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Abstract 
As applications of AI in medicine continue to expand, there is an increasing focus on integration 
into clinical practice. An underappreciated aspect of clinical translation is where the AI fits into the 
clinical workflow, and in turn, the outputs generated by the AI to facilitate clinician interaction in 
this workflow. For instance, in the canonical use case of AI for medical image interpretation, the 
AI could prioritize cases before clinician review or even autonomously interpret the images without 
clinician review. A related aspect is explainability – does the AI generate outputs to help explain 
its predictions to clinicians? While many clinical AI workflows and explainability techniques have 
been proposed, a summative assessment of the current scope in clinical practice is lacking. Here, 
we evaluate the current state of FDA-cleared AI devices for medical image interpretation 
assistance in terms of intended clinical use, outputs generated, and types of explainability offered. 
We create a curated database focused on these aspects of the clinician-AI interface, where we 
find a high frequency of “triage” devices, notable variability in output characteristics across 
products, and often limited explainability of AI predictions. Altogether, we aim to increase 
transparency of the current landscape of the clinician-AI interface and highlight the need to 
rigorously assess which strategies ultimately lead to the best clinical outcomes.  
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Main 
Applications of AI in medicine are increasingly moving beyond development to clinical integration, 
especially in imaging domains like radiology. A critical aspect of this integration is where the AI 
fits in the clinical workflow and the outputs generated to support this workflow. Along with 
conveying the core prediction of the AI model, these outputs may facilitate explainability in helping 
the clinician understand how the model arrived at the prediction – a commonly emphasized 
component for enhancing trust and decision making1–4. While many workflow strategies and 
explainability techniques have been proposed for AI in medical imaging5,6, the current scope in 
clinically-available AI products is not well understood. 
 
To study the current state of the clinician-AI interface, we created a curated database of FDA-
cleared AI devices for medical image interpretation, a canonical task among the first to be clinically 
operationalized. We specifically focus on AI devices with use cases that are historically referred 
to as variations of “CAD”, a term that stems from computer-assisted detection7. As detailed below, 
there are now several types of CAD that differ according to how the device is intended to be used 
by clinicians. To create the database, we first identified the FDA Product Codes that support CAD 
devices. We then reviewed all of the Summary Statements for products with these product codes 
(see Methods) and curated relevant data, including the intended use and device outputs (see 
Methods). The final database can be found in the Supplementary Information. 
 
We identified 140 FDA clearances from January 2016 to October 2023 for 104 unique AI-enabled 
CAD products, with some products having multiple clearances over time. The products fall into 
one of five categories based on their intended use in a clinical workflow, as illustrated in Figure 
1. These five CAD types vary by their outputs and how clinicians are instructed to use these 
outputs. For instance, computer-assisted triage (CADt) devices are designed to flag suspicious 
cases for prioritized review by clinicians. The core AI output for such devices is a binary indicator 
of whether the case is flagged or not, where flagged cases can be reviewed more quickly by a 
clinician. Importantly, CADt devices do not provide annotations to directly localize findings8. 
Conversely, computer-assisted detection (CADe) devices help detect the location of lesions by 
overlaying markings on images. If a numerical or categorical score is assigned to the detected 
lesion or the whole case, the device is then considered a computer-assisted detection and 
diagnosis (CADe/x) device because the additional granularity is thought to aid in diagnosis and 
not just detection9. A device that focuses on diagnosis without explicitly marking the locations of 
lesions across the case is considered CADx. As opposed to CADt devices that flag cases before 
clinician review, CADe, CADx, and CADe/x devices are designed to assist clinicians as they are 
interpreting exams. Finally, a variation of CADx has emerged where the device is intended to 
automatically interpret the exam without clinician review10. We denote this use as CADa, which is 
currently only used for one specific application as discussed below. 
 
A breakdown of the CAD types across the 104 FDA-cleared products is shown in Figure 2a. CADt 
is the most frequently approved product type, representing 59% of products, followed by CADe 
with 19%. The distribution of CAD types is also highly dependent on the disease, with some 
diseases having multiple CAD types and others only one (Figure 2b). Breast cancer and 
intracranial hemorrhage (ICH) have the highest number of products with 14 each. CADt, CADe, 
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CADx, and CADe/x are all represented in breast cancer, whereas all of the ICH products are 
considered CADt. Altogether, we find 37 different diseases/conditions represented, with 
conditions with more than three products shown in Figure 2b.  
 
