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Objective: Invasive mechanical ventilation can worsen lung injury. Ventilator dyssynchrony (VD) 
may propagate ventilator-induced lung injury (VILI) and is challenging to detect and 
systematically monitor because each patient takes approximately 25,000 breaths a day yet 
some types of VD are rare, accounting for less than 1% of all breaths. Therefore, we sought to 
develop and validate accurate machine learning (ML) algorithms to detect multiple types of VD 
by leveraging esophageal pressure waveform data to quantify patient effort with airway 
pressure, flow, and volume data generated during mechanical ventilation, building a 
computational pipeline to facilitate the study of VD. 

Materials and Methods: We collected ventilator waveform and esophageal pressure data from   30 
patients admitted to the ICU. Esophageal pressure allows the measurement of transpulmonary 
pressure and patient effort. Waveform data were cleaned, features considered essential to VD 
detection were calculated, and a set of 10,000 breaths were manually labeled. Four ML 
algorithms were trained to classify each type of VD: logistic regression, support vector 
classification, random forest, and XGBoost.  

Results: We trained ML models to detect different families and seven types of VD with high 
sensitivity (>90% and >80%, respectively). Three types of VD remained difficult for ML to 
classify because of their rarity and lack of sample size. XGBoost classified breaths with 
increased specificity compared to other ML algorithms. 

Discussion: We developed ML models to detect multiple types of VD accurately. The ability to 
accurately detect multiple VD types addresses one of the significant limitations in understanding 
the role of VD in affecting patient outcomes. 

Conclusion: ML models identify multiple types of VD by utilizing esophageal pressure data and 
airway pressure, flow, and volume waveforms. The development of such computational 
pipelines will facilitate the identification of VD in a scalable fashion, allowing for the systematic 
study of VD and its impact on patient outcomes.   
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BACKGROUND AND SIGNIFICANCE 
Invasive mechanical ventilation is a life-saving intervention. But mechanical ventilation can 
damage the lung, termed ventilator-induced lung injury (VILI).1 VILI is caused by large tidal 
volumes, high pressures, or repeated alveolar collapse and worsens patient outcomes. Low 
tidal volume ventilation (LTVV) is one method to reduce VILI and improve outcomes.2–6 Yet, the 
complex interaction between the patient and the ventilator limits the efficacy of a one-size-fits-all 
LTVV strategy. Defined as the inappropriate timing and delivery of a breath in response to 
patient effort, ventilator dyssynchrony (VD) limts the effect of LTVV and potentiates VILI.7  
 
However, VD and its impact are difficult to monitor and quantify for many reasons. First, the 
average patient receiving mechanical ventilation receives over 25,000 breaths daily. Historically, 
nearly 40% of ICU admissions require mechanical ventilation, resulting in millions of 
mechanically ventilated breaths daily in a single hospital - far too many for manual evaluation 
and necessitating the need for automated detection.8  
 
Second, multiple types of VD can impact the patient in several ways. The risk of high-volume or 
high-pressure ventilation varies by the type and severity of VD.9–12 Significant variation within a 
given type of VD may represent differences in severity and the potential to propagate VILI. 
Moreover, even these prototypical definitions of VD present with substantial breath-to-breath 
variation, further complicating identification (Figure 1).  
 
Third, several types of dyssynchrony can only be accurately detected with additional monitoring, 
such as esophageal manometry.10,13,14 While we and others have previously described 
automated methods to detect a subset of VD utilizing standard airway pressure and flow 
waveforms, the detection of additional types of VD that require advanced monitoring remains 
difficult.9,15–23 These advanced monitoring techniques, such as esophageal manometry, require 
expertise for placement and have nuanced interpretation.24 Integrating these advanced 
monitoring techniques into automated VD detection algorithms is necessary to detect all types 
of VD in critically ill patients.  
 
Finally, VD’s frequency and severity are heterogeneous between patients and over time in a 
given patient.25–28 Some types of VD are rare, accounting for less than 1% of the breaths a 
patient takes and may be clustered in time, therefore generating an irregular and sparse dataset 
that complicates classification. Correllating the potential of VD to worsen VILI is further 
complicated by change in the patient’s underlying condition over time. Thus, it is necessary to 
study VD throughout a patient's entire course to understand its effects on VILI - analysis of a 
subset of breaths is not sufficient to understand these interactions. 
 
