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Abstract  
Background: Copy number variations (CNVs) are genetic variants that can have substantial 
influence on neurodevelopment, neuropsychiatric traits and morphometric brain changes, 
yet their impact at the individual level remains unknown. Common case-control 
approaches for analyzing CNVs often overlook individual variation between carriers and 
exclude rarer variants, due to their limited sample size. This study aims to map 
individualized brain deviation scores in individuals with pathogenic CNVs. 
Methods: We used normative modeling to map neuroimaging features from several large 
neuroimaging datasets and applied these models to understand the neurobiological profile 
of CNV carriers in UK Biobank. We highlighted the 1q21.1 distal deletion and duplication, as 
an example of our normative modeling-CNV approach. Next, we counted the number of 
extreme deviations for each participant from the mean and centiles of variation from 
population reference norms, giving us a combined risk score per participant per imaging 
modality.  
Results: We show a high degree of heterogeneity between pathogenic CNV carriers in their 
implicated brain regions. For example, the cerebellum, brainstem and the pallidum show 
large negative deviations for certain 1q21.1 duplication carriers. For certain 1q21.1 deletion 
CNV carriers the caudate and accumbens show notable positive deviations. Finally, we show 
that negative deviations from these models are correlated to cognitive function. 
Conclusions: This study marks a starting point in comprehending the impact of pathogenic 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 30, 2023. ; https://doi.org/10.1101/2023.11.29.23298954doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 30, 2023. ; https://doi.org/10.1101/2023.11.29.23298954doi: medRxiv preprint 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 30, 2023. ; https://doi.org/10.1101/2023.11.29.23298954doi: medRxiv preprint 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 30, 2023. ; https://doi.org/10.1101/2023.11.29.23298954doi: medRxiv preprint 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 30, 2023. ; https://doi.org/10.1101/2023.11.29.23298954doi: medRxiv preprint 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 30, 2023. ; https://doi.org/10.1101/2023.11.29.23298954doi: medRxiv preprint 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 30, 2023. ; https://doi.org/10.1101/2023.11.29.23298954doi: medRxiv preprint 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 30, 2023. ; https://doi.org/10.1101/2023.11.29.23298954doi: medRxiv preprint 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 30, 2023. ; https://doi.org/10.1101/2023.11.29.23298954doi: medRxiv preprint 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 30, 2023. ; https://doi.org/10.1101/2023.11.29.23298954doi: medRxiv preprint 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 30, 2023. ; https://doi.org/10.1101/2023.11.29.23298954doi: medRxiv preprint 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 30, 2023. ; https://doi.org/10.1101/2023.11.29.23298954doi: medRxiv preprint 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 30, 2023. ; https://doi.org/10.1101/2023.11.29.23298954doi: medRxiv preprint 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 30, 2023. ; https://doi.org/10.1101/2023.11.29.23298954doi: medRxiv preprint 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 30, 2023. ; https://doi.org/10.1101/2023.11.29.23298954doi: medRxiv preprint 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 30, 2023. ; https://doi.org/10.1101/2023.11.29.23298954doi: medRxiv preprint 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 30, 2023. ; https://doi.org/10.1101/2023.11.29.23298954doi: medRxiv preprint 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 30, 2023. ; https://doi.org/10.1101/2023.11.29.23298954doi: medRxiv preprint 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 30, 2023. ; https://doi.org/10.1101/2023.11.29.23298954doi: medRxiv preprint 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 30, 2023. ; https://doi.org/10.1101/2023.11.29.23298954doi: medRxiv preprint 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 30, 2023. ; https://doi.org/10.1101/2023.11.29.23298954doi: medRxiv preprint 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 30, 2023. ; https://doi.org/10.1101/2023.11.29.23298954doi: medRxiv preprint 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 30, 2023. ; https://doi.org/10.1101/2023.11.29.23298954doi: medRxiv preprint 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 30, 2023. ; https://doi.org/10.1101/2023.11.29.23298954doi: medRxiv preprint 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 30, 2023. ; https://doi.org/10.1101/2023.11.29.23298954doi: medRxiv preprint 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 30, 2023. ; https://doi.org/10.1101/2023.11.29.23298954doi: medRxiv preprint 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 30, 2023. ; https://doi.org/10.1101/2023.11.29.23298954doi: medRxiv preprint 

mailto:Charlotte.fraza@donders.ru.nl
https://doi.org/10.1101/2023.11.29.23298954
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2023.11.29.23298954
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2023.11.29.23298954
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2023.11.29.23298954
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2023.11.29.23298954
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2023.11.29.23298954
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2023.11.29.23298954
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2023.11.29.23298954
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2023.11.29.23298954
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2023.11.29.23298954
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2023.11.29.23298954
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2023.11.29.23298954
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2023.11.29.23298954
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2023.11.29.23298954
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2023.11.29.23298954
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2023.11.29.23298954
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2023.11.29.23298954
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2023.11.29.23298954
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2023.11.29.23298954
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2023.11.29.23298954
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2023.11.29.23298954
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2023.11.29.23298954
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2023.11.29.23298954
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2023.11.29.23298954
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2023.11.29.23298954
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2023.11.29.23298954
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2023.11.29.23298954
http://creativecommons.org/licenses/by-nc/4.0/


 2 

CNVs on brain phenotypes, underscoring the intricacies of these genetic variations 
at the individual level and provides a means to studying the effects of rare CNVs in carrier 
individuals. 
 
