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ABSTRACT

The use of synthetic data is a promising solution to facilitate the sharing and reuse of health-related data beyond its initial
collection while addressing privacy concerns. However, there is still no consensus on a standardized approach for systematically
evaluating the privacy and utility of synthetic data, impeding its broader adoption. In this work, we present a comprehensive
review and systematization of current methods for evaluating synthetic health-related data, focusing on both privacy and utility
aspects. Our findings suggest that there are a variety of methods for assessing the utility of synthetic data, but no consensus
on which method is optimal in which scenario. Moreover, we found that most studies included in this review do not evaluate the
privacy protection provided by synthetic data, and those that do often significantly underestimate the risks.

Introduction
Access to high-quality data plays a crucial role in medical research and practice, particularly with the growing integration of
Artificial Intelligence (AI) and Machine Learning (ML). These technologies contribute to advancements in areas like precision
medicine1, where personalized treatments depend on comprehensive and diverse datasets. Thus, establishing safe and reliable
procedures for secondary data access is important to ensure these innovations are applied ethically, securely, and effectively.

Due to privacy concerns, however, access to medical data is usually highly restricted2 and subject to safeguards specified in
data protection laws, such as the United States Health Insurance Portability and Accountability Act (HIPAA)3 and the European
Union General Data Protection Regulation (GDPR)4. A common approach used to share highly sensitive data under these
regulatory frameworks is data anonymization below an acceptance re-identification risk threshold5. This approach employs data
masking and transformation techniques to reduce privacy risks. Nonetheless, even in cases where a sufficient protection level
can be achieved, anonymizing high-dimensional data often comes with a severe deterioration of the utility of the anonymized
dataset,6 which can render it nearly unusable for research in the worst case.

A promising solution to this data-sharing problem is synthetic data, which has been described by Chen et al.7 as a technique
that “will undoubtedly soon be used to solve pressing problems in healthcare.” The main idea behind it is to generate artificial
data that mimics the statistical properties of real patient data. This data synthesis process can be achieved using multiple
algorithms, including recent advancements such as Generative Adversarial Networks8 (GANs), diffusion models9, and Large
Language Models10 (LLMs). These new methods generate sample that closely resemble real data, which could reduce privacy
risks compared to the direct sharing of original data, and increase utility compared to anonymization.

In the medical domain in particular, several studies11–13 have used synthetic data to replicate case studies originally
performed on real health-related data. These results highlight the potential benefits of synthetic data in the medical context and
give strong arguments for the use of synthetic data as an alternative to strictly regulated personal data.

Although these results seem promising for the future of privacy-preserving data sharing in medical environments, more
recent studies have pointed out risks associated with over-reliance on synthetic data as a “silver bullet” solution14. In particular,
a malicious adversary could infer information about presence or absence of certain records in the original data, as well as infer
values of sensitive attributes of known records by having access to the procedure for generating the synthetic data.15 This is due
to the tendency of machine learning and statistical models to overfit on their training data and memorize information about
individuals in the dataset16. Moreover, due to the black-box nature of most synthetic data generation methods such as GANs, it
is difficult to predict which useful information is lost in the training-and-generation process and which sensitive information
might be contained in the generated data. As a consequence, Stadler et al.14 argue that a cautious approach needs to be taken
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when generating and sharing synthetic data.
The potential risks associated with synthetic data usage highlighted in recent studies14, 17, 18 raise the question of whether

research priorities exhibit a stronger emphasis on utility over privacy considerations. Compared to anonymized data, for
which there is extensive literature19 describing different kinds of attacks and the corresponding privacy protection mechanisms,
synthetic data has not yet been as thoroughly scrutinized. This prompted us to conduct this review in the hope of providing an
informed and unbiased answer to that question.

A few surveys in the field have examined various aspects of synthetic data generation.20, 21 Figueira et al.20 provided an
extensive description of multiple generation methods, and Hernandez et al.21 explored evaluation methods and compared
them to determine the best-performing ones. In contrast to these prior studies, our approach differs in how we identify the
pressing issues with synthetic data as we place a greater emphasis on the evaluation process and the privacy-utility trade-offs by
having a systematic look at how synthetic data is evaluated across 73 studies. In a concurrent work, Vallevik et al.22 propose a
taxonomy that is similar to ours in terms of fidelity, utility, and fairness. Our work, however, offers a different approach to
privacy by conducting a critical analysis and comparing to the work in the Computer Science literature. We thus reach different
conclusions, as we show next.

A recent series of open-source solutions such as Synthetic Data Vault,23 Table Evaluator,24 synthcity25 and TAPAS15 enable
researchers to create and measure the quality of synthetic data. These platforms offer a selection of evaluation metrics and
methods for assessing both utility and privacy, streamlining the evaluation process. However, these open-source tools present
their own challenges as they each employ their own nomenclatures and terminologies, adding to the complexity of achieving
a harmonized perspective on synthetic data within the healthcare domain. This, coupled with the presence of contradictory
perspectives14, 17, 26 in the literature impedes the development of a unified understanding of synthetic data in healthcare.