OBJECTIVE 
The inability to label VD breaths automatically at scale impairs our ability to reduce VILI due to 
VD and little work has been done in this scope until recently. Furthermore, delineating the 
association between VD and VILI requires the development of an accurate VD detection 
algorithm that does not necessitate manual monitoring, can scale to multiple patients and 
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millions of breaths, and can integrate with the EHR to allow extraction of patient-specific data 
that varies over time.  
 
We sought to develop a computational pipeline to identify multiple VD types accurately, 
integrate esophageal manometry, and compare the results using four supervised machine 
learning (ML) techniques. Multiple ML techniques were evaluated because it is difficult to predict 
which ML technique will perform best for a given data set, particularly when the outcomes of 
interest are rare.29 This study represents a computational pipeline to facilitate future studies to 
reduce ventilation-related morbidity and mortality. 

MATERIALS AND METHODS 

Data Collection 
We included patients admitted to the University of Colorado Medical, Surgical, Neurosurgical, 
and COVID ICUs. Patients between 18 and 89 years old, needing mechanical ventilation, and 
with Acute Respiratory Distress Syndrome (ARDS) by the Berlin definition or ARDS risk factors 
were enrolled within 24 hours of intubation.30 Alternatively, patients could be enrolled within 24 
hours of the placement of an esophageal balloon by the clinical team. At-risk patients were 
defined as intubated patients with a mechanism of lung injury known to cause ARDS who have 
not met chest x-ray or oxygenation criteria for ARDS. All patients were ventilated with a 
Hamilton G5 ventilator. The Colorado Multiple Institutional Review Board (COMIRB) gave 
eithical approval for this study. 
 
Patients were excluded if: a) less than 18 years of age, b) pregnant, c) imprisoned, d) with 
esophageal injury, recent esophageal or gastric surgery (3 months), e) tracheal-esophageal 
fistula, f) facial fracture, or g) active or recent (3 months) variceal bleed or banding.  
 
Patient characteristics were extracted from the EHR. Continuous ventilator data were collected 
using a laptop connected to the ventilator using Hamilton DataLogger software (Hamilton, v5.0, 
2011) to obtain time-stamped measures of airway pressure (paw), flow, volume, and esophageal 
pressure measurements (pes). Data were recorded at 32ms intervals. Additionally, the 
DataLogger software collects ventilator mode and ventilator settings. Data were collected at 
enrollment for up to 48 hours after esophageal balloon placement to reduce the effects of length 
of time bias. An esophageal balloon pressure monitor (CooperSurgical; Truball, CT) was 
inserted into the sedated and intubated patient at the time of enrollment for all patients. The 
balloon occlusion test confirmed placement. 
 
Esophageal balloon pressure monitoring allows for the direct estimation of transpulmonary 
pressure, which defines the pressures across the pulmonary parenchyma, independent of 
extrathoracic forces, and thus better defines the potential for lung injury and allows for the allow 
for the quantification of patient effort.23,24 The timing and magnitude of patient effort, or the lack 
thereof, helps to define the presence and severity of specific types of VD.18,24  
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Types of VD 
Eleven types of breaths were identified for this study (Table 2, Figure 1).9,10,26 Some of these 
types of VD have similar characteristics and were grouped into families of VD to simplify 
identification. 
 
First, the family of normal-appearing (NL) breaths is characterized by an appearance of the 
airway pressure, flow, and esophageal pressure waveforms of a patient breathing on the 
ventilator without respiratory muscle contraction deforming the expected airway pressure and 
flow waveforms. Normal-appearing breaths can be passive (ventilator driven) or spontaneous 
(initiated by the patient).  
 
Second, the family of reverse-triggered (RT) breaths is characterized by an initial passive breath 
triggering a reflexive diaphragmatic contraction during the passive breath's inspiratory or 
expiratory phase.10,31,32 The family of reverse-triggered breaths has several different phenotypic 
appearances depending on the timing and strength of the reflexive contraction of the 
diaphragm. In early-reverse triggered (RTe) breaths, the peak reflexive contraction occurs 
during inspiration. In late-reverse triggered (RTl) breaths, the peak reflexive contraction occurs 
during expiration. Finally, in reverse-triggered double-triggered breaths (DTr), the reflexive 
contraction - either during inspiration or expiration - is strong enough to trigger the ventilator to 
give a full second breath, resulting in a double-triggered breath.10,14 These DTr breaths are also 
co-labeled in the double-triggered family of breaths. The esophageal balloon is necessary for 
defining the initial breath as passive (a positive deflection in the pes) followed by diaphragmatic 
contraction (a subsequent negative deflection in pes). 
 