Beyond CAD type, we curated finer details regarding the outputs of FDA-cleared AI devices. From 
a practical standpoint, we can consider these outputs to have two functions: 1) convey the core 
prediction of the AI model to help with the final diagnosis, and 2) convey information to support 
this prediction. For instance, an AI model may predict that a head computed tomography (CT) 
exam is suspicious for ICH (the core prediction) and also indicate the location of the hemorrhage 
or show similar examples from the training dataset where ICH was also present. These additional 
outputs can be considered a form of explainability in facilitating clinician understanding and trust 
of the prediction.  
 
Across the database, we find high variation in output characteristics of the AI devices. This 
variation is present both in terms of the form of the core prediction and the presence and type of 
explainability. Starting with the core prediction, we categorized each product as having a binary, 
categorical, or score-based prediction output. For example, a product may characterize an 
exam/lesion as suspicious or not (binary), low vs. medium vs. high suspicion (categorical), or 
generate a suspicion score between 1-10 (score-based). Figure 3a illustrates the distribution of 
prediction output types across the AI products. We find that binary-level predictions are by far the 
most common across FDA-cleared products. This is in large part driven by CADt and CADe 
products that generate binary-level predictions at the case- or lesion-level, respectively. 
Categorical and score-based outputs are nonetheless represented in CADx and CADe/x 
products, though categorical outputs are three-times less common than numerical scores.  
 
Beyond prediction type, we curated the type of explainability offered by the AI products, 
considering several types of explainability that have been discussed in AI literature5. We consider 
explainability from a user interface perspective and group product outputs according to several 
categories that are illustrated in Figure 3b. Localization-based explainability can take different 
forms such as bounding boxes or heatmaps, where these outputs help convey the “where” behind 
an AI model’s prediction. Other types of explainability also convey aspects of “why” or “what”. For 
instance, an exemplar-based explanation might retrieve and display reference examples in the 
training dataset that have similar qualities to the image under consideration. An approach that is 
becoming increasingly popular in AI research is the use of counterfactual explanations11 and 
related generative techniques. A counterfactual approach involves minimally modifying the image 
to flip an AI model’s prediction, thus giving intuition on the features used by the model in making 
the original prediction. Other explainability categories include the use of language-based 
semantics or quantitative characteristics. For instance, an AI model may characterize a detected 
lesion as “round” or estimate its size as 2 cm, both of which may help the clinician understand 
and trust (or be skeptical of) a model’s prediction.  
 
The distribution of explainability types in the FDA-cleared AI devices is illustrated in Figure 3b, 
where “none” corresponds to image/case-level predictions without explicit localization or other 
types of explainability. Although we do not find examples of counterfactual explanations, each of 
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the other described categories of explainability are represented across the products. Not 
surprisingly, “none” is the most common category of explainability given the popularity of CADt, 
which does not offer explicit localization or other explainability types. When a form of explainability 
is provided, localization is by far the most common, followed by semantics, quantitative, and 
exemplar with 5, 5, and 1 products, respectively. 
 
In summary, while several studies have analyzed aspects of FDA-cleared AI devices12–14, there 
is a pressing need for enhanced transparency around factors related to clinical integration. To 
this end, we assembled and analyzed a curated database focusing on the canonical use case of 
medical image interpretation assistance (“CAD”). Our analysis finds 140 FDA clearances for 104 
products across five different CAD types. By far the most frequent CAD type is CADt, where there 
are more products with this triage use case than all other types combined. While CADt products 
are constrained in the types of outputs provided, we find meaningful variation in core user 
interface parameters for products of other CAD types. Nonetheless, usage patterns are highly 
skewed, with score-based predictions more popular than categorical, and localization-based 
explainability being the most common technique when a form of explainability is offered.  
 