To get a better understanding of the current landscape in healthcare-related synthetic data generation, we initiated this
scoping review specifically targeting evaluation methodologies, aiming to provide a rigorous and quantitative analysis of the
suitability of synthetic data evaluation methods. To do so, we have structured our analysis around answering the following two
research questions:

RQ1: Is there consensus within the community on how to evaluate the privacy and utility of synthetic data?

RQ2: Is privacy and utility given the same importance when assessing synthetic data?

Synthetic medical data aims to protect patient privacy while retaining useful information. Our investigation cuts to the heart
of the matter: Can practitioners trust this data to protect patient privacy and accelerate healthcare research? By investigating
these two research questions, we expose the pitfalls, and provide recommendations for trustworthy synthetic data in medicine.

Results
In this review, after reconciling methods that were semantically the same, we found that there were 17 methods used to assess
utility and 5 methods used to assess privacy. Fig. 2 gives an overview of the overall landscape of utility and privacy evaluation
methods used in all the publications we selected. We include the full results of the scoping review as supplementary materials.

We reviewed articles published from 2018 to July 2024, a period that saw the rise of generative AI technologies, including
the early enthusiasm in GANs and the adoption of LLMs. This growing interest is evident in our corpus as we have only two
eligible publications in 2018–2019, and 21 in 2023. See Fig. 1 for details.

Additionally, we found that most articles used cross-sectional data, making up 73% (53/73). Only 25% (18/73) used
temporal longitudinal data, possibly as it is harder to synthesize.27 For this type of tabular data, the difficulty comes in
maintaining relationships not just between columns which are reflected in the correlations between variables but also between
rows which represent the temporal consistency of the data. As shown in Fig. 5, unstructured data such as images or text were
not considered during this review.

We found that the privacy aspect of synthetic data was the main incentive behind most selected papers, with 82% (60/73)
intending to use synthetic data for private data sharing scenarios. The other 8% (6/73) used it for data augmentation purposes
and to answer either data scarcity or class imbalance problems. The remaining 10% (7/73) studied the potential of synthetic
data in both scenarios.

Different methods were used to create synthetic data. As we show in Fig. 2, out of all 49 synthetic data generation methods
used in our corpus, 33% (16/49) are GANs. The rest, 67% (33/49), are a mix of other methods, including statistical modeling
and methods implemented by specialized software such as Synthpop28 R package or the MDClone29 commercial platform.

Our findings indicate that the current landscape lacks a unified approach, as we identified 49 different ways to refer to utility
and fairness metrics, and 22 different ways to discuss privacy which complicates the comparison and synthesis of existing
evidence. We document the variability of those metrics in Supplementary Figure 1. By applying the taxonomy we proposed in
Table 3 we were able to derive a trend towards broad utility evaluations which was noted in 153 instances (by an instance, we
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Figure 1. Scoping Review Results.
(a) Visual overview of included works across various metrics. The figure depicts four dimensions: Database, Data Type,
Purpose, and Publication Year. PPDS refers to Privacy Preserving Data Sharing. (b) Summary of the performance-related
methods used in the included works. This includes a breakdown of categories such as Broad Utility, Narrow Utility and
Fairness. (c) Summary of the performance-related methods used in the included papers. We categorized methods as
Membership Inference or Attribute Inference.
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Figure 2. Synthetic data generation methods.
We found 49 different synthetic data generation (SDG) methods, split into two main categories: GANs (Generative Adversarial
Networks) and other techniques. GANs, shown in orange, make up 32.65% of the total, with 16 different methods. The
remaining 67.35%, in blue, includes various approaches like Bayesian Networks, VAEs, and proprietary software.

refer to evaluation of a specific metric, e.g., one paper can evaluate multiple metrics which all are classified as broad utility).
Narrow utility is represented in 63 instances, whereas fairness is significantly less represented with only three instances of
use. Among the works that evaluated the privacy risks of synthetic data, membership inference risk was the most common
type, appearing in 28 instances, whereas attribute inference appeared in 9 instances. The specific methods used for privacy
evaluation varied: 12 instances involved holdout set distinguishing, nine used distance to real data, seven employed record
matching, five relied on inference based on matching, and four utilized ML model inference. Another notable finding is that
privacy evaluations are not as often employed as utility evaluations. 95% of the studies (70/73) included utility evaluations
while only 46% (31/67) of the studies claiming to employ synthetic data for preserving privacy, i.e., those that should evaluate
privacy, conducted any privacy evaluation. We found that most of the studies have utilized synthetic data “as is”, assuming
inherent privacy benefits without empirical verification.

Figure 3. Number of works that evaluate privacy and use methods that provide privacy guarantees.
Gap between the intended privacy focus of studies and the actual privacy evaluation. Only 46% (31/67) of the studies claiming
to employ synthetic data for preserving privacy conducted any privacy evaluation.

