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Abstract: Early identification of acute gout is crucial, enabling healthcare professionals to im14 

ment targeted interventions for rapid pain relief and preventing disease progression, ensu15 

improved long-term joint function. In this study, we comprehensively explored the potent16 

gout flare (GF) early detection based on nurse chief complaint notes in the Emergency Depart17 

(ED). Addressing the challenge of identifying GFs prospectively during an ED visit, where d18 

mentation is typically minimal, our research focuses on employing alternative Natural Lang19 

Processing (NLP) techniques to enhance the detection accuracy. We investigate GF detection 20 

rithms using both sparse representations by traditional NLP methods and dense encoding21 

medical domain-specific Large Language Models (LLMs), distinguishing between generative22 

discriminative models. Three methods are used to alleviate the issue of severe data imbalanc23 

cluding oversampling, class weights, and focal loss. Extensive empirical studies are done o24 

Gout Emergency Department Chief Complaint Corpora. Sparse text representations like 25 

proved to produce strong performance, achieving higher than 0.75 F1 Score. The best deep lea26 

models are RoBERTa-Large-PM-M3-Voc and BioGPT, with the best F1 Scores on each dataset27 

a 0.8 on the 2019 dataset and a 0.85 F1 Score the 2020 dataset. We concluded that although28 

criminative LLMs performed better for this classification task, compared to generative LLM29 

combination of using generative models as feature extractors and employing support vector30 

chine for classification yields promising results comparable to those obtained with discrimin31 

models. 32 

Keywords: Gout Flare; Chief Complaint; Natural Language Processing; Deep Learning; L33 

Language Models 34 

 35 

1. Introduction 36 

More than 9 million Americans suffer from gout [1], which is the most prev37 

type of inflammatory arthritis among men, affecting over 5% of them. According to38 

U.S. National Emergency Department Sample (NEDS), gout accounts for more 39 

200,000 visits to the Emergency Department (ED) every year, making up 0.2% of al40 

visits and costing more than $280 million in annual charges [2]. It is important to imp41 

the continuity of care for gout patients, especially after an ED visit. Often, gout f42 

(GF) treated in the ED lack optimal follow-up care, necessitating the developmen43 

methods for identifying and referring patients with GFs during an ED visit [3]. W44 

retrospective studies have leveraged NLP for GF detection, the prospective identifica45 
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of patients in real time ED settings presents a unique challenge, especially within the 46 

constraints of Emergency Department (ED) environments. 47 

Despite of the success of natural language processing (NLP) techniques in healthcare 48 

[4], NLP-based Gout Flare Early Detection (GFED) is in severe lack of study. Only a few 49 

were identified, like Zheng et al [5], which however worked on Electronic Medical Rec-50 

ords. The problem of early warning of acute GFs becomes more challenging in the ED 51 

setting where only chief complaints of patients are taken by nurses in an extremely suc-52 

cinct format. It is of paramount challenge to develop an effective GFED algorithm using 53 

such limited amount of information. The current study tries to address this critical gap by 54 

advancing the methodologies proposed by Osborne et al [3]. Our study builds upon the 55 

groundwork laid by Osborne et al., who annotated two corpora of ED chief complaint 56 

notes for GFs and paves the way for our exploration of effective text representation 57 

methods and state-of-the-art medical/clinical Large Language Models (LLM). 58 

1.1 Rationale for Using Large Language Models 59 

Large language models, such as BERT [6] (Bidirectional Encoder Representations 60 

from Transformers), [7] (Generative Pre-trained Transformer 3), and their variants, have 61 

demonstrated remarkable success in a wide range of natural language processing tasks. 62 

The use of large language models in text classification offers several compelling reasons: 63 

Contextual Understanding: Large language models leverage deep learning tech-64 

niques to encode contextual information and relationships between words in a sentence. 65 

This contextual understanding allows them to capture subtle nuances and semantics, 66 

which is especially relevant in the medical domain where precise interpretation of clinical 67 

text is vital. 68 

Transfer Learning: Pre-training on vast corpora of textual data enables large lan-69 

guage models to learn general language patterns. This pre-trained knowledge can be fi-70 

ne-tuned on domain-specific datasets, making them adaptable and effective for text clas-71 

sification tasks in the medical field with relatively limited labelled data. 72 

These technologies have the potential to revolutionize the healthcare industry by 73 

enhancing medical decision-making, patient care, and biomedical research. Some tasks in 74 