1. Introduction  

Copy number variations (CNVs) are genetic variants that can have substantial 
influence on neurodevelopment, neuropsychiatric traits and morphometric brain changes1,2. 
Some CNVs emerge as significant genetic risk factors for a spectrum of neurodevelopmental 
and other psychiatric disorders3–7. Specifically, previous studies have shown that certain rare 
recurrent CNVs increase the risk for schizophrenia5,8–12, attention deficit hyperactivity 
disorder (ADHD)13, autism spectrum disorder (ASD)14,15 and links between a decreased 
intelligence quotient (IQ) score and pathogenic CNVs have been established16. Despite their 
known importance, the effects of the majority of individual CNVs on the brain and behavior 
remain largely unknown. CNVs are typically studied at the group level, which may mask 
considerable inter-individual variation in their phenotypic presentation. Furthermore, the 
group-based approach is only feasible for the more common CNVs, limiting our ability to 
map the effects of rarer CNVs with high penetrance or large effect size. Understanding the 
effects of specific CNVs on both brain organization and cognition at the individual level is 
crucial for mapping the landscape of their impact on mental disorders. 

CNVs often have pleiotropic effects, influencing multiple downstream processes 
simultaneously17–19. The diversity in genetic CNV-mediated effects is heightened by 
interactions with both the rest of the genome and environmental factors20. This renders 
each CNV's impact unique to the individual, complicating the task of unraveling their 
contributions to overall mental health. Conventional imaging and behavioral CNV studies 
often adopt a cases vs. controls framework, which has led to tremendous insights. However, 
in order to grasp the full spectrum of CNV effects, which manifest in a quite heterogeneous 
manner, we need to move beyond group-level distinctions21. 

Understanding the individual-level impact of CNVs on the brain and behavior has 
posed a challenge, yet the emergence of large-scale normative models may offer a solution. 
By employing this approach, z-scores can be calculated for each individual across various 
neuroimaging modalities, quantifying individual variations against the mean and centiles of 
population reference norms. Normative models thereby shift focus from group-level to 
individual-level inferences22–25 and allow us to quantify atypical developmental 
trajectories26,27. Normative modeling has proven its efficacy in correlating individual 
behavioral phenotypes with deviations from reference cohorts, spanning disorders like 
schizophrenia, autism, and ADHD28–30 and mapping disease progression in Alzheimer’s 
disease31. Using normative models, we can map brain deviation scores for individuals with a 
specific pathogenic CNV. Afterward, we can use these pathogenic CNV-brain phenotypic 
deviation scores and correlate them with behavioral traits, uncovering hidden facets that 
group analyses could potentially miss. Importantly, owing to its focus on individual 
differences, this approach is not limited to common CNVs; it extends to rarer variants, 
opening doors to tailored research for smaller populations of rare genetic variants.  

The normative modeling approach is specifically designed to give insight into 
individual brain deviation scores and their relationship to mental health. Mental health 
disorders such as major depression and schizophrenia lie on a gradient of severity and can 
be seen as the extreme values on continuous dimensions32. This notion aligns with 
normative modeling, as it positions individuals with large brain deviation scores at the 
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fringes of the normative spectrum33. In this study, our primary objective is to delve into the 
individualized impacts of CNVs on brain structure and behavior. By adopting a normative 
modeling approach, we take a step towards crafting personalized risk profiles that facilitate 
cross-individual comparisons. These profiles prove insightful for individuals with similar 
genetic mutations that manifest in comparable behavioral effects and share diverse 
neuroimaging fingerprints. We hypothesize that: (i) individuals with a CNV related to 
cognitive deficits or neurodevelopmental disorders, will have larger deviation scores 
compared to a reference model across many brain areas and (ii) that the patterns of 
deviation across brain regions will be highly variable across these CNV carriers.  
 
Methods and Materials 
From Pathogenic CNVs to Brain Structures: A Normative Modeling Approach 

An overview of our analytic workflow is presented in Fig. 1. In brief, to discern 
whether certain neuroimaging modalities exhibited more atypicalities than others, we first 
employed normative modeling to analyze Image Derived Phenotypes (IDPs) from the UK 
Biobank study34, covering diverse functional, structural, and diffusion tensor imaging 
measures. Afterwards, to create an exploration of the effect of pathogenic CNVs on the 
brain, we established a voxel-based morphometric variation model using Jacobian 
determinant images derived from the non-linear image registration to the MNI152 space. To 
create the voxel wise Jacobian normative model, we pooled a large dataset from publicly 
available repositories, leveraging Jacobian determinant images from non-linear image 
registration, specifically via the anatomical processing tools found in FSL (details available in 
the supplement). Jacobians, in their essence, provide a spatially precise measure of voxel-
based morphometric differences, capturing the extent of volumetric adjustments—either 
expansion or contraction—needed to align each sample with the registration template for 
each voxel. These determinants provide a more informative dataset compared to other 
derived measures35 and describe aggregate differences, avoiding the partly arbitrary 
distinction between grey and white matter. Moreover, it is well-established that specific 
CNVs influence intracranial volume (ICV)36,37. Consequently, we anticipated that this 
influence would manifest as either an increase or decrease in the necessary volumetric 
adjustments for individuals with these CNVs, which would be reflected in their Jacobians.  