The optimal AI-clinician integration strategy depends on a number of factors, yet even seemingly 
minor differences in AI outputs may ultimately lead to dramatic differences in clinical efficacy. As 
providers consider AI adoption, it is especially instructive to be aware of the different CAD types 
and their advantages and limitations across different diseases. In the case of CADt, several 
studies have indeed shown the potential for faster turnaround times and improved outcomes for 
prioritized exams15,16. However, the FDA has also recently released a letter “reminding health 
care providers about the intended use of radiological computer-aided triage and notification 
(CADt) devices for intracranial large vessel occlusion (LVO)”, including statements that such 
devices are not diagnostic and cannot rule out the presence of an LVO17,18. As such, the AI output 
for CADt devices is minimal and the core study required for FDA clearance is standalone AI 
performance testing8. Appreciating clinician-AI considerations is similarly important for AI 
developers in envisioning how a core AI model could fit into existing or new workflows and aligning 
model development with this in mind. There are especially opportunities to assess whether 
recently popular explainability techniques such as counterfactual and text-based explanations can 
improve clinical utility, as these techniques are not yet robustly represented in current products. 
Altogether, rigorously studying the clinician-AI interface will help accelerate the clinical translation 
of AI in a safe and effective manner. 
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Figures 
Figure 1. Overview of types of FDA-cleared CAD products and their integration into 
medical image interpretation workflows. CAD types vary according to their outputs and place 
within the clinical workflow. CADt (triage) devices are designed to flag cases for prioritized review 
and do not place marks on the image. CADe (detection) devices mark regions of interest to aid in 
the detection of lesions as a clinician is interpreting an exam. CADx (diagnosis) devices are 
designed to aid in diagnosis, such as by outputting a score or category, but do not explicitly detect 
lesions across the exam. CADe/x (detection & diagnosis) devices provide both detection and 
diagnosis support. Finally, an autonomous system, which we denote as CADa, aims to 
automatically interpret the exam without clinician input. 
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Figure 2. Landscape of intended uses of FDA-cleared AI products for medical image 
interpretation. a) Total number of FDA-cleared AI products from January 2016 to October 2023 
for each CAD type: CADt (triage), CADe (detection), CADx (diagnosis), CADe/x (detection & 
diagnosis), CADa (autonomous). b) Distribution of FDA-cleared AI products for each CAD type 
by disease indication. Diseases/conditions with three or more products are shown. ICH: 
intracranial hemorrhage; LVO: large vessel occlusion; PE: pulmonary embolism; VCF: vertebral 
compression fracture; MSK: musculoskeletal. 
 

 
 
 
Figure 3. Prediction and explainability output types of current FDA-cleared AI products for 
medical image interpretation. a) Predictions are grouped according to binary, category, or 
score. b) Type of explainability offered by products, with “none” corresponding to products that 
provide image/exam-level predictions without explicit localization or other form of explainability. 
Counts are also indicated by CAD type: CADt (triage), CADe (detection), CADx (diagnosis), 
CADe/x (detection & diagnosis), CADa (autonomous). 
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Methods 
To curate a list of FDA-cleared AI CAD products, we first identified the FDA Product Codes that 
support CAD devices by reviewing all Product Code descriptions19 in both a manual and keyword-
search manner, resulting in the following list: MYN, OEB, PIB, POK, QAS, QBS, QDQ, QFM, 
QNP, QPN. We note that other product codes that may include forms of image processing but 
are not explicitly indicated for CAD-based assistance, such as LLZ and QIH, were not considered. 
From the final list of Product Codes, we then retrieved a list of all products for these codes using 
the FDA’s 510(k)20, De-Novo21, and PMA22 databases. From the summary statement for each 
product, we manually extracted the intended use, device outputs and inputs, and types of 
algorithms used. Each product was independently reviewed and confirmed by two researchers. 
For a small number of products where the summary statement was ambiguous, we additionally 
consulted online product documentation. As our goal was to study products based on modern 
deep learning-based AI techniques, we excluded any products that describe the use of purely 
traditional (shallow) machine learning or hand-engineered computer vision techniques. We 
additionally compared our final product list to a list released by the FDA that covers AI-enabled 
products with clearances through July 202323 to ensure consistency across the overlapping time 
period for our identified product codes. Finally, we cleaned and standardized the extracted data 
to maintain standard nomenclature across products. We additionally identified which clearances 
are new versions of previous products versus new products altogether, which we determined 
based on a product having a consistent name/manufacturer, intended use, and disease 
indication(s) as a prior clearance. The final curated database can be found in the Supplementary 
Information.  
 
We characterized the outputs of each product according to the form of its core prediction and type 
of explainability offered. As each device is indicated for a specific disease(s)/condition(s) we 
consider the core prediction to be the device’s estimate of the presence of this 
disease(s)/condition(s). This prediction could take a number of forms, which we grouped into three 
buckets: binary, categorical, or score-based. Categorical predictions consist of text-based 
classifications such as “high” vs. “medium” vs. “low”. Score-based predictions consist of numerical 
outputs, typically with at least 10 increments (e.g., 1-10). In circumstances where a prediction has 
aspects of both a text identifier and number (generally with <10 increments), the prediction was 
considered categorical. An example of this would be the BI-RADS classification system which 
consists of a number from 0-6 and a text category corresponding to this number. Additionally, a 
given product may have more than one output type, such as both categorical and score-based 
predictions, in which case each type was included in the final tally. If a product had more than one 
clearance, such as an update over time, the most recent version was used for all analysis.  
 

Data Availability Statement 
The curated database used for all analysis is available as Supplementary Material. 
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