NLP could be automated using LLM such as text classification [8-9], keyword Extraction 75 

[10-11], machine translation [12], and text summarization [13]. Furthermore, NLP and 76 

LLM can assist in the early detection and diagnosis of diseases by sifting through vast 77 

datasets to identify patterns, symptoms, and risk factors. 78 

1.2 Gaps and Limitations of Current Literature 79 

While some studies have compared a single generative LLM (GPT) with discrimi-80 

native LLMs, a comprehensive comparison between multiple domain-specific generative 81 

LLMs and discriminative LLMs for disease detection is lacking. Such comparisons are 82 

essential to determine the performance disparities between different LLM types and 83 

guide the selection of the most suitable model for our specific medical intent classifica-84 

tion task. 85 

In light of these gaps, our research aims to bridge these deficiencies in the current 86 

literature. We specifically focus on GFED by leveraging domain-specific generative LLMs 87 

as feature extractors. Additionally, our study includes comparative analyses of multiple 88 

domain specific generative LLMs and discriminative LLMs to gain comprehensive in-89 

sights into their performance on this particular medical classification task. 90 

1.3 Our contributions  91 

In this paper, we make three contributions to the task of gout flare detection from 92 

nurse chief complaints. First, we compare the performance of domain specific discrimi-93 

native and generative models that are fine-tuned for the task. Second, we propose an al-94 

ternative approach that uses domain specific generative LLMs as feature extractors and 95 
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support vector machine as classifier. Third, we benchmark our methods against a base-96 

line that uses sparse text representation (tf-idf). Our results demonstrate the effectiveness 97 

of using LLMs, such as RoBERTa-Large-PM-M3-Voc, BioELECTRA, and BioGPT, for 98 

processing medical text and detecting GFs. 99 

2. Materials and Methods 100 

2.1 Data Collection 101 

We utilized the dataset of ED chief complaint notes which were annotated by Os-102 

borne et al. for the presence of GFs [14]. Each CC text in the dataset was annotated to 103 

determine its indication of a GF, a non-GF, or remained unknown in terms of the status of 104 

GF. Following this, a manual chart review was conducted by a rheumatologist and a 105 

post-doctoral fellow to ascertain the GF status for a small portion of the ED counters. 106 

These were served as the gold standard annotations of the real GF status. The corpora 107 

contain two datasets for the year 2019 and 202, namely GOUT-CC-2019-CORPUS and 108 

GOUT-CC-2020-CORPUS respectively. Table 1 shows the annotation statistics of the two 109 

datasets (from Osborne et al. [3]), while Table 2 illustrates some examples. In out ex-110 

periments, we used the human-annotated samples using Chart Review, as what Osborne 111 

et al. did. 112 

Table 1: Annotation Statistics of the Gout Flare Chief Complaint Datasets (Osborne et al. [3]) 113 

Dataset Name GF-POS 

(Positive) 

GF-NEG 

(Negative) 

GF-UNK 

(Unknown) 

Review Agreement Cohen’s κ 

GOUT-CC-2019-CORPUS 93 194 13 CC 0.883 0.825 

GOUT-CC-2019-CORPUS* 70 118 9 Chart 0.849 0.774 

GOUT-CC-2020-CORPUS 14 7992 129 CC 0.977 0.965 

GOUT-CC-2020-CORPUS* 25 232 7 Chart 0.904 0.856 
* Used for experiments as Osborne et al. [3] 114 

Table 2: Examples of Chief Complaint Notes for Gout Flare (Osborne et al. [3]) 115 

Chief Complaint Text Predicted* Actual** 

AMS, lethargy, increasing generalized weakness over 2 weeks. 

Hx: ESRD on hemodialysis at home, HTN, DM, gout, neuropathy 

No No 

I started breathing hard” hx-htn, gout, anxiety, No No 

R knee pain x 8 years. pmh: gout, arthritis Unknown No 

Doc N Box DX pt w/ R hip FX on sat. Pt states no falls or injuries. 

PMH: gout 

Unknown No 

out of gout medicine Yes Yes 

sent from boarding home for increase BP and bilateral knee pain 

for 1 week. Hx of HTN, gout. 