Every normative model constructed factored in covariates such as age and sex, in 
addition to fixed effects for site, the mathematical details are described in supplement. To 
ensure accurate modeling of non-linear and non-Gaussian effects, we employed a warped 
Bayesian linear regression (BLR) model38.  

We focussed on 92 CNVs proposed to be pathogenic (henceforth ‘pathogenic’), and 
their reciprocal CNVs39–41. These can be requested from 
https://biobank.ndph.ox.ac.uk/ukb/app.cgi?id=14421. We highlighted the 1q21.1 distal 
deletion and duplication, as an example of our normative modeling-CNV approach. This CNV 
has shown moderate to strong effects on cognition4,40, a dose-response per copy number 
for head circumference42, with microcephaly in deletion carriers and macrocephaly in 
duplication carriers, and has been associated with global cortical surface structure 
alterations36. Furthermore, individuals with a 1q21.1 deletion and duplication show an 
increased risk for several neurodevelopmental disorders3,4,42–44. While our study is primarily 
designed to unravel individualized pathogenic CNV effects, we also explored the potential 
for aggregating subjects with similar CNVs to uncover converging neuroimaging alterations 
across pathogenic CNVs, opening avenues for comparison with traditional case-control 
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studies. Finally, we linked the found brain deviation scores to cognition by testing a 
correlation between the negative deviation scores and general cognitive ability45.  

Fig. 1A visually outlines our study workflow i. We first mapped participants with 
pathogenic CNVs in UK Biobank and placed them in our test set of normative models. ii. We 
created the normative models for each individual IDP or voxel, taking into account several 
covariates, such as age and sex. iii. We counted the number of extreme deviations for each 
participant and mapped where participants with a pathogenic CNV lay on this distribution, 
giving us a combined risk score per participant per imaging modality. iv. We correlated the 
total number of extreme z-scores with a measure of general cognitive ability. In Fig. 1B, we 
show an overview of the datasets used, encompassing IDPs from the UK biobank and 
Jacobian data from seven sites, details can be found in the supplement. In total, we used 
44,456 participants in the IDP study, and in the Jacobian-voxel-based study 19,620 
participants who had underwent and passed visual quality control. There were 375 
individuals with pathogenic CNVs in the quality controlled Jacobian neuroimaging dataset. In 
Fig. 3A and 4A, the final pathogenic CNV sample used for the Jacobian normative models 
study is shown.  
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Fig. 1 | Overview of study design and data resources. A. Schematic overview of the study 
workflow and hypothesis. First, we quantify the number of participants with pathogenic 
CNVs, previously linked to neurodevelopmental and psychiatric disorders. Then we create 
normative models for the IDPs and the voxel-wise Jacobians. Afterward, we calculate the 
number of large deviation scores (|Z|>2). We plot the number of large deviation scores for 
individuals with pathogenic CNVs compared to the rest of the population. Finally, we 
correlate the extreme brain deviation scores and general cognitive ability. CNV, Copy 
Number Variant; IDP, image derived phenotype; BLR, Bayesian Linear Regression. B. 
Overview of the neuroimaging datasets used in this study. i. Distribution of the IDPs 
present in the UK biobank dataset, derived from functional, structural, and diffusion tensor 
imaging. ii. Distributions of the data from seven sites used in the Jacobian normative model, 
split by sex. In total, for the IDP study we use 44,456 participants, and for the Jacobian-
voxel-based study we use 19,620 visually quality controlled participants. 
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Results 
Initially, we fitted a normative model to the general IDPs derived from the structural, 
functional and diffusion measures from the UK biobank. Specifically, we were interested in 
the differences between participants who had pathogenic CNVs in comparison to those 
without. Detailed results from this IDP normative model can be explored in the 
supplementary Fig. 1, 2 and 3. A notable observation was that structural measures appeared 
most informative when we explored individual deviation scores. In supplementary Fig. 2 and 
3, we can see that the structural measures gave a larger spread of the number of extreme 
deviations compared to other measures, which indicates a larger variation in individual 
differences. 

Recognizing the significance of structural measures, we mapped a voxel-based 
morphometric variation model to characterize these differences at a finer scale, see Fig. 2. 
The resulting model accounted for as much as 52% of the variation in morphometric 
changes. Validation of the models entailed the application of several criteria. Among these 
were the kurtosis and skewness of the resulting z-score distribution, which measure the 
effectiveness of the warping function in capturing the non-linearity and non-Gaussianity of 
the data. In brief, all voxels show relatively low skew (i.e. |skew|< 1) and acceptable excess 
kurtosis (<5). 
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Fig. 2 | Overview of normative modeling results. A. Performance metrics for the test set. 
Both skew and kurtosis serve as indicators of the model's accuracy in estimating shape via 
warped Bayesian Linear Regression. B. Depiction of varied normative trajectories across 
distinct voxels, showing in the corner the histogram of z-scores, with the accompanying 
whole brain explained variance (𝑅!) map, split based on sex. 
 
