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Dietary polyunsaturated fatty acids (PUFAs) are thought to influence the risk of various 22 

chronic diseases by modulating systemic inflammation. Omega-3 and omega-6 FAs are 23 

thought to have anti- and pro-inflammatory roles, respectively, but it is unclear whether 24 

these associations are causal. We tested associations of PUFAs with three blood-based 25 

biomarkers of systemic inflammation, namely C-reactive protein (CRP), glycoprotein acetyls 26 

(GlycA) and interleukin 6 (IL-6), in a population cohort (n=2748) and using Mendelian 27 

randomization analysis (a genetic causal inference method). We provide consistent evidence 28 

that omega-6 PUFAs increase GlycA levels, but omega-3 FAs do not lower levels of 29 

inflammatory markers.  Additionally, we found that a higher omega-6:omega-3 ratio 30 

increases levels of all three inflammatory markers; CRP (mean difference=0.17; 95% CI=0.13, 31 

0.20), GlycA (mean difference=0.16; 95% CI=0.13, 0.20) and IL-6 (mean differene=0.19; 95% 32 

CI=0.15, 0.22) in the cohort analysis. Our findings suggest that future public health 33 

messaging should encourage reducing the consumption of omega 6 FAs and maintaining a 34 

healthy balance between omega 3 and omega 6 FAs, rather than focusing on omega-3 FA 35 

supplementation. This is because dietary omega-3 supplementation alone is unlikely to help 36 

reduce systemic inflammation or inflammation-related disease.   37 

 38 

Keywords: Systemic Inflammation; C-reactive Protein, Glycoprotein Acetyls, Interleukin 6, 39 

Polyunsaturated fatty acids, Omega-3; Omega-6; Mendelian Randomization, ALSPAC. 40 
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1. Introduction 48 

Non-communicable diseases (NCDs) are the main cause of global mortality, representing 49 

71% of deaths worldwide
2
. As such, their prevention remains a key challenge. Systemic low-50 

grade inflammation, reflected by elevated concentrations of markers of inflammation such 51 

as cytokines (e.g. interleukin-6 (IL-6)) and acute phase proteins (e.g. C-reactive protein 52 

(CRP)), has been implicated in the pathophysiology of many NCDs from cardiovascular 53 

disease to depression
3-12

. Therefore, inflammation appears a promising target for their 54 

treatment and prevention. 55 

Polyunsaturated fatty acids (PUFAs), are proposed to influence levels of systemic 56 

inflammation
13

. There are two main families of PUFAs which are essential for many 57 

metabolic processes: Omega-3 (n-3)
14, 15

; and Omega-6 (n-6)
15

, along with eicosatetraenoic 58 

acid and docosahexaenoic (DHA) acid (both n-3 PUFAs), and arachidonic acid (ARA; an n-6 59 

PUFA) linked most clearly to various essential physiological processes.  These processes 60 

include maintaining cell membrane structural integrity, hormone synthesis, regulation of 61 

gene expression, and supporting  brain and nervous system functioning
16

. Some PUFAs such 62 

as ARA can come from both exogenous sources (such as meat and egg products) and 63 

endogenous sources. This is where the PUFAs can be synthesized from their metabolomic 64 

precursors: α-linolic acid (ALA; an n-3 PUFA) and linolic acid (LA: an n-6 PUFA), through 65 

desaturation and elongation reactions
17

. In comparison, humans cannot synthesise LA or 66 

ALA and therefore they must be acquired through dietary consumption
18

 such as vegetable 67 

oils (for LA) and seed oils (ALA).  68 

 69 
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There is some evidence that N-3 PUFAs have anti-inflammatory effects and protect against 70 

the severity/occurrence of inflammation-related conditions
19, 20

. For example, there are 71 

suggestions that fatty fish consumption can reduce the probability of death from a heart 72 

attack 
21, 22

. This is attributed to n-3 PUFAs ability to alter the production of prostaglandins, 73 