Yes Yes 

*Consensus predicted gout flare status determined by annotator examination of CC 116 

**Gout flare status determined by chart review. 117 

2.2 Feature Extraction 118 

In the feature engineering approach, we extracted the n-grams (n = 1, 2, 3) and tested 119 

different combinations of n-grams and different feature sizes. CC texts were converted 120 

into sparse representations using tf-idf (Term Frequency-Inverse Document Frequency) 121 

[15] as initial feature values. A linear support vector classifier (Linear SVC) was trained. 122 

All implementations were done using the scikit-learn library1. 123 

                                                           
1 https://scikit-learn.org/  
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It was hard to extract more advanced syntactic or semantic features due to the 124 

noisiness of CC texts. As can be observed from Table 2, CC texts are extremely succinct, 125 

often containing a sequence of medical terms or abbreviations, which record the facts 126 

reported by patients. Such CCs are not meaningful sentences for us to extract features 127 

from the syntactic analysis results. Semantic analysis tools are either immature or non-128 

existent in this particular area. However, we could still observe quite good performances 129 

from fine-tuning a machine learning model using the right sparse feature representation 130 

of CC texts.   131 

2.3 Large Language Models 132 

We employed several LLMs tailored for the medical domain, for their ability to 133 

capture intricate patterns within medical text, making them well-suited for discerning 134 

nuances in chief complaints related to GF. All LLMs belong to the Transformers family 135 

[16] because we hoped that the multi-headed self-attention mechanism of the Trans-136 

formers architecture could be able to learn the meaningful association between certain 137 

words of CC texts to indicate the existence of GF.  138 

2.3.1 Discriminative models  139 

We strategically incorporated three robust discriminative LLMs renowned for their 140 

discriminative power—RoBERTa-PM-M3-Vo2, BioELECTRA3 [17], and BioBART4 [18]. 141 

These are the domain-specific versions of the RoBERTa [19], Electra [20] and BART [21] 142 

models respectively. Although BART was a language model pretrained in a se-143 

quence-to-sequence fashion, it can be used equally well and in the same way as a dis-144 

criminative model [21]. So, we treated it as one representative of the discriminative cat-145 

egory. The details of the discriminative LLMs are shown in Table 3. 146 

Table 3: Description of Discriminative LLMs Implemented 147 

Model RoBERTa-PM-M3-Voc BioELECTRA BioBART 

Model Size 355M Parameters --- 139M Parameters 

Hidden Size 1024 768 768 

Model Size 24 Layers, 16 heads 12 Layers, 12 heads 12 Layers, 12 heads 

Base Model RoBERTa-large Electra Base BART Base 

Training Data PubMed articles and 

MIMIC-III corpora5 [22] 

PubMed articles PubMed abstracts and 

articles 

 148 

2.3.2 Generative models  149 

In the realm of generative LLMs, we strategically chose BioGPT6 [23], BioMedLM7, 150 

and PMC_LLaMA_7B8 [24] for their renowned scale and exceptional performance in 151 

natural language processing tasks. BioGPT and PMC_LLaMA_7B are the domain-specific 152 

versions of the GPT-2 [25] and LLaMA [26-27] models respectively, while BioMedLM is a 153 

bespoke LLM pretrained for medical applications. These models represent the forefront 154 

                                                           
2 https://huggingface.co/Sedigh/RoBERTa-large-PM-M3-Voc  

3 https://github.com/kamalkraj/BioELECTRA  

4 https://github.com/GanjinZero/BioBART  

5 https://www.nature.com/articles/sdata201635  

6 https://huggingface.co/docs/transformers/model_doc/biogpt  

7 https://github.com/stanford-crfm/BioMedLM  

8 https://github.com/chaoyi-wu/PMC-LLaMA  
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of generative language understanding, and their comprehensive specifications, training 155 

data, and architectural features are elucidated in Table 4. 156 

 157 

 158 

Table 4: Description of Generative LLMs Implemented 159 

Model BioGPT BioMedLM PMC_LLaMA_7B 

Model Size 347M Parameters 2.7B Parameters 7B Parameters 

Hidden Size 1024 2560 4096 

Model Size 24 Layers, 16 heads 32 Layers, 20 heads 32 Layers, 32 heads 

Base Model GPT2-medium GPT2 LLaMA_7B 

Training Data 15M PubMed abstracts 

from scratch 

All PubMed abstracts 

and full texts from The 

Pile benchmark [28]. 

4.8 million Biomedical 

publications from the 

S2ORC dataset [29]. 