Third, the family of double-triggered (DT) breaths is characterized by a couplet of breaths. In 
this scenario, either patient effort or reflexive contraction of the diaphragm is strong enough to 
trigger the ventilator to deliver a second, full breath before the initial breath is completely 
exhaled. This means that two inspiratory cycles are stacked in succession without allowing time 
for the complete exhalation of the first inspiratory cycle. If driven by patient effort, it is a patient-
triggered double-triggered breath (DTp), and a negative pes deflection is seen throughout both 
inspiratory cycles. Auto-triggering (DTa) occurs when an artifact triggers excessive breaths. 
Alternatively, the breath can be a reverse-triggered, double-triggered breath, as described 
above. Finally, the second inspiratory cycle in a DT couplet was identified as a post-double-
triggered breath (DTpost), so that an accurately identified couplet had a DTr, DTp, or DTa cycle 
followed by a DTpost to complete dyssynchronus pattern. 
 
Fourth, the family of flow-limited (FL) breaths is defined by patient effort (a negative pes 
deflection during inspiration) exceeding the inspiratory flow achieved by the ventilator. This 
results in a coving of the airway pressure waveform. Breaths were empirically classified as mild 
(FLm) if coving was less than 50% of peak airway pressure and severe (FLs) if greater than 
50% of the peak airway pressure. 
  
Finally, the remainder of the breaths were categorized as miscellaneous and did not share 
common characteristics. Early ventilator-terminated (EVT) breaths are characterized by the 
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ventilator terminating the breath before the patient ceases inspiratory effort. Late ventilator-
terminated (LVT) breaths are characterized by the patient finishing inspiration before the 
ventilator, leading to a steep rise in airway pressure near the end of inspiration. Ineffective 
triggered breaths (IE) are when the patient’s effort is insufficient to trigger a breath. 
 
Computational Methods 
A training set of 10,000 breaths from 30 patients was randomly selected for manual review and 
labeling by one of the investigators (PDS). The manual review of breath tracings was the gold 
standard to identify VD.33 Algorithm development followed the classic supervised-learning 
classification problem. The process of developing this classification model follows five steps: 1) 
data cleaning and verification, 2) feature engineering, 3) feature selection, 4) model for training, 
and 5) model validation. 
 
1. Data Cleaning 
While the airway pressure, flow, and volume waveforms produced by the ventilator were 
interpretable in their raw form, esophageal pressure measurements required cleaning and 
preparation because of noise and drift in the signal. Because the location and pressure of the 
esophageal balloon can change with patient movement, both baseline trends and the amplitude 
of oscillation in the pes tracing could suddenly change. Moreover, the esophageal balloon 
deflated slowly over time, damping the mean and amplitude. Finally, physiologic processes, 
namely esophageal peristalsis and cardiac oscillations, introduce cyclical signals to the baseline 
measurement at a frequency either much slower than each breath (i.e., 1x every 60s for 
esophageal spasm) or much faster than each breath (i.e., typically <1 second for cardiac 
oscillations). 
 
We manually reviewed all pes tracings to identify periods with adequate signal, identify time 
points with a sudden change in signal quality, and note periods where the balloon deflated and 
was then reinflated. The deflation-induced linear trend in the mean was removed for each 
period. Due to deflation, the best signal was at the beginning of each recording period, when the 
balloon was freshly inflated. Consequently, the amplitude of the pes tracing for each breath 
during the first three minutes of a period was identified. The median of these values was then 
utilized to define a baseline amplitude for the entire period. The entire period was then divided 
into 30-second windows. If the mean amplitude of the pes for a given window was decreased 
compared to the baseline, the window was standardized to have a mean amplitude equal to that 
of the baseline, preserving breath-to-breath variation related to patient effort. If the amplitude of 
each window was greater than the baseline, it was left unaltered, as this was thought to 
represent periods of increased patient effort. 
 
To remove the high-frequency noise generated by cardiac oscillations, a low pass filter of 
0.83Hz (equivalent to a heart rate of 50 beats/minute) was applied to the pes waveform 
(Appendix, Figure A2).34 Esophageal spasm was relatively rare and, therefore not filtered. 
 