In the next section, we provide a discussion of salient issues that we have identified during the analysis of these research
questions, and propose concrete steps forward to rectify these issues.
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Discussion
The proposed taxonomy enables practitioners and researchers to mitigate the issue of the lack of consensus by ensuring a
comprehensive evaluation within all dimensions from Table 3, covering broad utility, narrow utility (if synthetic data is released
for a specific task), fairness, and privacy. For instance, some works in our corpus have evaluated synthetic data using multiple
metrics within the same category, e.g., broad utility, yet used no metrics in other categories. Evaluating synthetic data generators
or the released synthetic data across all of these dimensions provides a clearer picture of their trustworthiness.

We found that the privacy aspect of synthetic data evaluation has mostly revolved around using similarity-based metrics.
It is notable that some privacy evaluation methods, such as distance to real data, can be directly at odds with equivalent
metrics used for evaluating utility. Synthetic data is sometimes evaluated using these similarity-based metrics for both its
privacy and utility even within the same study,30 which can lead to conflicting results and complicate the interpretation of the
privacy-utility trade-off. This dichotomy highlights a challenge in harmonizing the definitions of privacy and utility in synthetic
data evaluation.

The fact that most works that use synthetic data for the purpose of preserving privacy do not evaluate the residual privacy
risks (see Fig. 3) poses significant concern, especially with public synthetic data releases. Practitioners may inadvertently
assume that synthetic data they are generating is privacy-preserving by default. This may lead to the uninformed sharing of
sensitive data, potentially resulting in data breaches in addition to ethical and legal complications.

Moreover, most of the studies that evaluate privacy, have employed similarity-based metrics. The prior work has recently
argued and empirically demonstrated that the reliance on similarity-based metrics for privacy evaluation is inadequate for two
reasons. First, such metrics do not reflect the privacy guarantees faithfully, e.g., there can exist successful inference attacks even
if synthetic data is dissimilar from the original dataset.14, 31 Second, the publication of similarity-based metrics on its own can
lead to novel privacy risks such as reconstruction attacks that leverage the reported metrics.31 The popularity of similarity-based
metrics in our review suggests that many evaluations may offer a false sense of security regarding the privacy-preserving
capabilities of synthetic data.14 This contrasts sharply with more sophisticated attacks discussed in the Computer Science
literature, such as shadow model attacks,14, 15 which employ advanced techniques to assess privacy risks in a more principled
way.

To ensure privacy, 11% (8/73) of the reviewed works have used differentially private32 synthetic data generators. Differential
privacy (DP) is a well-established principled approach to ensuring provable privacy guarantees through controlled injection of
random noise in the process of building the generative model. Although DP provides strong guarantees, they are significantly
stronger than what is necessarily needed for practical privacy protection, which results in DP oftentimes significantly hurting
utility, consistency, and fairness.33–35 Recent years, however, have seen significant progress in making the DP methods,
including synthetic data generation, effective and feasible. In particular, there exists a family of works for generating synthetic
data based on k-way marginals with provable guarantees both in terms of privacy and utility.36–38 Such methods were recently
showed to be superior in terms of utility and fairness39 compared to other private methods based on GANs, and even, in some
cases, to non-private methods.15 Despite this, such methods see almost no usage in the corpus we have reviewed compared to,
e.g., less efficient methods based on GANs.

The level of privacy in DP is usually parameterized by the parameter ε , which is often criticized as non-interpretable to the
practitioners.33 Fortunately, recent works provide operational interpretations for the level of privacy provided by DP, e.g., via
success of reconstruction attacks,40 and argue that even if the formal privacy guarantees are weak, in practice, DP methods still
provide strong resilience against practical inference attacks.41

Even though DP provides privacy guarantees in theory, recent studies show that practical implementations violate these
guarantees due to software bugs or improper usage,14, 42 with a recent line of works being developed specifically to auditing
the privacy guarantees afforded by DP methods.43 Therefore, even with theoretical guarantees, it is still important to evaluate
privacy in DP synthetic data generation.

In conclusion, this review offers a detailed insight into the present research landscape of synthetic health data’s utility and
privacy. The need for standardized evaluation measures stands out as a major takeaway where we believe that having uniform
metrics can offer a level playing field, allowing different synthetic data generation methods to be compared in a consistent
and meaningful manner. This need is increasingly apparent as international initiatives such as IEEE’s Industry Connections
activity44 and Horizon Europe’s call for synthetic data45 confirm the urgency of creating clear guidelines for the development of
reliable frameworks in the field. Our intention with this review is to not only shed light on these challenges, but also to inspire a
collaborative effort in formulating best practices that make these techniques more accessible and understandable.