Individual risk profiles - combining pathogenic CNVs and brain imaging deviation scores  
Next, we aimed to characterize the individual variations in brain deviation scores associated 
with specific pathogenic CNVs. To accomplish this, we counted the number of extreme 
deviations (|Z|>2) for each individual. An overview of the average counts of negative and 
positive deviation scores across all pathogenic CNVs is presented in supplementary Fig. 4. 
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Afterward, we constructed individualized risk profiles for 1q21.1 distal deletion 
(1q21.1del) and duplication (1q21.1dup). We chose this CNV to highlight our method, as it is 
relatively well-characterized with regard to brain structural differences21, has shown 
impairments in cognition and has been associated with neurodevelopmental disorders42. 
Fig. 3 and 4 depict the number of positive and negative deviation scores for individuals with 
a deletion or duplication, respectively, in comparison to participants without pathogenic 
CNVs. Additionally, these figures showcase deviation score brain maps for individuals with a 
pathogenic CNV, pinpointing regions exhibiting pronounced positive or negative deviations 
when compared to a reference cohort, showcasing a high degree of variability of volumetric 
alterations across carriers. The maps show areas with marked negative or positive Jacobian 
signals or localized volumetric alterations. The interpretation of positive and negative 
deviations can vary depending on the mean of the normative model. For example, when the 
deviation is positive compared to the mean, it indicates more expansion and a relatively 
small volume in that voxel compared to the norm. We can see from panel B that positive 
deviations, i.e. more volume expansions than predicted, were more present for participants 
with a 1q21.1del, and negative deviations, i.e. more volume contractions than predicted by 
the model, were more prevalent for participants with a 1q21.1dup. For the detailed brain 
maps of all the participants with a 1q21.1 distal deletion or duplication, see supplementary 
Fig. 5 and 6. The most implicated brain areas, calculated using the mean deviation score per 
ROI, are also summarized in word clouds.   

Then, we conducted a joint analysis for the 1q21.1del and 1q21.1dup groups, 
respectively, to examine the common distribution of deviation scores across all subjects. We 
would expect that there is convergence in deviation scores amongst the individual subjects 
in certain brain regions46, especially those that can be found with traditional cases vs. 
control paradigms, but also we expect divergence amongst the subjects in deviation scores 
in other brain regions, as we know that not every participant with a pathogenic CNV is 
implicated in their behavioral phenotype or cognition. Thus, a participant can have a 
pathogenic CNV and still be within the bounds of standard cognitive performance. The 
analysis revealed prominent deviations in specific brain regions, see Fig 5. Notably, for 
1q21.1dup, substantial negative deviations manifested in the occipital cortex, while for 
1q21.1del, pronounced positive deviations were observed in the cerebellum and thalamus. 
Moreover, we also show the brain regions implicated in 16p13.11 deletion and duplication, 
which is a CNV of which less is known currently, showcasing the versatility of our approach, 
which can be applied to diverse rare pathogenic CNVs. 
  
Relationship brain deviation scores and cognitive deficits  
Fig. 6 outlines our hypothesis concerning the impact of pathogenic CNVs on cognition, 
proposing that certain CNVs might contribute to cognitive impairment in the absence of 
protective factors. We plotted the fluid intelligence scores among participants with 
pathogenic CNVs and participants without pathogenic CNVs in Fig. 6A. To analyze the 
relationship between large deviation scores and cognition, we generated a general cognitive 
ability score for each participant by calculating the first principal component from various 
cognitive tests within the UK Biobank dataset, see the supplementary methods for details. 
We examined the Pearson correlation between the total count of extreme positive 
deviation scores (Z>2) and the general cognitive ability score (r = 0.0080, p = 0.6639) and the 
extreme negative deviation scores (Z <-2) and the general cognitive ability score (r = -0.04, p 
= 0.03), see Fig. 6. This correlation indicated that a higher number of extreme negative 
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deviations, indicating more volume contractions compared to the mean of the population, 
was significantly associated with a lower general cognitive ability score.  
 