which subsequently reduce inflammation (measured by the reduced concentration of 74 

circulating inflammatory biomarkers in the blood)
23-26

.  However, clinical trials investigating 75 

the effects of n-3 supplementation have yielded contradictory results 
27

 
28

 regarding its 76 

effect on systemic inflammation. Dietary supplementation studies have reported that the 77 

consumption of n-6 PUFAs, which are typically thought to be pro-inflammatory, did not 78 

affect the concentration of inflammatory markers such as IL-6 or CRP 
23, 29-31

.  79 

A meta-analysis of 14 clinical trials that included total 1,35,291 participants found that 80 

omega-3 supplementation reduced the risk of major adverse cardiovascular event, 81 

cardiovascular death and myocardial infarction 
32

. In contrast, an RCT study investigating 82 

dietary intake and mortality in 3114 men with angina, found that risk of cardiac death was 83 

higher among individuals advised to eat oily fish or to take fish oil compared to those not 84 

advised to do so. Additionally,  RCTs investigating supplementation in patients to treat other 85 

inflammation-related NCDs found similarly inconsistent results (e.g. 
33

 
34

). However, these 86 

studies did not directly test the effect of fatty acids on inflammation levels and the 87 

inconsistent findings of the RCTs cast doubt on the posited immune modulatory effect sof n-88 

3 and n-6. Further, the contradictory results also raise questions of whether PUFAs causally 89 

influence concentrations of biomarkers of inflammation or whether the observed 90 

associations are the result of residual confounding.   91 
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Both n-3 and n-6 PUFAs are metabolized by the same enzymes and compete for 92 

desaturation and elongation. This means it is plausible that n-6 PUFAs act as competitive 93 

inhibitors of n-3 PUFAs and thus reduce the amount of end-product n-3 PUFAs that can be 94 

synthesised
35

. As a result, a lower concentration of n-3 PUFAs could reduce their anti-95 

inflammatory effects
36-38

. In contrast, a lower plasma n-6:n-3 ratio may result in higher 96 

levels of end-product n-3 PUFAs which would subsequently lower concentrations of 97 

inflammatory markers leading to beneficial effects on health outcomes
39

. As such, further 98 

research to understand the importance of the n-6:n-3 ratio on levels of inflammation and its 99 

impact on the occurrence of NCDs is of public health concern.  100 

We examined whether circulating levels of PUFAs are associated with systemic biomarkers 101 

of inflammation using (1) data from a population-based prospective birth cohort and (2) 102 

two-sample Mendelian randomization (MR), a causal inference method that uses genetic 103 

variants as proxies to examine whether the association between a risk factor and a disease 104 

outcome is likely to be causal or result of residual confounding or reverse causaltion
40

.    105 

We investigated the effects on inflammatory markers of specific n-3 and n-6 PUFAs which 106 

play a role in key metabolic processes. These are  the long-chain n-3 PUFA DHA and the 107 

short-chain n-6 PUFA LA which appear at opposite ends of the biosynthesis pathways (see 108 

figure 1; adapted from Videla et al.1). In addition, for a greater interrogation of the PUFA-109 

inflammation relationship, we used measures of total n-3 PUFAs, total n-6 PUFAs and the 110 

ratio of total n-6 PUFAs:total n-3 PUFAs (referred hereafter as the total n-6:n-3 ratio) as 111 

exposures.  As outcomes we used three biomarkers for systemic inflammation, namely CRP, 112 

IL-6, and Glycoprotein Acetyls or GlycA (a novel composite biomarker of inflammatory acute 113 

phase proteins
41, 42

). 114 



 6

2. Results 115 

2.1 Findings from Population-based Cohort Analyses 116 

Table 1 presents the median/range for PUFA levels (DHA, LA, total n-3 PUFAs and total n-6 117 

PUFAs) and inflammatory biomarker levels (IL-6, CRP and GlycA) from participants of the 118 