Auto-triggered breaths were not included in the final ML training set, given very few examples in 
the manually labeled set (16 of 10,000 randomly selected breaths, Table 1).  Finally, any 
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breaths with missing data or that could not be manually labeled from the original 10,000 breaths 
were removed from the labeled set. 
 
2. Feature Engineering 
We identified breath-by-breath features based on clinical expertise likely to aid in identifying VD. 
All airway pressure, flow, and esophageal pressure waveforms were standardized by each 
breath to have a maximum of one. Further, pes waveforms were normalized to have a mean of 
zero. 
 
Next, general features were identified. These features sought to quantify differences in 
waveform charactersitics between each type of VD (see Figure 1 and Figure A1). These 
features have been described in details elsewhere and highlight the canonical differences 
between each type of VD.7,9,10,14 These included total breath time, inspiratory time, and 
expiratory time, the p.10 (pressure at the first 0.1s of inspiration), and the variance in each 
breath's airway and esophageal pressure. 
 
We then identified characteristics of the two largest peaks of each inspiratory and expiratory 
cycle for airway pressure and flow tracings: maximum, minimum, peak location, peak width at 
20% and 80% of the peak height, left intersection point at 20% and 80% of the peak height, 
base width, and peak prominence (Appendix, Figure A1; also see Scipy online documentation 
for the function scpiy.signal.find_peaks for details of these metrics).35 
 
The timing of patient muscular contraction compared to inspiration and expiration is important to 
differentiate a reverse-triggered breath. We sought to define the lag between maximal muscular 
contraction (determined from the pes) and the peak airway pressure. We defined the lag at the 
maximum absolute value of the time-lagged cross-correlation between airway pressure and pes. 
The sign (positive/negative) at the time of maximum cross-correlation defined a passive or 
spontaneous breath, respectively. The next closest peak was selected if the maximum lag was 
greater than 30% of the breath length. Finally, the time between the most positive or negative 
pes deviation and the end-inspiratory was calculated. 
 
Then, we partitioned each breath into seven equal parts during the inspiratory phase and five 
equal parts during the expiratory phase. This parameterized the amplitude of the waveform at 
uniform times throughout each breath. The expiratory phase of a breath generally has less 
variability and thus needs fewer features to characterize it. The median value of each phase 
was calculated for airway pressure, flow, and pes tracings. This effectively undersampled the 
breath to allow for uniform measurement of the median magnitude of each waveform (flow, 
airway pressure, esophageal pressure) at predefined intervals of the breath. 
 
Finally, using the labeled training set, we calculated the average airway pressure, flow, and 
esophageal pressure at each measurement time for each type of VD. We then calculated the 
Euclidean distance of each breath’s airway pressure, flow, and esophageal pressure to the 
mean distance calculated from manually labeled data. This allowed us to measure how much 
each breath differed from the mean of each type of VD. 
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These calculations generated 174 individual features. 

 
3. Feature Selection 
To minimize overfitting, individual features were manually pruned. Violin plots of each feature, 
stratified by each type of VD, were analyzed (Appendix, Figure A3). If the distribution of each 
feature had substantial visual overlap for each type of VD, it was eliminated from the set of 
possible features. Moreover, this process confirmed that the features calculated resulted in 
clinically logical values for each type of VD. These steps removed 39% of the features yielding a 
total of 107 possible features included in the final training set. Automatic feature selection was 
then utilized by optimizing appropriate hyperparameters to minimize overfitting. 
 
4. Model Development  
Four ML algorithms were compared for VD classification: lasso logistic classification, support 
vector classification (SVM), random forest classification, and XGBoost classification (Figure 
2).36–38 Importantly, types of VD are not mutually exclusive; a one-versus-all identification 
technique was used for identification. Moreover, because some types of VD have similar 
characteristics, they were first grouped into four families: normal, reverse-triggered, double-
triggered, and flow-limited breaths. Consequently, a separate ML model was needed for each 
VD type, generating 40 independent models to evaluate four algorithms across ten VD types 
and three VD families.  
 
The same training, test, and validation strategy was used for all ML algorithms. The labeled data 
set was split 70:30% into training and validation sets, stratified by each class of VD. Each model 
was trained using 5-fold stratified cross-validation.29 Because categories were not evenly 
distributed, models were trained to maximize sensitivity. Specificity, accuracy, F1-score, false-
negative, and false-positive rates were calculated as secondary outcome measures (Table 2 
and Appendix, Table A1).  
 