 
Fig. 3 | Individual Risk Profiles 1q21.1 deletion. A. The prevalence of pathogenic CNV 
carriers including 1q21.1del in the UK Biobank neuroimaging dataset used in Jacobian 
analysis. B. Counts of extreme positive and negative deviation scores (|Z|>2) among 
participants with a 1q21.1 deletion in contrast to participants without a pathogenic CNV. 
Left: Dots show each individual 1q21.1 deletion carrier’s position in the distribution. Right: 
Displaying the profile of three selected 1q21.1 distal deletion CNV carriers. 
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Fig. 4 | Individual Risk Profiles 1q21.1 duplication.  A. The prevalence of pathogenic CNV 
carriers including 1q21.1dup in the UK Biobank neuroimaging dataset used in Jacobian 
analysis.. B. The counts of extreme positive and negative deviation scores (|Z|>2) among 
participants with a 1q21.1 duplication in contrast to participants without a pathogenic CNV. 
Left: Dots show each individual 1q21.1 duplication carrier’s position in the distribution. 
Right: Displaying the profile of three selected 1q21.1 distal duplication CNV carriers. 
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Fig. 5 | Convergence of Extreme Positive or Negative Deviation Scores. The overlapping 
brain deviation score maps for participants with the 1q21.1 distal or 16p13.11 CNVs. On the 
x-axis, we show different sagittal slices with steps of 10.  
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Fig. 6 | Pathogenic CNVs Impact on Cognitive Function.  Illustration of how protective and 
disruptive factors, which may include (pathogenic) CNVs, might lead to cognitive 
impairment. A. Variations in fluid intelligence scores among participants with pathogenic 
CNVs (P-CNVs) and without pathogenic CNVs (non-carriers). B. Depicting the found Pearson 
correlation between the number of large negative deviation scores (Z<-2) and the explained 
variance of the first principal component of cognition, which is usually called general 
cognitive ability. 
 
Discussion 
Individualized risk profiles through normative models - The aim of this study was to 
charachterize individualized risk profiles for participants with pathogenic CNVs related to 
neurodevelopmental and psychiatric disorders. In this endeavor, we are the first to 
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individual difference maps for both IDPs and detailed Jacobian measures indicating 
volumetric changes at the voxel level and the level of the individual. Initially, we established 
normative reference models from IDPs to identify the neuroimaging modality most 
influenced by the pathogenic CNVs. Our findings highlighted that structural measures 
appeared more informative. Following this, we utilized a whole-brain Jacobian model to 
map deviation scores with voxel-wise precision. 
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deviation across brain regions will be highly variable across these pathogenic CNV carriers. 
To confirm these hypotheses, we delved deeper by analyzing the deviations from the 
reference model's normative trajectories, by binning the deviation scores. We counted the 
number of extreme volume contractions (Z<-2) and expansions (Z>2), as compared to the 
mean and variance of the reference model. This methodology supplied us with an 
individualized map of extreme deviation scores. For each participant with a pathogenic CNV, 
this allowed us to pinpoint the brain regions showcasing the most pronounced deviations. 
Expanding on this, we counted the total positive and negative deviation counts, and 
juxtaposed it against the broader population's risk scores.  As we expected, certain 
participants with a pathogenic CNV displayed an elevated number of positive or negative 
deviations compared to the general population, while others demonstrated deviation scores 
that aligned more with the 'norm'. 

Finally, we examined how the deviation scores are associated to general cognitive 
ability. We chose cognitive ability because it is consistently linked to different mental 
conditions47, making it a useful gauge of mental health, and allowing us to establish a 
biologically meaningful connection between brain deviation scores and behavior. Our 
analysis revealed a significant correlation between the count of negative deviations and 
general cognitive ability.  

Using normative models to understand how pathogenic CNVs affect the brain 
hasmimportant benefits. It helps uncover hidden insights that group analyses might miss. 
Importantly, this approach focuses on individual differences, so it's not limited to common 
CNVs but can be applied on rarer variations, making it possible to do research for smaller 
groups with uncommon genetic variants. For each person with a common or rare 
pathogenic CNV, we can identify the specific brain areas where they differ significantly from 
the norm. This allows us to see which brain regions are affected in each case, going beyond 
studies that need large sample sizes and can only look at more common CNVs. 
 
Individualized risk profiles for 1q21.1 distal CNV 
We generated individualized risk profiles for both carriers of the 1q21.1 distal deletion and 
duplication from the deviation scores. This CNV exhibits a remarkably diverse range of 
traits48,49, which aligns with our proposition of an individualized approach. Notably, 1q21.1 
CNV is associated with several, different neurodevelopmental disorders2,4. For participants 
with a 1q21.1 deletion or duplication, we counted instances of extreme positive and 
negative deviation scores, contrasting these frequencies with the broader population. 
Subsequently, we generated brain maps alongside these deviation scores to highlight the 
regions of the brain where deviations were most prominent. We aggregated the deviation 
scores across participants with duplications and separately for those with deletions. This 
allowed us to identify brain regions where the effects converged across individuals and we 
can then subsequently compare it with previous literature that use case-control setups.  

For the Jacobian normative model, we quantify individual deviations from the mean 
volumetric change for a specific voxel. In this context, negative deviations refer to instances 
where certain brain regions show more volume contractions relative to the mean value of 
the Jacobian normative model. Put simply, these deviations might indicate that a specific 
brain region had a larger volume originally than what the normative model predicts for a 
typical voxel. The Jacobian image subsequently corrects for these differences. Positive 
deviations refer to cases where certain brain regions exhibit more volume expansions 
relative to the mean value of the Jacobian normative model. These deviations could 
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represent an original lower brain volume in certain voxels compared to the predicted or 
typical voxel. Interestingly, individuals with a 1q21.1 duplication showed more negative 
deviations, thus these individuals on average have more volume contractions than expected 
by the model, reflecting larger intracranial volume and macrocephaly36 in 1q21.1 distal 
duplication carriers. In contrast, 1q21.1 deletion carriers showed more positive deviations, 
which indicates that these participants have relatively more voxels with a lower brain 
volume compared to the mean of the population, which might reflect their smaller 
intracranial volume and microcephaly36. In other words, we identified more positive 
deviations scores in deletion carriers and more negative deviation score in duplication 
carriers, reflecting previous findings of dosage effects on the brain of the 1q21.1 distal 
carriers.  