One significant concern raised throughout our work is the need for robust privacy evaluations. As the healthcare sector
houses sensitive information, ensuring that synthetic data does not inadvertently lead to data leaks or result in a loss of trust is
crucial. This is especially true when it comes to generative models such as GANs as their inherent complexity and lack of
transparency can lead to misinformed usage where without a proper evaluation, either the privacy risks are higher than expected,
or their utility is insufficient.
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Table 1. Key takeaways from various challenges in synthetic data generation.

Problem Key takeaway

Overcoming lack of consensus Evaluations of synthetic data generators and synthetic data releases
should cover different dimensions: broad utility/statistical fidelity, nar-
row utility (if synthetic data is released for a specific task), fairness, and
privacy.

Conflicting metrics Privacy and utility metrics that rely on similarity of synthetic records
to real data, such as nearest neighbour distance ratio, should be used
cautiously. As different studies use equivalent similarity-based metrics
for measuring both utility and privacy, the usage of such metrics compli-
cates the interpretation of the privacy-utility trade-off.

Principled privacy evaluation If the purpose of synthetic data is to preserve privacy of the original data,
practitioners and researchers should rigorously evaluate the associated
privacy risks using modern techniques,14, 15 avoiding similarity-based
metrics such as distance to the closest record or nearest neighbour
distance ratio.

Ensuring provable privacy guaran-
tees

Differential privacy (DP) is a well-established formal theory for provably
guaranteeing a given level of data privacy, including for synthetic data.
Although DP oftentimes can hurt utility and fairness, recent methods
such as those based on k-way marginals36 have significantly improved
on its privacy-utility trade-off, making private methods a compelling
candidate for synthetic data generation, especially when releasing syn-
thetic data publicly. Even if DP is used, however, privacy risk evaluation
should still be performed.

The integration of synthetic data in healthcare demands caution. Although it is promising, especially when using principled
and provable utility and privacy-preserving methods,36 its potential must not be overstated. Rigorous, unbiased evaluation
is crucial before implementation. Our review highlights key gaps: a lack of consensus on performance metrics, including
conflicting metrics, and an absence of standardized practices for ensuring privacy guarantees. Given these shortcomings, we
caution against trusting synthetic data in high-risk scenarios where false positives, missed findings, or privacy breaches could
cause harm. This includes both releases for specific purposes such as medical research or decision-making, as well as public
data releases. Before adopting new methods introduced in the literature or implemented in software, even those with strong
guarantees, institutions should emphasize robust technical and organizational safeguards to ensure comprehensive privacy
protection.

Methods

For this scoping review, we adopted the protocol from Preferred Reporting Items for Systematic Reviews and Meta-Analyses46

(PRISMA). PRISMA stands as a recognized guideline, commonly adopted for laying out systematic reviews and meta-analyses.
According to this guideline, we conduct the review by defining research questions, setting unambiguous inclusion and exclusion
parameters, and detailing methods for searching, choosing, and charting data from chosen documents. We provide an overview
of the procedure in Fig. 4.

Search strategy and selection criteria To identify relevant studies, we conducted a comprehensive search across two
bibliographic databases and repositories spanning the period from January 2018 to July 2024. The databases and repositories
included PubMed and Embase, which are focused on healthcare and medical research. By using these biomedical databases,
we could identify studies that have considered the unique constraints and requirements of healthcare settings, thus ensuring
that the synthetic data methods under review would be applicable in real-world medical contexts. Full-text articles were
obtained for those meeting the inclusion criteria described in Fig. 5. The search strategies for each database were developed at
an early stage of the research and were then refined through team discussions and preliminary analysis of the results. In order to
capture actionable insights on the trustworthiness of synthetic data in medicine, we designed the queries to find publications
that evaluate the utility or privacy aspects of synthetic data. The queries used for each database are listed in Table 2 and were
last run on July 1st, 2024.
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Figure 4. PRISMA flow diagram for the scoping review process.
Identification, screening, and inclusion process of studies for the scoping review. Following the PRISMA-SCR guidelines, 174
reports were assessed for eligibility and 73 of them were included in the final review.

Table 2. Queries by database.

Database Query

PubMed (synthetic[Title] AND data[Title]) AND (utility[Title/Abstract] OR privacy[Title/Abstract] OR evalua-
tion[Title/Abstract] OR metric[Title/Abstract])

Embase synthetic:ti AND data:ti AND (utility:ab OR privacy:ab OR evaluation:ab OR metric:ab) AND [2018-2024]/py
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Inclusion criteria

• Publications describing research that uses
synthetic data generation methods and evalu-
ates their outputs

Exclusion criteria

• Surveys and systematic/scoping reviews

• Documents in languages other than English

• Publications with no assessment of the generated out-
put, i.e., no evaluations of the utility/privacy aspects

• Publications that use unstructured data, i.e., images/text

• Poster abstracts

Figure 5. Eligibility criteria.
A list of inclusion and exclusion criteria used to select the studies from our initial database sample.