Avon Longitudinal Study of Parents and Children (ALSPAC) birth cohort at age 24y. There 119 

was no difference between the complete-case and imputed results (eTable 15) and 120 

distributions of observed and imputed characteristics are presented in supplementary 121 

eTable 16. The results of the below associations are presented in eTable17 and eTable 18. 122 

2.1.1 Associations of DHA and LA with inflammatory markers 123 

Both DHA and LA were associated with higher CRP and GlycA levels, but lower IL-6 levels at 124 

24y after adjusting for potential confounders relating to sex, substance use, social economic 125 

position, and maternal pregnancy health (Figure 2). 126 

2.1.2 Associations of total n-3 and n-6 PUFAs with inflammatory markers 127 

Total n-3 and n-6 PUFAs were associated with higher GlycA levels, but lower IL-6 levels at 128 

24y after adjusting for potential confounders. Total n-6 was associated with higher CRP 129 

levels but there was no strong evidence of association between total n-3 PUFAs and CRP 130 

(Figure 2). 131 

2.1.3 Associations between total n-6:n-3 ratio and inflammatory markers  132 

The total n-6:n-3 ratio was associated with higher levels of all three inflammatory markers 133 

(CRP, GlycA and IL-6) at age 24y after adjusting for potential confounders (Figure 2).  134 

2.1.4 Sex Specific Associations between PUFAs and Inflammatory Markers 135 
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In sex-stratified analyses, the n-6:n-3 ratio was associated with higher levels of all three 136 

inflammatory markers in both sexes (Figure 3). PUFAs were also associated with higher 137 

GlycA in males and females. The effects of all PUFAs on CRP and IL-6 levels attenuated to 138 

the null in males. In females, PUFAs were associated with higher CRP but lower IL-6 levels, 139 

which mirrored findings from the whole cohort analysis. 140 

2.2 Results for Mendelian Randomization Analyses 141 

We used two-sample MR to assess evidence for causality using publicly available summary-142 

level data from European population GWAS of the PUFAs
43

, GlycA
44

, CRP
45

 and IL-6
46

.  See 143 

eMethods for further information.  144 

Tests investigating instrument validity, described in the methods section, indicated that 145 

instruments were unlikely to be subject to weak instrument bias (see eResults).  146 

2.2.1. Potential causal effect of DHA on inflammatory markers  147 

We observed no strong evidence of effect of  DHA levels on CRP (IVW estimate: 0.03; 95% 148 

CI: -0.01, 0.09), GlycA (IVW estimate: 0.01; 95% CI: -0.06, 0.07) or IL-6 (IVW estimate: 0.07; 149 

95% CI: -0.20, 0.07). These results were largely consistent across sensitivity analyses using 150 

MR methods that make different assumptions about instrument validity (MR-egger, 151 

weighted median and weighted mode) (Figure 4).  152 

2.2.2. Potential causal effect of LA on inflammatory markers  153 

We observed no strong evidence of effect of LA levels on CRP (IVW estimate: -0.10; -0.10, 154 

0.09) or IL-6 (IVW estimate: 0.02; -0.05, 0.08). We observed estimates suggesting that higher 155 

LA levels cause higher GlycA levels (IVW estimate: 0.25; 0.15, 0.35). Other than in the 156 

analysis investigating the effect of LA levels on CRP, results were consistent across MR 157 

sensitivity methods (Figure 4).  158 
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2.2.3. Potential causal effect of total n-3 PUFA levels on inflammatory markers 159 

Higher total n-3 PUFA levels were associated with higher CRP (IVW estimate: 0.09; 0.03, 160 

0.16) and GlycA (IVW estimate: 0.12; 0.04, 0.21) levels. We observed no effect of total n-3 161 

PUFA levels on IL-6 (IVW estimate: -0.04; -0.09, 0.02). Results attenuated to the null in all 162 