2.4 Fine-tuning 160 

Fine tuning was implemented to improve the models’ ability to understand and 161 

capture the nuances in the texts. For the discriminative models full fine tuning was im-162 

plemented, but for the generative models due to the size of the models and hardware 163 

constraints full fine tuning was not possible.  164 

2.4.1 Fine-tuning of Discriminative LLMs  165 

All three discriminative LLMs use a bidirectional encoder as BERT [6]. The encoder 166 

part of these models was used to encode each CC text, and the “[CLS]” token was used as 167 

the dense representation. For RoBERTa-PM-M3-Voc and BioELECTRA, a further feature 168 

transformation was applied. Essentially, the classification head was a Multiple Layer 169 

Perceptron (MLP), the hidden layer of which made a nonlinear transformation (of the 170 

same size). On the contrary, BioBART used a linear classification head following the tra-171 

dition of BART usage.   172 

In the fine-tuning process, the following hyperparameters were used: learning rate = 173 

1e-5, epoch number = 10, batch size = 14, early stopping patience = 3. The AdamW opti-174 

miser was used for training [30].  175 

2.4.2 Fine-tuning of Generative LLMs  176 

Similarly, generative LLMs were used for encoding CC texts, and the “Extract” to-177 

ken (for all three models as they all belong to the GPT family) were used to extract the 178 

dense representation, which was then sent to a linear classification head. Due to their 179 

large sizes, the generative LLMs were not fully fine-tuned. Instead, we used LoRA (Low 180 

Rank Adaptation) to efficiently adapt LLMs to specific tasks by only modifying a small 181 

portion of the whole parameter space.  182 

The main idea behind LoRA is to exploit the low-rank structure of the model’s 183 

weight matrices during task adaptation, resulting in reduced memory usage and com-184 

putational complexity [31]. The idea was inspired by Aghajanyan et al.’s finding that 185 

pre-trained language models have a low “intrinsic dimension” meaning that they can still 186 

lean efficiently when their weight matrices are randomly projected to a smaller subspace 187 

[32]. 188 

More precisely, LoRA hypothesizes that updates to model’s weight matrix, ��, can 189 

be represented by a low-rank decomposition, which is given by �� � ∆� �  �� � ��, 190 

where � � 	���, � � 	��� , and �� � �� represents weight updates. During training 191 

(i.e., fine-tuning), �� is frozen while � and � contain the trainable parameters.  192 

In our fine-tuning process, we applied the following LoRA parameters: 193 

1. The rank (�) of � and � was set to 8. 194 

2. The LoRA regularization coefficient  was set to 16. 195 
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3. To prevent overfitting and enhancing model generalisation, we applied a LoRA 196 

dropout rate of 0.1. 197 

4. A learning rate of 3e-4 was used, enabling efficient convergence during training. 198 

 199 

 200 

Figure 1: Parametrization of LoRA. Only A and B are trained. [31] 201 

2.5 Classification 202 

In the feature engineering approach, a Linear SVC was trained. When finetuning 203 

discriminative LLMs, either an MLP or a linear classifier was applied. Similarly, a linear 204 

layer was used for classification with generative LLMs. In the experiments, we also tested 205 

using generative LLMs only as the feature extractor and trained a Linear SVC for classi-206 

fication. In this alternative approach, which required significantly less computational 207 

resources, generative LLMs were frozen, used to encode CC texts, and the hidden states 208 

of the “Extract” token were extracted as dense representation. A Linear SVC was then 209 

trained in the similar way as in the feature engineering approach. This was to demon-210 

strate LLMs’ native ability to understand and represent medical texts for the downstream 211 

task. 212 

2.6. Optimisation 213 

2.6.1 Class weights 214 

We also observed severe data balance in the corpora. The data imbalance ratio of 215 

GOUT-CC-2019 is (70 + 9) / 118 = 0.6695, while the imbalance ratio of GOUT-CC-2020 is 216 

(25 + 7) / 232 = 0.1379. Our first method to handle data imbalance was class weights [33], 217 

which were set according to the relative sizes of each class as in Eq. (1), 218 

�� � � �� � ���⁄ ,  (1) 

where �� is the weight for the j-th class, � is the total number of classes, � is the 219 

total number of samples, and �� is the number of samples of the j-th class [34].   220 