Another consideration in query design was the avoidance of false positives, such as publications discussing synthetic
compounds or materials rather than synthetic data. To this end, we included both “Title” and “Abstract” as fields for our queries,
ensuring that the primary focus of the identified publications was indeed on synthetic data and its evaluation metrics for utility
or privacy. We also removed such articles manually, should they have still appeared in the final selection of papers.

Any discrepancies in study selection were resolved through discussion and consensus between two of the authors. A
data-charting form, illustrated in Supplementary Table 1, was collaboratively designed by the research team to delineate the
specific variables to be extracted from the selected publications.

To standardize the data-charting process and ensure a unified treatment, we developed a taxonomy of evaluation methods
suitable for the corpus of collected eligible publications, described next.

Taxonomy: Performance-Related Measures The proposed taxonomy classifies performance-related evaluation methods into
three key dimensions: broad utility, narrow utility, and fairness. Broad utility (also referred to as statistical fidelity, or simply
fidelity in the literature47) encompasses methods that we classify as univariate similarity, bivariate similarity, multivariate
similarity, or longitudinal similarity. These methods are designed to capture specific aspects of data utility, ranging from
straightforward one-dimensional comparisons to more complex analyses involving multiple variables and temporal patterns.
This dimension is particularly valuable for making direct comparisons between different generative methods, ensuring that
synthetic data can be effectively generalized across various applications and datasets. In contrast, narrow utility focuses on
the performance of synthetic data in specific tasks or contexts. It evaluates how well the data serves particular purposes, such
as improving model accuracy for a specific prediction task or supporting a specific type of statistical analysis. The fairness
dimension examines how well synthetic data provides equitable treatment across different groups. This evaluation dimension is
important as the standard measures of utility may not capture group level performance48 which can in turn perpetuate harmful
societal biases through the use of synthetic data. We include the extended taxonomy with detailed descriptions of each family
of methods and specific examples in Supplementary Table 2.

Taxonomy: Privacy We divide the taxonomy for privacy evaluation methods into two main categories: membership inference
and attribute inference. In the membership inference category, we include methods which study how effectively synthetic
data can prevent the identification of whether specific individuals were part of the original dataset. Based on the literature we
have reviewed, this category can be subdivided into three commonly used methods: record matching, distinguishing between
synthetic records and real records from a holdout set, and various techniques for computing similarity between synthetic and real
data records. We classify record matching as membership inference, which is consistent with prior approaches.49 The attribute
inference category addresses the risk of deducing sensitive information about individuals from synthetic data. This includes
techniques like attribute inference based on record matching, which relies on conditioning on partial matches to predict specific
attributes by comparing synthetic data with real data records. Another technique, inference based on classification/regression
models, assesses how accurately private attributes can be inferred using predictive modeling approaches. As before, we provide
a detailed description of the taxonomy items in Supplementary Table 2.

Data Availability
The comprehensive raw dataset is included as a supplementary file.
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Table 3. Synthetic data evaluation taxonomy.

Evaluation Dimensions Family of Methods General Evaluation Method

Broad Utility (Fidelity)

Univariate Similarity Element-wise error
1-way marginals distributional similarity

Bivariate Similarity
Correlation-based similarity
Association-based similarity
2-way marginals distributional similarity

Multivariate Similarity

Dimensionality reduction comparison
Clustering similarity
Distinguishability
Multivariate distributional similarity

Longitudinal Similarity Correlation-based similarity
Structural comparison

Narrow Utility
Replication of Predictive Models Performance ML performance comparison

ML explainability comparison

Replication of Descriptive Statistics Confidence interval overlap

Expert Assessment Qualitative expert assessment

Fairness Statistical Parity of Generated Data Difference in descriptive statistics between subgroups

Disparate Impact Difference in performance for a task between subgroups

Privacy
Membership Inference

Record matching
Hold-out set distinguishing
Distance to real data

Attribute Inference Inference based on record matching
Inference based on classification/regression models

Code Availability
The code utilized for data analysis is available upon request.
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Supplementary File

1 Database Search Strategy

Table 1. Data items used in full-text charting

Title Description Possible Values

DOI Digital Object Identifier Free text

Document Title Title of publication Free text

Authors First Author of publication Free text

Publication Year Year of publication [2018..2024]

Database Database or retrieval tool [PubMed, Embase]

General Utility Method General Utility Metric category Values in Table 2.

Utility Method Specific Utility Metric used Values in Table 2.

General Privacy Method General Privacy Metric category Values in Table 2.

Privacy Method Specific Privacy Metric used Values in Table 2.

Privacy Type Type of privacy involved [Membership Inference, Attribute inference]

Differential Privacy Use of differential privacy [Y,N]

SDG Method Synthetic Data Generation Method used Free text
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2 Synthetic Data Evaluation Extended Taxonomy
Fidelity: Refers to the accuracy with which synthetic data replicates the statistical properties and relationships of the original
real data. Fidelity assessment includes various methods to determine how closely the synthetic data matches the real data across
different statistical dimensions.