We sequentially estimated the probability of a breath being normal, then DT, RT, and FL. After 
each estimation, the probability of a given breath being in a specific family was added as a 
feature. Specifically, the model to identify normal breaths was trained first using the 107 
features above. Next, the model to estimate the probability of a breath being double-triggered 
was trained with 107 original features plus the probability that the breath is normal.  The 
probability of a breath being double triggered was added to the feature set to estimate the 
subsequent families - RT and FL. Consequently, when a model to predict the probability of a 
specific type of VD (e.g., early reverse-triggered or RTe) was trained, the feature set included 
the probability of the breath being normal, reverse-triggered, double-triggered, or flow-limited, in 
addition to the original 107 features. Importantly, the feature set did not include the probability of 
a breath being a specific type of VD. 
 
Optimal hyperparameters for each ML algorithm and VD family/type were identified using 
nested 3-fold stratified cross-validation and a random search strategy. The lasso logistic 
regression hyperparameter λ was optimized between a range of 0 to 10. The SVM cost 
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parameter C was optimized between 0 and 100. A radial basis function kernel was utilized for 
SVM classification. The parameters of the random forest classifiers max_depth and 
n_estimators were trained between 0 to 10 and 10 to 100, respectively. Finally, XGBoost 
hyperparameters were trained as follows: η 0.01 - 0.5, � 0 -10, α 0 - 10, max_depth 4 - 10, 
subsample 0.3 - 1.0, min_child_weight 1-5. These parameters were optimized to reduce over-
fitting. All other hyperparameters were left to their default value for all models.29 
 
5. Model Validation 
Finally, after training, all models were validated against the 30% hold-out set, with each family 
and type of VD validated in the same order as the training set. Additionally, because a one-
versus-all approach was utilized for VD identification resulting in 10 independent models, we 
analyzed trends when the models incorrectly labeled a breath. Moreover, we investigated the 
percentage and types of breaths that were given no labels or multiple labels. 
 

RESULTS 
Of the original 30 patients, a total of 27 patients were included in the manually labeled training 
set of 9,876 breaths. Three patients had too few breaths with adequate Pes and were excluded. 
Normal breaths were the most common in the manually labeled set of breaths (64.7% of labeled 
breaths), while most individual types of dyssynchronous breaths were relatively rare (<10%, see 
Table 1. 
 
XGBoost generally outperformed other ML algorithms in the detection of VD (Table 3). 
Increasing algorithm complexity (logistic classification to SVM to Random Forest to XGBoost) 
improved testing characteristics across all types of VD without increasing the risk of overfitting, 
as indicated by similar test characteristics between the CV-training and validation sets (Table 3). 
However, all algorithms generally identified RTe, DTp, and LVT breaths poorly and showed 
evidence of overfitting. Analysis of the falsely labeled breaths demonstrated different patterns 
for different types of VD (Figure 3). Some falsely labeled breaths appeared to be equally 
distributed across the types of VD (i.e., NL), while others were closely related to other types in 
the same family (i.e., RTe being labeled RTl). FLm breaths were mislabeled with as either RTe 
or LVT breaths as all three types demonstrate coving during the inspiratory phase of the airway 
pressure waveform. 
 
No XGBoost labeled breaths were inappropriately co-labeled with a mutually exclusive label. 
However, not all VD types are mutually exclusive - for instance IE breaths can be and were 
observed with other VD types. Similarly, breaths receiving no label were rare (34 breaths, 
0.3%). Unlabeled breaths made up between 0 to 2.27% (DTp breaths) of each VD type (Figure 
4). 

DISCUSSION 
We created a novel computational pipeline to develop ML models that integrate esophageal 
pressure data and accurately label multiple types of VD on a breath-by-breath basis, including 
those that traditionally need advanced monitoring techniques to detect.  
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This paper adds to the current literature in several important ways. We devised a computational 
pipeline for labeling millions of breaths using ML. Identification of the VD breaths at scale is an 
important advancement. Refining these categories, linking these categories to physiologic 
changes, and using these categories to predict outcomes are all clear next steps, none of which 
are feasible without first being able to label breaths automatically. This algorithm will facilitate 
building and testing VD-specific clinical decision support tools across the 12-hospital University 
of Colorado Health system, leveraging our existing informatics expertise and prior experience.39 
 