2.6.2 Oversampling 221 

However, class weighting in Eq. (1) did not help improve the performances on 222 

GOUT-CC-2020 much, which is 5 times more imbalanced than GOUT-CC-2019. Alt-223 

hough the discriminative LLMs performed strongly in our experiments, they were ex-224 

tremely sensitive to this severe data imbalance. Therefore, we performed random over 225 

sampling on GOUT-CC-2020. The positive samples in the training split, including 226 

GF-POS and GF-UNK combined, were randomly duplicated to match the size of 227 

GF-NEG.  228 

The second approach we used to oversample the minority class was Synthetic Mi-229 

nority Over-sampling Technique (SMOTE) [35]. SMOTE generates synthetic examples of 230 

then minority class by interpolating the feature space of the existing minority samples. By 231 

doing so, SMOTE effectively oversamples the minority class, thereby balancing the class 232 

distribution [35]. This approach was only implemented in the method where we used the 233 

LLMs as feature extractors and classified with the SVC. 234 
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2.6.3 Focal Loss  235 

In the context of our classification tasks, the choice of a suitable loss function plays a 236 

pivotal role in training and optimizing our models. We employed two distinct loss func-237 

tions as per dataset and model requirement, namely cross-entropy loss and focal loss [36], 238 

to effectively guide the training process and address specific challenges posed by our 239 

datasets. 240 

In instances where class imbalance persisted even after oversampling the training 241 

data, such as in the case of GOUT-CC-2020, we employed focal loss as an alternative to 242 

cross-entropy to combat class imbalance in classification tasks, as in Eq. (2).  243 

������ � ���1 � ���
� log����,  (2) 

where �� is the posterior probability of each target � (here � � 0 �� 1), � �  0,1! is 244 

the scaling parameter, " is the focusing parameter and �1 � ���
� is the modulating fac-245 

tor of the original cross-entropy loss [36].   246 

3. Results 247 

In this section, we meticulously analyze and compare the performances of all 248 

methods. The performance of each model was evaluated using standard metrics, in-249 

cluding precision, recall, and Macro F1-score. We compared our results with the original 250 

algorithm proposed by Osborne et al. [3], ensuring a comprehensive assessment of the 251 

advancements achieved. 252 

3.1. Fine-tuned LLM 253 

This subcategory encompasses results obtained by directly employing LLMs for CC 254 

classification. Table 5 shows the results.  255 

The table shows that RoBERTa-Large-PM-M3-Voc outperforms the other four mod-256 

els in the 2019 dataset in terms of precision, recall, and F1-score for both datasets. This 257 

suggests that this model is more effective at detecting GFs from clinical notes. Table 5 258 

also shows that BioBERT and BioELECTRA have similar performance, while BioGPT and 259 

BioMedLM have the lowest performance among the five models. 260 

On the 2020 dataset, the best model was by far BioGPT, outperforming others LLM 261 

competitors by large margins. Good performances were obtained due to oversampling, 262 

which improved the results from 0.67 to 0.85 macro f1 score. These results suggest that 263 

BioGPT can handle the data imbalance and the domain-specific vocabulary better than 264 

the other models, and that oversampling can boost the performance of generative LLMs 265 

for this task. On the other hand, BioMedLM did not achieve good performances, possibly 266 

due to the limitations of the LoRA adaptor, compared to BioGPT which was fully 267 

finetuned to adapt better to the special domain of gout flare CC texts.  268 

Table 5: Performances of Gout Flare Detection using Fine-Tuned LLMs 269 

GOUT-CC-2019 GOUT-CC-2020 

Model Precision Recall F1-score Precision Recall F1-score 

RoBERTa-Large-PM-M3-Voc  0.80 0.79 0.80 0.62 0.72 0.63 

BioELECTRA 0.76 0.76 0.76 0.63 0.68 0.65 

BioBART 0.74 0.73 0.73 0.65 0.70 0.67 

BioGPT 0.62 0.59 0.60 0.82 0.88 0.85 

BioMedLM 0.49 0.49 0.47 0.52 0.53 0.52 
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3.2 Frozen LLMs as Feature Extractors 270 

In this subcategory, we used LLMs to embed CC texts to dense feature vectors and 271 

use Linear SVC for classification. Table 6 shows the results. 272 

The table shows that SVM with BioGPT Embeddings has the best performance 273 

among the four algorithms on both datasets. It achieves an F1-score of 0.67 on 274 