• Univariate Similarity

– Element-Wise Error: Measures the difference between corresponding elements in synthetic and real datasets.
Common metrics include Mean Squared Error (MSE), which calculates the average of the squared differences
between corresponding data points.1–3

– Marginal Distributional Similarity: Compares the distribution of individual variables between synthetic and real
datasets to ensure that each variable’s distribution in the synthetic data matches the real data. It features a multitude
of different methods such as statistical tests (Mann Whitney U-test4, T-Tests5, 6, Chi-Squared tests5 ...),distance
Between Probabilities (Wassestein Distance7), divergence computation (Kullback-Leibler Divergence, Hellinger
Distance) and visual comparisons of marginal distributions.

• Bivariate Similarity

– Correlation-based Similarity: Assesses the preservation of relationships between pairs of variables in synthetic
data compared to real data. This method includes comparing correlation coefficients (e.g., Pearson or Spearman
correlations).

– Association-based Similarity: Evaluates the strength and direction of associations between variables, ensuring that
the relationships in the synthetic data reflect those in the real data. This method includes Tau Statistic Comparison
and Association Matrices comparison.

– 2-Way Marginals Distributional Similarity: Examines the joint distribution of two variables, assessing whether
the synthetic data captures the correct dependencies between these variables as seen in the real data. This was
usually present in the form of visual comparison of joint probabilities.

• Multivariate Similarity

– Dimensionality Reduction Comparison: Uses techniques like Principal Component Analysis (PCA) to compare
the principal components of synthetic and real data, revealing similarities or differences in underlying data structures.

– Clustering Similarity: Assesses whether clusters identified in the real data are preserved in the synthetic data,
using clustering algorithms to evaluate the consistency of groupings. For example, Emam et al.7 merge synthetic
data and real data, then perform a clustering algorithm. The metric is then extracted by comparing the number of
synthetic samples in each cluster to the number of real samples.

– Distinguishability: Measures how easily one can distinguish between synthetic and real data, often using classifica-
tion tasks to determine the success rate of distinguishing the two datasets. Usually this comes in the form of ML
models trained to do classification, mirroring what a Discriminator would do in a GAN architecture. Beigi et al.8

train a classifier to distinguish between synthetic and real data then report its performance measure.

– Multivariate Distributional Similarity: Examines the similarity of multivariate distributions between synthetic
and real datasets, ensuring that complex interactions and dependencies among variables are accurately replicated.
This is usually done with n-way marginals comparisons.

• Longitudinal Similarity

– Correlation-Based Similarity: Evaluates the consistency of temporal correlations in longitudinal data, ensuring
that trends and patterns over time are preserved in the synthetic data. This method includes comparing correlation
coefficients between two time series (e.g., Pearson or Spearman correlations) or a comparison of autocorrelations.

– Structural Comparison: Compares structural characteristics of data, such as trends, cycles, or other temporal
features, ensuring that synthetic data accurately reflects the time-dependent structures in the real data. This method
includes a comparison of directional symmetries9 or simply visual comparisons of time series.

Utility: Measures the practical usefulness of synthetic data, particularly in replicating real-world scenarios and supporting
decision-making processes. Utility evaluation methods ensure that synthetic data can effectively substitute real data in analytical
applications.
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• Replication of Predictive Models Performance

– ML Performance Comparison: Assesses the performance of machine learning models trained on synthetic data
compared to those trained on real data. This includes evaluating metrics like accuracy, precision, recall, and F1
score. This mostly entails classification tasks, but there have been works that compared regression performance or
event reinforcement learning agents behaviour10.

– ML Explainability Comparison: Examines whether the feature importance and interpretability of models trained
on synthetic data align with those trained on real data, using methods like SHAP values or feature importance
scores.11

• Replication of Descriptive Statistics

– Comparison With Previous Study Results: This method usually entains comparing whether the confidence
intervals of key statistics in synthetic data overlap with those in real data, indicating that the synthetic data can
support similar statistical analyses.12 It also includes works that perform survival analyses on synthetic data and
compare them to previously demonstrated results on real data13.

• Expert Assessment

– Qualitative Expert Assessment: Involves domain experts reviewing the synthetic data for its relevance, quality,
and utility for specific applications, providing subjective evaluations to complement quantitative assessments.

Fairness: Evaluates whether synthetic data introduces or mitigates biases present in the original data. Fairness assessment is
crucial to ensure equitable treatment across different demographic groups and to avoid perpetuating existing inequalities or
introducing new biases.