Developing a computational pipeline to accurately label multiple types of VD breaths in an 
automated fashion extends our previous work and the work of many others in three 
fundamentally different ways.9,15,20–22,40–43 First, much of the prior published work has focused on 
identifying only one or two types of VD in a study. We accurately predicted seven types of 
dyssynchrony with a single data pipeline. We could not accurately identify the RTl, EVT, and 
LVT breaths because of their rarity and small sample size. Second, we demonstrated the 
relative value of increasing model complexity to detect VD accurately. Although much work has 
been done previously, no study has directly compared different ML algorithms. Moreover, 
despite a large number of features, we did not see significant evidence of overfitting. 
Considering the cost of manually labeling 10,000s of breaths and the abundance of potential 
features, it is important to balance model complexity with the availability of training data. Finally, 
and most importantly, we integrated advanced monitoring techniques (e.g., esophageal 
manometry) to enhance the accurate detection of multiple VD types.18 Pham et al. utilized paw 
and pes data to develop a single decision to identify a breath as RT. However, this single tree 
was limited in identifying additional phenotypes of RT breaths, which may have a different 
propensity to propagate VILI. Additionally, the more complicated ensemble of decision trees 
utilized by XGBoost results in improved sensitivity compared to the single tree study by Pham 
(83.1% vs. 94.4%), again highlighting the advantage of a more complicated ML model for this 
classification problem. 
 
Finally, the problem of identifying VD highlights the complexity of accurate classification in 
systems that generate many features but have relatively rare events. Our classification problem 
was characterized by complex data with significant noise, sparse outcomes, a high degree of 
collinearity, large datasets, and the requirement of expert knowledge to identify important key 
features.29 These problems were compounded by the cost of creating a training set through 
manual effort and expert knowledge. This relatively costly and small training set in the context of 
a highly complex classification task meant the machine learning task was complex. We 
observed logistic regression to be too rigid to manage the collinearity and general data 
complexity. The data-hungry support vector methods also faired relatively poorly. Moreover, at 
the extreme, while millions of mechanically ventilated breaths are generated daily, training data-
hungry neural networks would not be feasible given the limitations in generating training sets. 
Instead, sparse data methods, such as XGBoost specifically, generally worked the best. These 
methods can have the risk of overfitting.29 To minimize this, we both manually removed features 
that were not informative and optimized hyperparameters to avoid overfitting. Consequently, it is 
not surprising that XGBoost outperformed other models. 
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Our study has several limitations. First, our data were collected from the University of Colorado 
Anschutz Medical Campus. We primarily use the Hamilton G5 ventilator and its proprietary 
volume target-pressure controlled mode of ventilation (adaptive pressure ventilation controlled 
mandatory ventilation; APVCMV). Thus, the trained models to identify VD may not be 
generalizable to other ventilation modes, with different features defining breath types. Second, 
using esophageal balloons for 48h of continuous data collection was challenging. Inaccurate or 
incomplete data were a significant problem that needed to be dealt with in the data cleaning 
process, potentially introducing systematic bias into the ML interpretation of Pes features 
because of a decrease in amplitude and magnitude of the Pes signal over time. Third, some 
types of VD were rare enough in our data set that it was difficult to obtain enough random 
samples for adequate ML training. Fourth, our ML models were relatively feature-rich, 
increasing the risk of overfitting. We attempted to adjust for this by limiting unnecessary 
features, utilizing regularization in the ML models, and creating an independent validation set. 
Finally, each VD type has substantial heterogeneity. While labeling breaths is a necessary step 
in understanding VD, simply labeling a breath as a type of VD will not necessarily generate a 
clear correlation with VILI. Further work is needed to understand this relationship.44,45 

CONCLUSION 
We describe a novel data pipeline for the automated detection of VD, including the collection of 
esophageal pressure waveform data. We demonstrate that ML algorithms can be trained using 
esophageal pressures and airway pressure, flow, and volume to identify multiple types of VD.  
 