MR sensitivity analyses of total n-3 PUFA levels and GlycA (Figure 4).  163 

2.2.4. Potential causal effect of total n-6 PUFA levels on inflammatory markers 164 

We observed no strong evidence of effect of total n-6 PUFA levels on CRP (IVW estimate: 165 

0.04, -0.05, 0.13) or IL-6 (IVW estimate: -0.08; -0.03, 0.04). We did observe estimates that 166 

suggest that higher n-6 PUFA levels cause higher GlycA levels (IVW estimate: 0.25; 0.16, 167 

0.34) with estimates consistent in sensitivity analyses with the exception of the weighted 168 

mode analysis (Figure 4).   169 

 170 

2.3 Evidence of pleiotropy and heterogeneity 171 

MR Egger intercepts and tests for heterogeneity between the SNP effect estimates are 172 

presented in eTable 19. There was no strong evidence of pleiotropic effect as detected by 173 

the MR-Egger intercept for the association between PUFA levels and any biomarker with the 174 

exception of the association between total n-3 levels and GlycA. Findings were fairly 175 

consistent with results using the MR-PRESSO test for pleiotropy (eTable20). There was 176 

strong evidence of heterogeneity in all analyses apart from in analyses of total n-3 and LA 177 

levels and IL-6.  178 

 179 

2.4 Findings on the potential impact of methodological biases in MR results 180 

MR-Lap 
47

was used to assess potential biases in observed effect estimates due to sample 181 

overlap between the fatty acid, CRP and GlycA GWAS. Results suggested that the majority of 182 
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analyses were largely unaffected by winner’s curse and weak instrument biases introduced 183 

through sample overlap. The corrected effect differed from the observed effect only for 184 

analysis investigating the effect of total n-6 PUFAs on GlycA and CRP levels. In both 185 

instances, the observed effect estimate was in the same direction as the corrected estimate 186 

and the confidence intervals did not cross the null but were wider. See eResults for further 187 

information. 188 

 189 

2.5 Results from MR Analysis Focusing on Specific Genes 190 

The FADS gene cluster and ELOVL2 gene encode key desaturase and elongase enzymes 191 

respectively and are involved in the n-3 and n-6 fatty acid biosynthesis pathways. Therefore, 192 

we conducted a complementary and mechanistically informative MR analysis by using only 193 

genetic instruments from within or close to the FADS gene cluster (FADS1, FADS2 and 194 

FADS3) and ELOVL2 gene with the aim of reducing the impact of other pleiotropic pathways. 195 

MR analyses using SNPs from the FADS gene region showed that DHA increases CRP levels 196 

(IVW estimate: =0.04; 95% CI=0.01, 0.07), but LA decreases CRP levels (IVW estimate: =-197 

0.14; -0.20, -0.07). FADS instrumented DHA and LA had no effect on GlycA and (where 198 

testable) IL-6. There was no evidence of a causal effect of any SNPs from the ELOVL2 gene 199 

on GlycA, CRP, or IL-6. See eResults for further information. 200 

 201 

2.6 Results from analyses exploring heterogeneity of MR instruments 202 

Given that evidence of associations between the PUFAs and GlycA were largely consistent 203 

across cohort and MR analyses, we used MR-Clust 
48

to investigate whether there were 204 

distinct clusters of SNPs effects driving the heterogeneity observed in the MR analysis with 205 
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GlycA levels as the outcome.  In the analysis using genetic instruments for LA, total n-3 206 

PUFAs and total n-6 PUFAs, all clusters were positively associated with GlycA which is 207 

consistent with the main results. However, for DHA, there were two SNP clusters showing a 208 

positive association with GlycA and one cluster showing a negative association with GlycA 209 

levels. This could explain the observed null results between DHA and GlycA found in the 210 

main analysis. See eResults, eTable 26, and eFigures 3-6 for further information.   211 