• Statistical Parity of Generated Data

– Difference in Descriptive Statistics between Subgroups: Assesses whether synthetic data maintains Statistical
Parity of Generated Data across different demographic groups, ensuring equal representation and avoiding bias.9

• Disparate Impact

– Difference in Performance for a Task Between Subgroups: Evaluates the differences in performance metrics
(usually difference in True Positives) for machine learning models or other analytical tasks between different
demographic groups in synthetic data, highlighting potential biases.9

Privacy: Concerns the ability of synthetic data to protect sensitive information. Privacy evaluation focuses on assessing whether
synthetic data can inadvertently reveal information about individuals in the original dataset. The primary risks involve inference
attacks, such as membership inference, where an attacker determines if an individual’s data was part of the original dataset,
and attribute inference, where sensitive attributes of individuals are deduced. These risks are particularly significant because,
unlike exact data matching, synthetic data often retains statistical patterns and relationships from the original dataset, making it
challenging to completely anonymize the data and prevent inference without compromising data utility. Prior works have also
used adjacent terms to assess synthetic data privacy, such as membership disclosure. Emam et al.14 link the two notions of
inference and disclosure by describing inference as a broader type of disclosure risk.

• Membership Inference

– Record Matching: Determines if synthetic data records can be matched to real data records, posing a risk of
re-identification. This is also called Hit Rate and can take the form of a simple comparison between two records.
Another way to do matching is "Partial Matching"15, this is more relevant for cases of partial synthesis where not
all attributes have been synthesized.

– Holdout Set Distinguishing: Tests whether synthetic data can be distinguished from a holdout set not used in
its generation, assessing overfitting and potential privacy risks.16 Usually it has taken the form of computing a
ratio such as Distance to Closest Ratio (DCR), performing hypothesis tests based on these distances, just reporting
the itself. Another metric used is called CRLProxy which introduced the notion of a "trained distance" where
the authors apply "a measure to calculate the distance between the representation of a known record and the
representation of the synthetic records"17.
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– Distance to Real Data: Uses distance metrics to measure the similarity between synthetic and real data, helping to
evaluate the risk of re-identification. It has mostly taken the from of Nearest Neighbor Distance Ratio (NNDR)18,
and relied on multiple threshold based metrics such as epsilon-Identifiability to Real Data19, threshold over quantiles,
Nearest Neighbor Distance threshold, cosine distance20, hamming distance and euclidean distance threshold21.

• Attribute Inference

– Inference Based on Record Matching: Assesses the risk of inferring sensitive attributes from synthetic data
by matching it with real data records. Zhou et al.22 for example perform partial matching in order to infer new
information about sensitive records.

– Inference Based on Classification/Regression Models: Evaluates the ability of models trained on synthetic data to
predict sensitive attributes, assessing the risk of privacy breaches. Hernadez et al.4 for example simulate attacks by
providing an attacker a subset of the features. The attacker then uses ML models trained on their prior knowledge
to infer the rest of the attributes.
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3 Extended Frequencies
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Figure 1. Utility metrics frequencies. Most works evaluated synthetic data by looking at ML Classification Performance,
Descriptive Statistics Comparisons and Marginal Distributions Visual Comparison.
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4 Additional Results
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Figure 2. The number of utility evaluation dimensions. Utility evaluations are divided between Univariate Similarity,
Bivariate Similarity, Multivariate Similarity and Domain Specific Similarity.

References
1. Karimian Sichani, E., Smith, A., El Emam, K. & Mosquera, L. Creating High-Quality Synthetic Health Data: Framework

for Model Development and Validation. JMIR Form. Res. 8, e53241, DOI: 10.2196/53241 (2024).

2. Varsou, D.-D. et al. In silico assessment of nanoparticle toxicity powered by the Enalos Cloud Platform: Integrating
automated machine learning and synthetic data for enhanced nanosafety evaluation. Comput. Struct. Biotechnol. J. 25,
47–60, DOI: 10.1016/j.csbj.2024.03.020 (2024).

3. Varma, G., Chauhan, R. & Singh, D. Sarve: Synthetic data and local differential privacy for private frequency estimation.
Cybersecurity 5, 26, DOI: 10.1186/s42400-022-00129-6 (2022).

4. Hernadez, M., Epelde, G., Alberdi, A., Cilla, R. & Rankin, D. Synthetic Tabular Data Evaluation in the Health Domain Cov-
ering Resemblance, Utility, and Privacy Dimensions. Methods Inf. Medicine 62, e19–e38, DOI: 10.1055/s-0042-1760247
(2023).

5. Greenberg, J. K. et al. Leveraging Artificial Intelligence and Synthetic Data Derivatives for Spine Surgery Research. Glob.
Spine J. 13, 2409–2421, DOI: 10.1177/21925682221085535 (2023).

6. Guillaudeux, M. et al. Patient-centric synthetic data generation, no reason to risk re-identification in biomedical data
analysis. npj Digit. Medicine 6, 37, DOI: 10.1038/s41746-023-00771-5 (2023).

7. El Emam, K., Mosquera, L., Fang, X. & El-Hussuna, A. Utility Metrics for Evaluating Synthetic Health Data Generation
Methods: Validation Study. JMIR Med. Informatics 10, e35734, DOI: 10.2196/35734 (2022).

8. Beigi, M., Shafquat, A., Mezey, J. & Aptekar, J. Simulants: Synthetic Clinical Trial Data via Subject-Level Privacy-
Preserving Synthesis. AMIA Annu. Symp. Proc. 2022, 231–240 (2023).