This analysis highlights the need for additional work in three areas. First, streamline the data 
collection pathway by integrating ventilator waveforms into the EHR. Second, to simplify VD 
identification by extending the ML models to estimate the probability of VD type independent of 
esophageal manometry data. Third, to quantify the severity of VD and correlate VD with 
changes in pulmonary physiology to better predict which patients are harmed by VD. 
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Figure 1: Examples Images of Types of Ventilator Dyssynchrony 
Prototypical example of each type of VD and 10 examples of the variation observed in each type of VD; 
NL: normal breath, IE: ineffective trigger - characterized by a negative deflection of the Pes during 
expiration; FLm: mild flow-limited - a negative Pes deflection during inspiration with coving of the Paw 
waveform; FLs: severe flow-limited - a negative Pes deflection during inspiration with more pronounced 
coving of the Paw waveform; LVT: late ventilator termination - the inspiratory cycle is terminated during 
active expiration; EVT: early ventilator termination - the inspiratory cycle is terminated before active 
inspiration is complete; DTp: patient-triggered double-triggered - a second breath is initiated by patient 
effort before complete expiration; RTe: early reverse-triggered - a reflexive contraction of the diaphragm 
that starts after passive insufflation of the lung but before the end of inspiration, RTl: late-reverse 
triggered - a reflexive contraction of the diaphragm that starts after a passive insufflation of the lung but 
after the inspiratory cycle is complete; DTr: reverse-triggered double-triggered - a double-triggered breath 
that is starts with a passive insufflation of the lung triggered a reflexive diaphragmatic contraction that 
continues into expiration and triggers a second breath before expiration is complete. 
 
fig1.pdf 
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Figure 2: Flow Diagram of ML Training and Validation 
 
fig2.pdf  
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Figure 3: Confusion Matrix of Labeled Breaths 
Percentage (grayscale bar) predicted labels correctly assigned for VD families (a) and specific VD types 
(b). Some RT breaths are also DT breaths, so the overlap is expected at the family level. Moreover, not 
all breaths have a VD family, such as (IE, EVT, LVT).  NL: normal, DT: double-triggered, RT: reverse-
triggered, FL: flow-limited; RTe: early reverse-triggered, RTl: late reverse-triggered, DTr: double-triggered 
reverse-triggered, DTp: patient-triggered double-triggered, FLm: mild flow-limited, FLs: severe flow-
limited, LVT: late ventilator termination, EVT: early ventilator termination, IE: ineffective-triggered  
 
fig3.pdf 
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Figure 4: Percentage of Breaths by VD Type Left Unlabeled by XGBoost 
NL: normal, DT: double-triggered, RT: reverse-triggered, FL: flow-limited; RTe: early reverse-triggered, 
RTl: late reverse-triggered, DTr: double-triggered reverse-triggered, DTp: patient-triggered double-
triggered, FLm: mild flow-limited, FLs: severe flow-limited, LVT: late ventilator termination, EVT: early 
ventilator termination, IE: ineffective-triggered  
 
fig4.pdf  
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Table 1: Frequency of Each Class of Dyssynchrony in Manually Labeled Set 
NL: normal, DT: double-triggered, RT: reverse-triggered, FL: flow-limited; RTe: early reverse-triggered, 
RTl: late reverse-triggered, DTr: double-triggered reverse-triggered, DTp: patient-triggered double-
triggered, DTa: auto double triggered, FLm: mild flow-limited, FLs: severe flow-limited, LVT: late ventilator 
termination, EVT: early ventilator termination, IE: ineffective-triggered  
 

 Number %  

NL 6394 64.7% 

DT 724 7.3% 

RT 1201 12.2% 

FL 915 9.3% 

RTe 101 1.0% 

RTl 436 4.4% 

DTr 660 6.7% 

DTp 44 0.5% 

DTa 16 0.2% 

FLm 547 5.5% 

FLs 366 3.7% 

LVT 63 0.6% 

EVT 214 2.2% 

IE 227 2.3% 
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Table 2: Types of VD and Their Respective Families 
 

Normal Reverse-Triggered Double-Triggered Flow-Limited Miscellaneous 

Normal 
appearing 

breaths 
(Nl) 

Early reversed- 
triggered 

(RTe) 

Patient-triggered 
double-triggered 

(DTp) 

Mild  
flow-limited 

(FLm) 

Early ventilator 
terminated (EVT) 

 Late reverse- 
triggered  

(RTl)  

Auto-triggered 
double-triggered 

(DTa) 

 Severe flow-
limited (FLs) 

Late ventilator 
terminated 

(LVT) 
 

 Reverse-triggered double-triggered  
(DTr) 