We obtained functional annotations of the genomic loci associated for all identified clusters 212 

from FUMAGWAS (https://fuma.ctglab.nl) and investigated in which tissues the genes were 213 

up- or down-regulated (eFigures 7-10). Overall, most differentially expressed genes were 214 

expressed in the liver. For the association between DHA and GlycA, tissues with most 215 

differentially expressed genes were: liver (cluster 1), breast (cluster 2) and kidneys (cluster 216 

5). For the association between LA and GlycA, tissues with most differentially expressed 217 

genes were: liver (clusters 1 and 2) and kidneys (cluster 4). For the association between total 218 

omega-3 and GlycA, most differentially expressed genes in both clusters 2 and 6  were in 219 

liver. Finally, for the association between total omega-6 and GlycA, most differentially 220 

expressed genes were in kidneys (cluster 1) and liver (cluster 4).  221 

 222 

2.7 Multivariable MR investigating the direct effects of total omega-3 and total omega-6 on 223 

inflammatory markers 224 

We conducted a Multivariable Mendelian Randomization (MVMR) analysis to estimate the 225 

individual direct causal effects of total n-3 and n-6 PUFAs on the biomarkers of inflammation 226 

independently of each other. We observed a positive direct effect of total n-6 PUFA levels 227 

on both GlycA (IVW estimate: 0.33; 0.19, 0.47) and CRP levels (IVW estimate: 0.20; 0.01, 228 
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0.39), but not IL-6 levels (IVW estimate: 0.17; -0.17, 0.50), after controlling for the effect of 229 

n-3 PUFAs. There was no direct effect of total n-3 PUFA levels on GlycA (IVW estimate: 0.06; 230 

-0.05, 0.16), CRP (IVW estimate:0.03; -0.06, 0.12) or IL-6 (IVW estimate: -0.18; -0.49, 0.14) 231 

levels after controlling for the effect of n-6 PUFAs. This suggests that the effect of total n-3 232 

PUFAs on CRP levels found in the univariable MR analysis are not independent of the effect 233 

of n-6, and may be a result of pleiotropy (Figure 5). See eResults for further information on 234 

MVMR analysis.  235 

 236 

3. Discussion 237 

By combining complementary cohort and genetic analyses, we provide greater insight into 238 

the relationships between dietary PUFAs and systemic inflammatory markers. Our analyses 239 

of population cohort data show a consistent effect of the n-6:n-3 ratio on higher levels of all 240 

three inflammatory markers in the total sample and in males and females separately. 241 

However, the picture appears to be more complex when we consider total or individual FA 242 

levels. For instance, total n-3 FAs levels which are thought to be anti-inflammatory are not 243 

associated with CRP levels. Similarly, n-6 (thought to be pro-inflammatory) as well as n-3 244 

PUFAs are associated with an increase in GlycA levels, but a decrease in IL-6.  245 

Subsequent genetic analyses shed light into the complex nature of these associations 246 

including the important issue of causality. First, MR results showing a potentially causal 247 

effect of total n-3 PUFAs on higher circulating CRP and GlycA levels contrast the presumed 248 

anti-inflammatory effect of n-3 PUFAs, and argues against the widespread use of n-3 249 

supplementation aimed at improving health by reducing inflammation-related disease risk. 250 

Second, our MR results confirm that total n-6 and LA increase GlycA (a pro-inflammatory 251 
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marker), suggesting a pro-inflammatory effects of these FAs. The importance of n-6 FAs with 252 

regards to modulating inflammation, rather than n-3 FAs, was also highlighted by our 253 

MVMR analysis which provided evidence for a direct causal effect of total n-6 FAs increasing 254 

CRP and GlycA levels after accounting for the effect of total n-3 PUFA levels. In contrast, no 255 

independent effect on inflammatory marker levels was observed for total n-3 FAs.  256 