Previous literature has also revealed various effects associated with the 1q21.1 distal 
CNV on the brain, including positive dosage effects on ICV and total cortical surface area, 
particularly in the frontal and cingulate cortices, and negative dosage effects on caudate and 
hippocampal volumes36. Another study found higher intraindividual variability in brain 
structure in 1q21.1 distal CNV carriers, with distinct regional effects on cortical surface area 
and thickness. Additionally, 1q21.1 distal deletion carriers exhibited reduced global cortical 
surface area, impacting primarily frontal and association cortices21. Moreover, this CNV is 
linked to a high prevalence of micro- and macrocephaly in deletion and duplication carriers, 
respectively48,49. From our results we can see that the dosage effects of the 1q21.1 distal 
carriers remains the same. Meaning that a duplication of the copy number of the 1q21.1 
region is associated with more negative deviations in the Jacobian, which indicate an 
increase in volume of certain brain structural features and the 1q21.1 deletion is associated 
with more positive deviations in the Jacobian, indicating a relative decrease in volume of 
certain brain regions.  

In general, our study shows different regions that are implicated for different 
participants, for example the cerebellum, brainstem and the pallidum show large negative 
deviations for certain 1q21.1dup carriers. For certain 1q21.1del CNV carriers the caudate 
and accumbens show significant positive deviations. A recent multivariate analysis of eight 
CNVs revealed that the cingulate gyrus, insula, supplementary motor cortex, and cerebellum 
were the top regions contributing to shared alterations across the CNVs46. This overlaps 
with our findings that hightlight the cerebellum in several 1q21.1 distal carriers. Likewise, in 
our study, for certain 1q21.1del CNV carriers the caudate and accumbens show significant 
positive deviations, also overlapping with previous findings36. The reason the implicated 
regions we identify might differ slightly from previous studies could be that we focused on 
individual variations from the norm of the population, rather than comparing the average 
differences between cases and controls. Moreover, although there is some overlap between 
studies, our study group might represent a set of CNV carriers with a somewhat different 
profile of those studied previously. 

 
Towards Personalized Psychiatry: Individualized Risk Profiles and Beyond - When 
interpreting the normative model outputs, a common pitfall is to default to a case-control 
thinking paradigm. This interpretation often categorizes individuals into groups, 
emphasizing group patterns or seeking group effects instead of individual-level results. 
While brain deviation score maps can be superimposed to uncover commonalities among 
subjects with identical pathogenic CNVs, it is not a necessity. In our pursuit of understanding 
pathogenic CNVs and their effects on mental disorders, it is essential to recognize that we 
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cannot solely rely on aggregated group level data. While grouping subjects that exhibit 
similar behavioral phenotypes or possess the same CNV can provide insights into 
convergence points, this approach overlooks the diversity in the effects of pathogenic CNVs 
on brain structures and behaviors. For instance, those with a CNV linked to cognitive deficits 
might range from typical cognitive functioning to severe impairment39,40,50. Arguably, the 
starting point should be individual patient risk profiles, including all the known risk factors. 
Once we curate these profiles against a reference population, we can start to understand 
the implications of pathogenic CNVs at an individual level. In this paper, we made a starting 
point towards understanding the individual implications of pathogenic CNVs on several 
brain phenotypes. 

Adopting an "individual patient first" approach reshapes our perspective on 
psychiatry, emphasizing that no two mental disorders are truly identical. Traditional 
psychiatric diagnoses have been classified into separate mental disorders, each presumed to 
have distinct origins and symptomologies. However, we have come to realize that such 
boundaries are far from clear-cut. Most patients with one diagnosis often have one or more 
comorbid conditions22. This wide-ranging clinical manifestation, coupled with multifactorial 
etiological risk factors and comorbidities, underscores that most psychiatric disorders do not 
correspond to single disease entities. Although initiatives like the Research Domain Criteria 
(RDoC)51 have aimed to transition to more dimensional approaches, current categorizations 
like the DSM-V persist, even amidst challenges such as coexisting conditions and the 
complexity of categorizing patients. 
 
Addressing Complexities in Genetic Studies 
One of the primary challenges in human genetic research is constructing a cohort that 
delves into rare variants while accounting for multiple genetic and environmental factors. 
Our study acknowledges that while investigating CNVs, there may be additional influencing 
factors not yet fully characterized, for instance the remaining genome. Furthermore, to 
create a comprehensive cognitive health risk profile, it is essential to consider the dynamic 
interactions between genetics, the brain, and the environment. Research indicates that 
environmental factors can lead to molecular “scars", impacting brain function over time and 
contributing to disorders like schizophrenia20. Epigenetic pathways can offer a valuable 
perspective for studying these factors. While initial efforts to understand brain-
environment-genetic interactions have started52, an important question remains what the 
role of CNVs are in this complex picture.  