Gout-CC-2019 and 0.71 on Gout-CC-2020. This indicates that this algorithm can effec-275 

tively extract the relevant features from CC texts and classify them accurately. 276 

The table also shows that SVM with BioMedLM Embeddings and SVM with 277 

PMC_Llama_7B Embeddings have similar performance, but lower than SVM with 278 

BigGPT Embeddings. They both have an F1-score of 0.66 on Gout-CC-2019 and 0.61 on 279 

Gout-CC-2020. This suggests that these algorithms are less robust and consistent in han-280 

dling the variability and complexity of CC texts. 281 

Table 6: Performances of Gout Flare Detection using LLM Embeddings 282 

Gout-CC-2019 Gout-CC-2020 

Algorithm Precision Recall F1-score Precision Recall F1-score 

SVM with BioGPT Embeddings 0.68 0.67 0.67 0.69 0.73 0.71 

SVM with BioMedLM Embeddings 0.69 0.66 0.66 0.59 0.70 0.61 

SVM with PMC_LLaMA_7B Embeddings 0.66 0.66 0.66 0.60 0.60 0.60 

3.3 Sparse Text Representation   283 

This subcategory involves performance of the traditional feature engineering ap-284 

proach, which generated sparse text representations using tf-idf of n-gram features. 285 

Contrast and compare these results against the outcomes achieved by the LLMs, 286 

providing valuable insights into the effectiveness of each approach for GF prediction. In 287 

this section we have also included the results from the original publication of Osborne et 288 

al. [3], which are shaded. All results will be discussed further in the discussion section. 289 

Table 7 shows the results. 290 

Table 7: Performances of Gout Flare Detection using Sparse Text Representations 291 

GOUT-CC-2019 GOUT-CC-2020 

Algorithm Precision Recall F1-score Precision Recall F1-score 

SVM with tf-idf 0.75 0.75 0.75 0.82 0.74 0.77 

NAIVE-GF 0.23 1.00 0.38 0.28 0.56 0.37 

SIMPLE-GF 0.44 0.84 0.58 0.37 0.40 0.38 

BERT-GF 0.71 0.48 0.56 0.79 0.47 0.57 

4. Discussion 292 

4.1 Comparative Analysis   293 

The following table compares the results acquired from this study, with the results 294 

obtained from the paper by Osborne et al. As shown in Table 8, RoBERTa was the best 295 

performing model on the GOUT-CC-2019-CORPUS dataset followed by BioELECTRA, 296 

showcasing the superiority of discriminative LLMs in classification tasks. The SVM with 297 

BioGPT embedding and tf-idf also performed well in relation to the other models. In the 298 

GOUT-CC-2020-CORPUS dataset the best was BioGPT which outperformed all the dis-299 
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criminative LLMs. This model responded very well to the fine tuning and oversampling. 300 

This result was still outperformed by SVM with tf-idf features. All our models outper-301 

formed the models used in the study by Osborne et al. (in grey) in both datasets. Overall, 302 

RoBERTa-Large-PM-M3-Voc , BioGPT and tf-idf on n-grams were more robust models 303 

across datasets, particularly the latter. In addition, BioGPT was a more robust feature 304 

extractor when model parameters were frozen. Finally, a promising future direction to 305 

employ the strengths of different classifier to achieve better recall while at the meantime 306 

keeping a better balance for precision.    307 

Table 8: Comparing the Performances of All Gout Flare Detection Methods. 308 

GOUT-CC-2019 GOUT-CC-2020 

Algorithm Precision Recall F1-score Precision Recall F1-score 

RoBERTa-Large-PM-M3-Voc  0.80 0.79 0.80* 0.62 0.72 0.63 

BioELECTRA 0.76 0.76 0.76 0.63 0.68 0.65 

BioBART 0.74 0.73 0.73 0.65 0.70 0.67 

BioGPT 0.62 0.59 0.60 0.82 0.88 0.85 

BioMedLM 0.49 0.49 0.47 0.52 0.53 0.52 

SVM with BioGPT Embeddings 0.68 0.67 0.67 0.69 0.73 0.71 

SVM with BioMedLM Embeddings 0.69 0.66 0.66 0.59 0.70 0.61 

SVM with PMC_LLaMA_7B Embeddings 0.66 0.66 0.66 0.60 0.60 0.60 

SVM with tf-idf 0.75 0.75 0.75 0.82 0.74 0.77 

NAIVE-GF 0.23 1.00 0.38 0.28 0.56 0.37 

SIMPLE-GF 0.44 0.84 0.58 0.37 0.40 0.38 

BERT-GF 0.71 0.48 0.56 0.79 0.47 0.57 

4.2 Potential and limitations    309 

The best performance on these datasets was achieved by 310 

RoBERTa-large-PM-M3-Voc, which outperformed other LLMs and traditional machine 311 

learning algorithms. This suggests that RoBERTa-Large-PM-M3-Voc can effectively 312 

capture the semantic features of CC texts and distinguish between GF and non-flares. 313 

