genes being identified. In all scenarios and datasets, FLASH consistently232

outperformed other methods in imputation accuracy, power for xQTL discovery, calibration of FDR233

control, and attained the highest xQTL discovery replication rate. Notably, inferences drawn from234

FLASH were more interpretable than those from other methods, shedding lights into the inherent235

hidden structures in high-dimensional multi-omics datasets.236

The development of new approaches — MissXGB and an extension to FLASH— was motivated237

by the need to efficiently analyze large-scale datasets in light of initial promising results from the238

benchmark. Both MissForest and FLASH , while more accurate compared to other methods, are slow239

for large datasets. For example, for the ROSMAP methylation dataset with 721 individuals and 450K240

CpGs, it takes 7 days for MissForest and 2 days for FLASH implemented in R package flashier)241

to complete the analysis. Our new MissXGB approach and extension to FLASH are much faster242

while maintaining comparable accuracy. In particular, FLASH , as a novel method in the context of243

multi-omics data imputation, is highly recommended for practical applications.244

Our work, while comprehensive, has several limitations that may require further investigation.245

Firstly, none of the methods or benchmarks we used take advantage of information across different246

multi-omics modalities, especially when data for the same set of individuals is available, as in the247

case of the ROSMAP and MSBB datasets in our study with RNA-seq, methylation and proteomics248

features measured. More sophisticated methods might offer improved results in such scenarios [13],249

though we did not test their practical performance. Secondly, our analysis was confined to proteomics,250

metabolomics, and methylation data. We did not assess the impact of missing data and imputation251

methods on other xQTL data types, particularly single cell or single nucleotide RNA-seq, though there252

are existing benchmarks and recommendations for these data types [28]. Our framework for evaluating253

xQTL power and FDR could be adapted to these benchmarks to determine whether certain methods254

can improve xQTL discoveries. Thirdly, the imputation methods we employed are generic. There255

is potential for future development of methods tailored to specific data types, for example matrix256

factorization methods — possibly by extending FLASH— for functional data such as methylation. We257

did not explore domain-specific approaches, such as penalized functional regression, which might offer258

better results for methylation imputation [29]. Finally, while our benchmark design is sophisticated259

and includes both simulation and real-data applications, the methods we considered are limited to260

those that are popular and computationally feasible. In particular, we did not systematically evaluate261

deep learning approaches, which might be effective when executed properly [30,31]. In fact, we did262

implement and benchmark a variational auto-encoder approach [32], but found its performance to be263

highly sensitive to parameter tuning and generally less satisfactory than simpler methods, leading us264

to exclude it from our in-depth comparison.265

Implementation of our benchmark outlined in Figure 1 is available at https://github.com/zq2209/266

omics-imputation-paper. The R package MissXGB is available at https://github.com/zq2209/267

missXGB. Our extension to FLASH is available at https://github.com/willwerscheid/flashier.268

Imputation pipeline for real-world data analysis implementing seven methods can be found at https://269

cumc.github.io/xqtl-pipeline/code/data_preprocessing/phenotype/phenotype_imputation.html.270

271
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4. Material and Methods272

4.1. Multi-omics missing data imputation methods273

In this manuscript, we focus on several key methods, including MeanImpute, LOD, KNN10, SoftIm-274

pute, and MissForest, each with different parameterizations as detailed in Table S3. Additionally, we275

introduce two new approaches, MissXGB and FLASH , detailed in the subsequent sections.276

4.1.1. The MissXGB algorithm277

We developed the MissXGB algorithm and software package in R, which follows from the MissForest [8]278

framework but using an XGBoost model trained on the observed portions of a dataset to predict279

missing values. Specifically, a data matrix Dn×p can be divided into four parts based on any given j-th280

variable Dj (a length-n vector): Yobs, Ymiss, Xobs, and Xmiss. Here, Yobs represents the observed values281

of Dj , while Ymiss denotes its unobserved values. Variables other than j in the dataset are partitioned282

into Xobs amd Xmiss for observed and missing values respectively. Overall, for each column Xmiss, a283