Finally, fully mapping the effects of pathogenic CNVs demands a temporal 
perspective. Different pathogenic CNVs, when combined with environmental influences, 
could affect individuals differently across various life stages. Ongoing efforts to gather 
extensive longitudinal samples for developmental periods promise to enrich our normative 
models significantly26. This expansion will demonstrate critical time windows, shedding light 
on the complex interplay between genetics, environment, and brain function.  

In conclusion, addressing these complexities is crucial for advancing our 
understanding of genetic influences on mental health, requiring a multi-dimensional 
approach that integrates genetics, environment, and developmental aspects. The present 
study marks an initial step toward unraveling the impacts of pathogenic CNVs on the brain 
at an individualized level. 
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Supplemental Figures and tables 
Supplemental Table S1 | Demographics across sites for the Jacobian model. 

Site N Sex 
(F%/M%) 

Mean age 
(SD) 

Age 
range 

Cam-CAN  656 50.6/49.4 54.93 (18.60) 18-89 
HCP 1112 54.5/45.5 28.80 (3.70) 22-37 
OASIS 3 2144 56.8/43.2 70.60 (9.52) 43-97 
PNC 1296 51.9/48.1 14.37 (3.45) 8-21 
UKB-11025.0 12133 52.2/47.8 62.34 (7.47) 44-80 
UKB-11026.0 46 54.3/45.7 66.07 (7.34) 53-80 
UKB-11027.0 2233 54.6/45.4 63.19 (7.44) 47-80 
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Supplemental Fig. 1 | Overview, normative modeling results IDPs. A. Performance metrics 
on the IDP normative models for the test set. Both skew and kurtosis serve as indicators of 
the model's accuracy in estimating shape via warped Bayesian Linear Regression; ideal 
values approach zero. B. Depiction of varied normative trajectories across distinct IDPs. 
 

Normative Modelling Results IDPs
Model Evaluation ParametersA

Centile CurvesB

UKB - Image derived phenotypes

Structural MRI

Diffusion MRI

fMRI



 18 

 
Supplemental Fig. 2 | Deviation counts per IDP category. A. Examples of  extreme negative 
deviation counts for the regional and tissue volume IDPs highlighting participants with 
1q21.1del, 15q11.2del, 16p13.11del and showing the extreme positive deviation counts for 
participants with CNV 1q21.1dup, 15q11.2dup, 16p13.11dup. B. Showing the positive and 
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negative deviation counts for different IDP categories, comparing participants with or 
without a CNV. 
 

 
Supplemental Fig. 3 | Overview, deviation counts IDPs per CNV. Showing the positive and 
negative deviation counts from the IDP normative models for different pathogenic CNVs. 
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Supplemental Fig. 4 | Overview, deviation counts voxel wise Jacobian model per CNV. 
Showing the positive and negative deviation counts from the voxel wise Jacobian normative 
models for different pathogenic CNVs. 
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Supplemental Fig. 5 | Individual brain map and deviation scores. Showing the individual 
positive and negative deviation scores for all five participants with a 1q21.1 distal deletion, 
and the accompanying word clouds, indicating the mean z-value for each brain area, using 
the Harvard cortical and subcortical atlas.  
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Supplemental Fig. 6 | Individual brain map and deviation scores. Showing the individual 
positive and negative deviation scores for all five participants with a 1q21.1 distal 
duplication, and the accompanying word clouds, indicating the mean z-value for each brain 
area, using the Harvard cortical and subcortical atlas. 
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Supplemental Fig. 7 | Overview cognitive tests UK Biobank.  
 
Reference cohort assembly  
Data - Image derived phenotypes 
In this study, two distinct types of analyses were performed using different datasets. For the 
first analysis, a dataset containing the image derived phenotypes (IDPs) was used. In 
alignment with prior research, these IDPs underwent preprocessing using FUNPACK53, an 
automated toolkit for normalization, parsing and cleaning, developed at the Wellcome 
Centre for Integrative Neuroimaging. The set of IDPs comprises three primary imaging 
modalities: structural, functional, and diffusion MR data. Encompassed within these IDPs are 
diverse metrics, ranging from global measurements like total brain volume to more intricate 
assessments such as interregional connectivity within the brain. In total the data of 44,456 
participants from the UK biobank and 2084 IDPs were used in the analysis. 
 