 Ineffective 
triggered 

(IE) 
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Table 3: Test Characteristics of ML Algorithms with Esophageal Pressures: mean % ± SD;  
NL: normal, DT: double-triggered, RT: reverse-triggered, FL: flow-limited; RTe: early reverse-triggered, RTl: late reverse-triggered, DTr: double-
triggered reverse-triggered, DTp: patient-triggered double-triggered, FLm: mild flow-limited, FLs: severe flow-limited, LVT: late ventilator 
termination, EVT: early ventilator termination, IE: ineffective-triggered  
 

 
Lasso Logistic 

Regression  Support Vector 
Classification  Random Forest  XGBoost 

 Sensitivity Specificity  Sensitivity Specificity  Sensitivity 
Validation 
Sensitivity Specificity  Sensitivity 

Validation 
Sensitivity Specificity 

NL 96.6±0.6 80.8±4.8  96.7±0.4 93.7±1.3  97.2±0.5 97.4 93.6±1.6  97.1±0.5 96.3 95.9±0.9 

DT 62.9±7.7 99.3±0.2  85.8±3.7 99.4±0.3  87.5±3.7 89.8 99.7±0.1  92.7±2.3 91.7 99.7±0.1 

RT 54.5±14.9 98.7±0.4  86.3±2.4 98.9±0.3  88.8±3.3 88.2 99.3±0.2  93.4±1.4 90.0 99.2±0.2 

FL 54.1±10.6 98.6±0.4  76.9±3.0 98.8±0.3  88.7±1.8 86.7 98.9±0.3  89.1±2.5 83.6 99.1±0.3 

RTe 0.0±0.0 99.9±0.1  11.6±6.4 99.9±0.1  8.3±7.2 5.0 99.9±0.1  49.4±12.5 23.3 99.8±0.1 

RTl 62.1±25.2 99.6±0.2  76.9±0.2 99.6±0.1  85.8±3.8 86.8 99.6±0.2  91.4±2.8 83.9 99.6±0.2 

DTr 57.9±10.5 99.3±0.2  84.1±3.8 99.4±0.2  96.6±1.4 94.4 99.7±0.2  98.6±1.1 93.9 99.9±0.1 

DTp 2.3±7.9 99.9±0.1  22.3±13.7 99.9±0.1  22.7±17.6 10.0 100±0.0  63.7±14.6 23.1 99.9±0.1 

FLm 7.6±11.8 99.5±0.4  55.7±7.8 99.0±0.2  81.1±5.1 75.9 99.2±0.3  90.0±3.2 71.8 99.5±0.1 

FLs 16.1±18.8 99.6±0.2  68.6.1±7.8 99.4±0.3  84.9±4.1 85.5 99.6±0.2  87.7±4.9 81.7 99.6±0.2 

LVT 0.0±0.0 99.3±0.1  2.0±4.1 99.9±0.1  1.9±4.6 9.1 100±0.0  41.8±13.7 47.4 99.9±0.1 

EVT 1.8±7.0 99.9±0.1  51.±13.3 99.7±0.2  54.9±9.6 58.8 99.9±0.1  70.4±6.9 67.2 99.9±0.1 

IE 7.6±14.5 99.9±0.1  74.4±7.2 99.9±0.1  70.0±8.1 72.3 99.9±0.1  78.1±9.2 85.5 99.9±0.1 
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Training
70% of Random Data

6,915 Breaths

Feature Development
with Pes

XGBoost
107 Features

One vs All
5- fold Cross- Validation

Probability of Breath in
Normal Family

Probability of Breath in
Double- Triggered Family

Probability of Breath in
Reverse- Triggered Family

Probability of Breath in
Flow- Limited Family

XGBoost
111 Features

One vs All
5- fold Cross- Validation

Normal
 (NL)

Early Reverse Triggered
(RTe)

Late Reverse Triggered
(RTl)

Double- Triggered
 Reverse- Triggered

(DTr)

Double- Triggered
Patient- Triggered

(DTp)

Double- Triggered
Auto- Triggered

(DTa)

Mild Flow- Limited 
(FLm)

Severe Flow- Limited
(FLs)

Late Ventilator 
Termination

(LVT)

Early Ventilator
Termination

(EVT)

Ineffective- Triggered
(IE)

Test
30% of Random Data

2,961 Breaths
Sensitivity
Specificity

Random Selection
9,876 manual labeled 

breaths
27 patients
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a) Confusion Matrix: Predicted Labels for VD Families
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