XGBoost model is trained with response Yobs and predictors Xobs. The trained model is then applied to284

predict Ymiss with Xmiss. The iteration will stop as soon as the difference between the newly imputed285

data matrix and the previous one increases for the first time. Algorithm 1 outlines the MissXGB286

implementation.287

Algorithm 1 MissXGB Algorithm

Require: The n× p matrix D; stopping criteria δs
Ensure: Yobs, Ymiss, Xobs, and Xmiss

Sort columns of D w.r.t increasing amount of missing values
Initialized missing values by MeanImpute
while not δs do

Xold: the previous imputed dataset
for s in p do

Train an XGBoost model: Yobs ∼ Xobs

Predict Ymiss using Xmiss

Update Xnew using Ymiss

end for
update δ =

∑
n(X

new−Xold)2∑
n(X

new)2

end while

4.1.2. Extension to FLASH288

FLASH— the Factors and Loadings by Adaptive SHrinkage — is an Empirical Bayes Matrix Factor-289

ization (EBMF) model that can be applied to perform low-rank approximation for high-dimensional290

data. We apply FLASH to identify hidden structures in datasets and use them to impute missing val-291

ues. Unlike standard matrix factorization methods like PCA or SVD, FLASH offers a more versatile292

Empirical Bayes approach. This flexibility allows the model to handle various levels of sparsity in the293

loadings (L) and factors (F ). One advantages is its adaptive shrinkage feature, which automatically294

selects the number of factors for L and F , saving users from having to manually choose and adjust295

this parameter.296

4.2. Numerical Study on imputation accuracy297

4.2.1. Simulating realistic missing patterns in multi-omics data298

In our study, we assessed the performance of different methods using simulated datasets with missing299

values categorized as either completely at random (MCAR) or missing not at random (MNAR) [33–35].300

The MNAR simulations were crafted to mirror missing patterns found in actual multi-omics data.301

We implemented a Bayesian approach to create these missing values, taking into account both the302

observed data and the identified missing patterns. By clustering samples and features based on their303
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missing profiles, we identified major patterns of missingness in data. The probability of occurrence of304

missing patterns was used as a prior. This, in conjunction with the observed probability of data being305

missing, enabled us calculate the probability of missingness taking into consideration of information306

both from other variables (common in missing at random, MAR, scenarios) and from the variable itself307

(a characteristic of MNAR situations).308

To implement this, consider data matrix D with dimensions n× p. This matrix includes n observa-309

tions and p features, and contains the missing data patterns we aim to capture using simulated data.310

To create generative models from these patterns, we characterize them using two steps of clustering.311

First, we group the p features into g clusters using a K-means algorithm. For instance, in methylation312

data, we use g = 100. This gives us a new matrix of size n × g, showing the average missingness for313

each cluster of features. Next, we cluster this matrix by samples using hierarchical clustering with a314

cutree algorithm [36], forming k sample clusters. In the case of methylation data, we set k = 10. This315

creates a total of g × k unique clusters, each representing a different missing data pattern.316

To apply the derived missing pattern cluster to a new dataset D′, we first assign each individual in
D′ to one of the k sample clusters based on the relative frequency of occurrence of the sample cluster
in dataset D. Then, for each of the g feature clusters, we compute the probability of a data point from
cluster (k, g) being missing as

P (mkg = 1|xkg) =
P (xkg|mkg = 1)× P (mkg = 1)

P (xkg)

where P (mkg = 1) is the probability of missing data in cluster (k, g), estimated by the proportion of317

missingness in this cluster. P (xkg) is the probability density of values in cluster (k, g), which can be318

approximated from the observed data. P (xkg|mkg = 1) is the probability density of missing values,319

approximated using features with higher missing rates within the cluster, defined as those having320

missing rates above the median for features with at least one missing value. To compute P (xkg)321

and P (xkg|mkg = 1), we consider the area under the curve (AUC) of the empirical density function,322

within one standard deviation around the mean values of these variables, i.e., AUC within the range323

of E(xkg) ±
√

V ar(xkg) and E(xkg|mkg = 1) ±
√

V ar(xkg|mkg = 1), respectively. This process is324

iteratively applied to each feature within every cluster, until a sample is simulated to accurately325

reflects the intended missing pattern for the features. Other samples in D′ can be simulated similarly.326