Data - Whole brain voxel-wise Jacobian model 
The subsequent analysis involved constructing a whole-brain voxel wise model, which 
entailed combining the T1-weighted anatomical images from seven distinct sites to form a 
comprehensive normative sample. A detailed breakdown of each site's demographics, 
including factors such as site, gender, and age, can be found in Supplementary Table 1. All 
the data employed in this study were sourced from publicly accessible repositories: Cam-
CAN54, HCP55, Oasis56, PNC57, and UK Biobank34. For the UK Biobank, exclusively data from 
the initial imaging visit were included. Visual inspection was performed to ensure data 
quality24, resulting in a total of 19,620 participants with MRI scans passing the quality 
control assessment. The data were preprocessed with a registration to a standard spatial 
reference using FSL's FLIRT and FNIRT, for further detail see58. Within the framework of a 
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voxel-based model, we opted for the Jacobian determinants. Jacobian determinant images 
derived from the non-linear image registration to the MNI152 space indicate the degree of 
local volume expansion or contraction in various regions of the brain when compared to a 
standard reference brain template (MNI152 space). These images are used in neuroimaging 
to analyze and visualize how brain structures change in size or shape in relation to the 
chosen reference template. A Jacobian determinant measures the local expansion or 
contraction factor at each voxel in the brain. Values higher than one indicate volume 
expansion in that region, while values below one indicate volume contraction. The 
magnitude of the value can also provide information about the degree of change. This 
approach removes the need for arbitrary distinctions between white and gray matter and 
has exhibited robust correlations with specific demographic variables35.  
 
CNVs UK Biobank 
We identified CNVs based on the returned dataset from Crawford et al.41. For details on the 
preprocessing and calling pipeline and quality control of the CNVs see39,40. Briefly their 
quality control included included genotypic call rate <0.96, waviness factor of <−0.03 and 
>0.03, >30 CNVs per person and log R ratio s.d. of >0.35. Among the participants with QCed 
neuroimaging , 375 individuals. 
 
Normative model formulation 
We employed a Bayesian linear regression model (BLR) with likelihood warping for the 
normative analysis. For an in-depth explanation of the mathematical framework, refer to38. 
Python version 3.8 and PCNtoolkit version 0.28 were used for all statistical analyses. Our 
dataset was divided into a 50-50 train-test split, with the test set including most participants 
with pathogenic CNVs. Covariates encompassed age, binary gender, and binary site ID 
within the covariance matrix. Morphometric variation models were estimated using 
Jacobian determinants from non-linear registration, utilizing the BLR algorithm from 
PCNtoolkit. This algorithm employed Sinarcsinh likelihood warping and Powell optimization. 
To concisely present the method: we take 𝒀 = (𝑦"#) ∈ ℝ$×& with 𝑦"#  the 𝑑-th 
neuroimaging variable, voxel or IDP, of the 𝑛-th subject. We collected the covariates into 
one matrix 𝑿 = (𝑥"') ∈ ℝ$×(, where 𝑥"' is the 𝑚-th covariate of the 𝑛-th subject. To 
keep the notation concise we will concentrate on one variable, labelled 𝑑 and drop the 
subscript. Thus, for every IDP we denote 𝒚 = (𝑦), … , 𝑦$)*  and take the set of independent 
variables 𝒙" = (𝑥"), … , 𝑥"()*. For every subject we specified the model as follows: 
 

𝜑(𝑦") = 𝒘*𝜙(𝑥") + ϵ    

Where, 𝐰+ is the estimated vector of weights, ϕ(𝐱) a basis expansion of the covariate 
vector 𝑥". In our case, a cubic B-spline basis expansion with 5 evenly spaced knots was 
chosen. Empirically, this was enough to capture the curvature in space caused by the age 
covariate.	ϵ, = 𝒩(0, β-)) is a Gaussian noise distribution with mean zero and noise 
precision term b (the reciprocal of the variance). The likelihood warping 𝜑, a sinarcsinh 
function, accommodates non-Gaussianity: 
 

𝜑(𝑦", 𝜸)./"0123/"4 = sinh	(𝑏 ∗ arcsinh(𝑦") − 𝑎) 
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With 𝜸 = (𝑎, 𝑏) the identified parameters for the warping function. We captured the site 
variation using a fixed-effects model, according to 21,39. Powell's conjugate direction method 
minimized the negative log-likelihood during optimization. Subsequently, z-scores in the 
warped space were calculated as: 

𝑍"# =
5!"-56!"

78"
#9(8∗#)"

     

Where, y<= is the true response, yL<= is the predicted mean,  σ=!  is the estimated noise 
variance (reflecting uncertainty in the data), and (σ∗!)= is the variance attributed to 
modeling uncertainty, for the full derivations see63. Model evaluation employed criteria 
including R², mean squared log-loss (MSLL), skewness, and kurtosis, providing insights into 
central tendency, variance, warping function performance, and overall fit. 
 
Cognitive phenotype prediction  
We used the cognitive data extracted from the UK Biobank dataset to explore associations 
between cognitive attributes and deviations from the normative model. These phenotypes 
come from nine cognitive tests available in the UK Biobank, as shown in Supplementary Fig. 
7. These tests were conducted via a touchscreen questionnaire and encompassed 
dimensions such as numerical memory, reaction time, fluid intelligence, visual memory, 
prospective memory, executive function, declarative memory, and non-verbal reasoning60. 
Further details about these cognitive assessments in the UK Biobank can be found in61. To 
reduce the complexity of cognitive tests while retaining essential information, we employed 
principal component analysis (PCA) on the cognitive measurements. This approach helps 
capture a latent factor often associated with overall cognitive ability or the 'g-factor'45. By 
relating this general cognitive ability to extreme z-deviations (|Z|>2) using Pearson's 
correlation, we investigated potential associations between cognitive performance and 
deviations from the norm.  
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