9. Bhanot, K., Qi, M., Erickson, J. S., Guyon, I. & Bennett, K. P. The Problem of Fairness in Synthetic Healthcare Data.
Entropy 23, 1165, DOI: 10.3390/e23091165 (2021).

10. Kuo, N. I.-H. et al. Generating synthetic clinical data that capture class imbalanced distributions with generative adversarial
networks: Example using antiretroviral therapy for HIV. J. Biomed. Informatics 144, 104436, DOI: 10.1016/j.jbi.2023.
104436 (2023).

11. Qian, Z. et al. Synthetic data for privacy-preserving clinical risk prediction, DOI: 10.1101/2023.05.18.23290114 (2023).

7/8

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 28, 2024. ; https://doi.org/10.1101/2023.11.28.23299124doi: medRxiv preprint 

10.2196/53241
10.1016/j.csbj.2024.03.020
10.1186/s42400-022-00129-6
10.1055/s-0042-1760247
10.1177/21925682221085535
10.1038/s41746-023-00771-5
10.2196/35734
10.3390/e23091165
10.1016/j.jbi.2023.104436
10.1016/j.jbi.2023.104436
10.1101/2023.05.18.23290114
https://doi.org/10.1101/2023.11.28.23299124
http://creativecommons.org/licenses/by-nc-nd/4.0/


12. Yale, A. et al. Generation and evaluation of privacy preserving synthetic health data. Neurocomputing 416, 244–255, DOI:
10.1016/j.neucom.2019.12.136 (2020).

13. Reiner Benaim, A. et al. Analyzing Medical Research Results Based on Synthetic Data and Their Relation to Real Data
Results: Systematic Comparison From Five Observational Studies. JMIR Med. Informatics 8, e16492, DOI: 10.2196/16492
(2020).

14. El Emam, K., Mosquera, L. & Fang, X. Validating a membership disclosure metric for synthetic health data. JAMIA Open
5, ooac083, DOI: 10.1093/jamiaopen/ooac083 (2022).

15. Grund, S., Lüdtke, O. & Robitzsch, A. Using synthetic data to improve the reproducibility of statistical results in
psychological research. Psychol. Methods DOI: 10.1037/met0000526 (2022).

16. Platzer, M. & Reutterer, T. Holdout-Based Empirical Assessment of Mixed-Type Synthetic Data. Front. Big Data 4,
679939, DOI: 10.3389/fdata.2021.679939 (2021).

17. Zhang, Z., Yan, C. & Malin, B. A. Membership inference attacks against synthetic health data. J. Biomed. Informatics 125,
103977, DOI: 10.1016/j.jbi.2021.103977 (2022).

18. D’Amico, S. et al. Synthetic Data Generation by Artificial Intelligence to Accelerate Research and Precision Medicine in
Hematology. JCO Clin. Cancer Informatics e2300021, DOI: 10.1200/CCI.23.00021 (2023).

19. Shi, J., Wang, D., Tesei, G. & Norgeot, B. Generating high-fidelity privacy-conscious synthetic patient data for causal
effect estimation with multiple treatments. Front. Artif. Intell. 5, 918813, DOI: 10.3389/frai.2022.918813 (2022).

20. Isasa, I. et al. Comparative assessment of synthetic time series generation approaches in healthcare: Leveraging patient
metadata for accurate data synthesis. BMC Med. Informatics Decis. Mak. 24, 27, DOI: 10.1186/s12911-024-02427-0
(2024).

21. Sun, C., Van Soest, J. & Dumontier, M. Generating synthetic personal health data using conditional generative adversarial
networks combining with differential privacy. J. Biomed. Informatics 143, 104404, DOI: 10.1016/j.jbi.2023.104404 (2023).

22. Zhou, N., Wang, L., Marino, S., Zhao, Y. & Dinov, I. D. DataSifter II: Partially synthetic data sharing of sensitive
information containing time-varying correlated observations. J. Algorithms & Comput. Technol. 16, 174830262110653,
DOI: 10.1177/17483026211065379 (2022).

8/8

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 28, 2024. ; https://doi.org/10.1101/2023.11.28.23299124doi: medRxiv preprint 

10.1016/j.neucom.2019.12.136
10.2196/16492
10.1093/jamiaopen/ooac083
10.1037/met0000526
10.3389/fdata.2021.679939
10.1016/j.jbi.2021.103977
10.1200/CCI.23.00021
10.3389/frai.2022.918813
10.1186/s12911-024-02427-0
10.1016/j.jbi.2023.104404
10.1177/17483026211065379
https://doi.org/10.1101/2023.11.28.23299124
http://creativecommons.org/licenses/by-nc-nd/4.0/

	References
	Database Search Strategy
	Synthetic Data Evaluation Extended Taxonomy
	Extended Frequencies
	Additional Results
	References