4.2.2. Imputation efficacy metrics327

In our analysis, we evaluated the effectiveness of various imputation methods using three key metrics:328

normalized root mean square error (NRMSE) [37], normalized mean absolute error (NMAE) [38], and the329

squared Pearson correlation coefficient (R2) that we computed at feature level. NRMSE, defined as the330

root mean square error normalized by the standard deviation of the observed value of the feature, is331

calculated as NRMSE =

√∑N
i=1(x̂i−xi)2√
V ar(x)

where N is the number of observations with missing value, x is332

the observed values, and x̂ is the predicted values. NMAE, the mean absolute error normalized by the333

range of the observed value, is given by NMAE =
∑N

i=1 |x̂i−xi|
max(x)−min(x) . The R2 metric measures the linear334

correlation between observed and predicted values, represented by the squared Pearson correlation,335

defined as R2 =

( ∑N
i=1(x̂i−x̄)(xi−x̄)√∑N

i=1(x̂i−x̄)2
∑N

i=1(xi−x̄)2

)2

.336

4.3. Numerical study on xQTL discovery337

4.3.1. Simulate genotype and molecular phenotype association338

To accurately capture the molecular phenotype structure found in real multi-omics data, we devised339

a reverse simulation approach generating genotype of variants in cis-regulatory regions in linkage340

disequilibrium (LD) with each other, and their association with molecular features observed in multi-341

omics resources previously described. We considered five phenotype datasets, listed in “Data” of Figure342

1, to conduct the simulation study. Following basic processing procedures (elaborated in Figure 1), we343

select subsets of molecular features for proteomics and metabolomics data requiring that 1) features344
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have no missing entry for MCAR based simulation scenarios; 2) features with less than 5% missing345

rate in the MNAR scenario. For methylation data containing many CpG sites, we compute PCA of346

CpGs in each topologically associating domain (TAD) [39] and select up to 10 CpG most correlated to347

the first PC with R2 > 0.75.348

For each molecular feature (a gene, a metabolite or a CpG site), we considered the generative model
y = Xb+Zc+ ϵ, where X is an N ×P genotype matrix for P variants, b is a P × 1 vector of the effect
size on molecular genotype on y, and ϵ ∼ N(0, σ2) is other random effects. After regressing out known
and inferred covariates Z from y [40] we generate genotype by using this residual yres

[41]. Specifically,

Xsim = yresβ + T,

where T ∼ MVNp(0,Σ) is a multivariate normal distribution with mean 0 and covariance matrix Σ349

being the LD matrix of genotype. For each molecular phenotype, we randomly drew Mblock ∈ [5, 15] LD350

blocks and Pm ∈ [10, 50] variants in each LD block for m = 1, · · · ,Mblock. Note that
∑Mblock

m=1 Pm = P .351

For m-th LD block, we used the following procedure to generate LD structure:352

1. Generate a Barabasi-Albert network (BAN) to mimic LD among variants [42]. If two variants353

are connected in the BAN, these two variants are considered to be in LD; otherwise, these two354

variants are considered independent. The variants may be connected only if they are in the same355

LD block.356

2. Let Θ = (θpk) be an initial concentration matrix for p, k = 1, . . . , Pm. Here, θpk is set as 0 if357

two variants (p, k) are not connected in BAN; θpk from a uniform distribution on the domain of358

[−0.9,−0.1] ∪ [0.1, 0.9] if two variants (p, k) are connected in BAN.359

3. Rescale the non-zero elements in Θ to assure its positive definiteness, that is, we divide each360

off-diagonal element by λ-fold of the sum of the corresponding row, where λ > 1.5 is the rescale361

rate. Then, the rescaled matrix is averaged by its transpose to ensure symmetry.362