Results from our further MR analyses using genetic variants within/nearby a key gene 257 

involved in fatty acid metabolism (FADS gene cluster), indicate that several PUFA-258 

inflammatory marker associations may result from pleiotropic effects of FA-related genetic 259 

variants, rather than the effect of FA biosynthesis. These include the effect of LA on GlycA, 260 

effect of total n-3 PUFAs on CRP and GlycA, and effect of total n-6 PUFAs on GlycA. Our 261 

approach of investigating the effect of specific genes within the PUFA biosynthesis pathway 262 

is similar to recent work by Haycock et al
49

 who investigated the effect of FAD1 and FAD2 263 

genes on cancer. They reported that genetically elevated PUFA desaturase activity, 264 

instrumented by one SNP (rs174546), was associated with higher risk of colorectal and lung 265 

cancer. Future research should investigate whether desaturase activity promotes certain 266 

cancer risk through increased inflammation.   267 

N-3 and n-6 PUFAs act as competitive inhibitors disrupting each other’s desaturation and 268 

elongation
36

. Therefore, a greater concentration of n-6 PUFAs would result in a fewer 269 

number of endpoint n-3 PUFAs being synthesized. This could be one explanation for the lack 270 

of an anti-inflammatory effect of n-3 PUFAs in our work. This may also explain our finding of 271 

positive associations between total n-6:n-3 PUFA levels and all three inflammatory marker 272 

levels in our cohort analysis.  273 
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A higher n-6:n-3 ratio is thought to promote the pathogenesis of inflammation-related NCDs 274 

such as cardiovascular disease, arthritis and asthma
50

, and a meta-analysis of RCTs found 275 

that supplementation of a low n-6:n-3 PUFA ratio inducing diet decreased concentrations of 276 

inflammatory markers such as tumor necrosis factor-α and IL-6
51

. Therefore, it is possible 277 

that n-6:n-3 PUFAs ratio is more important than concentrations of individual PUFAs with 278 

regards to the risk of inflammation-related NCDs. We were unable to conduct MR for n6:n3 279 

ratio because of the lack of GWAS for this measure. This should be prioritized when such 280 

data becomes available in future. 281 

We investigated the association between PUFAs and levels of CRP, IL-6 and GlycA, using two 282 

different methods and used sensitivity analyses to address potential biases that arise in 283 

epidemiological research. Despite this, we recognize several limitations. We used cross-284 

sectional analyses which means it is difficult to infer causality and we cannot determine the 285 

temporal relationship between the exposure and the outcome or the directionality of this 286 

relationship. Additionally, the cohort analysis was limited to only participants reported as 287 

White and the GWAS used were only conducted in individuals of European descent. This 288 

limits the generalizability of the results to other populations. However, the cohort analysis 289 

provides useful context and provides evidence for associations between PUFA levels and 290 

biomarkers of inflammation, including GlycA, which is novel.  291 

DHA and LA appear at the different ends of FA biosynthesis pathways (n-3 DHA is an 292 

endogenous product of a chain of desaturation and elongation reactions, while LA is a pre-293 

cursor to these reactions on the n-6 PUFA pathway). This means that a comparison between 294 

the effects of these specific n-3 and n-6 PUFAs is difficult. Future large-scale, well-powered 295 
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GWAS of specific PUFAs across the biosynthesis pathway at comparable stages are needed 296 

to help better understand this relationship.  297 

There was sample overlap between the exposure and outcome GWAS data used for MR 298 

analyses, which may lead to overfitting. However, recent research suggests that the bias 299 

incurred through sample overlap is less substantial compared to biases produced by weak 300 

instruments or winner’s curse
47

. These biases are unlikely to be issues for our MR analyses 301 

as confirmed by various sensitivity analyses exploring these concerns specifically.  302 