However, the results also show that there is still a large gap between the performance of 314 

LLMs and the desired accuracy for GF detection.  315 

Furthermore, the results also indicate that some models have a bias towards the 316 

negative class, which may affect their ability to predict the positive label. Therefore, more 317 

research is needed to address these challenges and improve the performance of LLMs for 318 

GF detection. One of the main challenges is the nature of the dataset. All the chief com-319 

plaints contain the keyword “gout” and most of them did not contain any clear indicator 320 

of gout flare. This makes it difficult for the models to learn the subtle differences between 321 

gout flares and non-flares. Upon analysing the predict column of our test set (which 322 

contains the prediction of the human annotators based solely on the CC) we found that 323 

this is a challenging problem even for professional rheumatologists which achieved less 324 

than 50% accuracy in our test set.  325 

Although the performance on GOUT-CC-2020-CORPUS was not as good as 326 

GOUT-CC-2019-CORPUS, it’s still an improvement compared to the baseline. We 327 

acknowledge that the dataset is challenging due to its data imbalance and small size, 328 
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which contributed to the performance decline. Our approaches to tackling the data im-329 

balance did improve the performance but future work is still required to tackling this 330 

issue. One potential direction is the use of semi-supervised learning do deal with the low 331 

number of annotated CC’s and another is to encourage the medical community to share 332 

or annotate more data to create high-quality datasets. 333 

4.3 Future Directions   334 

Some improvements can be done to enhance the results obtained in this research:  335 

Full Fine-Tuning and Distributed Computing: While parameter-efficient fi-336 

ne-tuning, specifically LoRA, was applied in this study due to hardware constraints and 337 

the models' size, pursuing full fine-tuning would enhance the results of the models. Im-338 

plementing distributed computing is necessary to apply full fine tuning, due to the very 339 

large size of the models this process requires distributing the model load across different 340 

GPUs to perform the calculations. This strategy would enable more comprehensive fi-341 

ne-tuning, potentially leading to an increase in model performance. 342 

Enhanced Dataset Quality and Size: with such a limited number of samples the 343 

model cannot be properly trained, validated and tested. To address this more samples 344 

must be acquired or whole new datasets to test the models effectively. 345 

Ensemble Learning for Enhanced Embeddings: A promising route is the utilization 346 

of deep learning models to create an ensemble that enhances embeddings before their 347 

application in text classification. This strategy could potentially enhance the information 348 

captured by the embeddings, thereby leading to improved classification outcomes. 349 

Task-specific continuous pre-training: Another possible direction is to use unsu-350 

pervised learning to continuously pre-train the LLMs on the task-specific data, i.e., the 351 

chief complaint texts. This could help the models to adapt to the domain and the vocab-352 

ulary, and to tackle the particular write styles of keeping CC notes in the task. 353 

5. Conclusions 354 

Overall, this study highlighted the potential of generative LLMs for classification 355 

tasks, achieving results comparable to the discriminative models. Additionally, the 356 

models also have shown potential as feature extractors for classification tasks even 357 

without fine tuning, due to their ability to understand contextual information and pro-358 

duce contextual rich embeddings. Despite the results between the two types of models 359 

being comparable, the computational requirements to perform the same task is much 360 

greater using the generative LLMs employed in this study. Similar or superior results can 361 

be obtained using much smaller discriminative models. Still, this research highlights the 362 

importance of using the domain specific variants of the models when the text contains 363 

specialized and out of word vocabulary. Our results are important because they demon-364 

strate the feasibility and effectiveness of using generative LLMs for gout flare detection 365 

from chief complaints, which is a novel and challenging task that can benefit both clinical 366 

practice and research. Furthermore, our approaches can potentially improve the quality 367 

of care for gout patients, a large portion of them could now receive proper and in-time 368 

follow-up after an ED visit. 369 
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