4. Denote W = (ωpk) as the inverse of Θ after rescaling and averaging. Elements Σpk in the363

covariance matrix Σ is determined by Σpk = ωpk
√
ωppωkk.364

We randomly selected one to five linkage disequilibrium (LD) blocks from Mblock to establish the365

cis-windows for xQTL analysis. Within each block, one variant is randomly chosen as the true causal366

variant, with a fixed effect size β = 1. The residual variance σ2 is used to adjust the proportion367

of variance explained (PVE) by genetic variants for a molecular phenotype. By definition, for a368

generative model ysim = yres + ϵ where ϵ ∼ N(0, σ2), PVE = V ar(yres)
V ar(yres)+σ2 . In our reverse simulation369

model, ysim = Xsim−T
β + ϵ, leading to PVE = V ar(yres)

V ar(yres)+σ2 = (V ar(Xsim)+1)/β2

(V ar(Xsim)+1)/β2+σ2 . For proteomics and370

metabolomics in our simulation model, we assume a total PVE of 25% (per variant PVE is 5%), while371

for the methylation study, a 50% PVE [43,44] is assumed (per variant PVE is 10%). This approach372

allows us to simulate a realistic scenario reflecting the genetic contributions to molecular phenotypes373

in these studies.374

We conducted multiple independent simulations to evaluate power and false discovery rate (FDR).375

Each molecular feature in the simulation is treated as an independent analysis unit. For the ROSMAP376

proteomics data, we considered 3,851 features across 3 replicates, which amounts to 11,553 association377

analysis units for assessing power and FDR. The Knight proteomics dataset, having a much fewer378

number of features 49, required 10 replicates to ensure a robust evaluation of power and FDR for379

this particular dataset with a total of 490 analysis units. The ROSMAP metabolomics dataset has380

369 features across 5 replicates, amounting to 1845 associations analysis units. We analyzed 1,381381

TADs for methylation data, with each TAD containing 10 CpG sites. This results in a total of 13,810382

association analysis units to robustly evaluate methylation QTL. We combine these molecular features383

into matrices Y = [y1, y2, . . . , yR] and assign missing data to them based on MCAR model with 50%384

missing rate, to assess a moderate to high missing data scenario.385
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4.3.2. Statistical analysis for xQTL association386

Statistical fine-mapping of the simulated genotype across the three molecular phenotype types was387

conducted on each replicate using SuSiE [23]. Fine-mapping serves to address multiple testing issues in388

cis-xQTL associations, and to differentiate causal variants from other variants in LD with them. The389

outputs of fine-mapping are posterior inclusion probabilities (PIPs) and credible sets each capturing a390

single causal variants. To evaluate these results, we generated precision-recall (PR) and ROC curves391

using the R package ROCR [45] at various PIP thresholds. Additionally, we assessed the coverage of392

credible sets to evaluate the false discovery rate for single effects fine-mapped. Further details on these393

evaluation methods are available in the SuSiE manuscript [23].394
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Supplementary Figures395

We validate our realistic missing generation approach on real data. The following is the heatmap of396

the observed and generated missing patterns on the data.397

Fig. S1. missing rate distribution. Panel a-b summarize the missing rate distribution for datasets. Pabel a is the summary
of distribution of missing rate for features across datasets. Panel b summarize the proportion of features that have at least
one missing entry across datasets.
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Fig. S2. Real Missing Pattern. The heatmap summarize the onserved missing for each datasets. Panel a is the ob-
served missing pattern for ROSMAP proteomics, panal b for Knight proteomics. Panel c summarize the missing pattern for
ROSMAP metabolomics. And panel d-e are missing pattern for MSBB and ROSMAP methylation.
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Supplementary Tables398

Supplementary Table S1: Multi-omics Application Literature Involving Imputation Methods399

Supplementary Table S2: Methodology and Benchmarking Literature for Imputation Methods400

Supplementary Table S3: List of Imputation Methods Evaluated401

Supplementary Table S4: Sensitivity of Tuning Parameter Settings in Imputation Methods402
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