Heterogeneity in the two-sample MR analyses may have biased causal estimates towards 303 

the null. Although we did investigate the outcome of the heterogeneity within the GlycA 304 

analyses using MR-Clust, no clusters were specifically related to inflammation-related 305 

processes.  306 

Lastly, although the FADS gene cluster encodes enzymes fundamental to PUFA biosynthesis 307 

suggesting that IVs within this region are more likely to satisfy MR assumptions, FADS 308 

variants have been shown to be highly pleiotropic
52

 and do not differentiate n-3 or n-6 309 

effects. As such, our gene based analyses may capture pathways to inflammation through 310 

factors other than PUFAs, thus violating the exclusion-restriction assumption
40

.  311 

Given the popular use of n-3 PUFAs as supplements to reduce the occurrence of 312 

inflammation-related NCDs
27, 53, 54

, our results are of public health importance. Importantly, 313 

our MR results suggest that n-6 PUFAs increase levels of CRP and GlycA when controlling for 314 

n-3 PUFAs and that a higher total n-6:n-3 ratio increases levels of all three biomarkers. As 315 

such, instead of focusing solely on n-3 PUFA consumption, public health messaging should 316 

move towards encouraging a lower total n-6 PUFA consumption and to achieve a healthy 317 

balance between n-3 and n-6 to help reduce the occurrence of inflammation-related NCDs. 318 
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However, as there is evidence that suggests that n-3 PUFA consumption is also beneficial to 319 

health because of its hypotriglyceridaemic effects
55

, a better understanding of the interplay 320 

between n-6 and n-3 effects, as well as potential beneficial non-inflammation related 321 

effects, is needed before considering implementing n-6 focussed changes to policy.  322 

4. Conclusion 323 

Our MR results suggest that higher LA and total n-6 PUFA levels increase GlycA, but not CRP 324 

or IL-6 levels. Our MR results also suggest that higher total n-3 PUFA levels increase CRP and 325 

GlycA levels, but do not increase IL-6 levels. We provide consistent evidence for positive 326 

associations between total n-6:n-3 ratio and levels of CRP, GlycA and IL-6, indicating that the 327 

ratio of total n-6:n-3 PUFAs may be more important with regards to systemic inflammation 328 

than individuals PUFAs. However, these results came from cross-sectional analyses of cohort 329 

data and we were unable to examine evidence of causality for the effects of total n-6:n-3 330 

ratio using MR due to lack of GWAS data for total n-6:n-3 ratio. Nevertheless, our findings 331 

do not support a strong anti-inflammatory effect of n-3 PUFAs from both cohort and MR 332 

analyses. This finding requires further investigation given that n-3 PUFA supplementation 333 

widely used to reduce inflammation and risk of inflammation-related NCDs.  334 

5. Methods 335 

5.1 Cohort Analysis 336 

5.1.1 Dataset and sample 337 

The Avon Longitudinal Study of Parents and Children (ALSPAC) birth cohort recruited 338 

pregnant women resident in Avon, UK with expected dates of delivery between 1
st

 April 339 

1991 and 31
st

 December 1992 
56-58

. There were 14, 203 unique mothers initially enrolled in 340 

the study and the initial number of pregnancies enrolled was 14,541 and 13,988 children 341 
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were alive at 1 year of age. When the oldest children were approximately 7 years of age, the 342 

initial sample was bolstered with eligible cases who did not originally join the study. The 343 

total sample size for analyses using any data collected after the age of seven is therefore, 344 

14,833 unique mothers and 15,447 pregnancies which resulted in 15,658 foetuses. Of these, 345 

14,901 were alive at 1 year of age. The offspring, their mothers and the mother’s partners 346 

are regularly followed up. Additional information on ALSPAC is presented in the supplement 347 

eMethods. For eligibility criteria see the study flowchart (eFigure 1) in the supplement.  348 

For this study, ALSPAC participants were included if they had outcome (CRP, IL-6 and GlycA 349 

levels) and exposure (DHA, LA, total n-3 and total n-6) data at 24y. We excluded non-white 350 

participants (2% of study population) and this exclusion is unlikely to make any difference to 351 

the results due to low numbers of non-white individuals in the dataset. This gave a total of 352 

2748 individuals (36.10% males) eligible for our analysis.  353 

5.1.2 PUFAs and inflammatory marker assays 354 

Participants fasted overnight, or >6 hours if being seen in the afternoon, before attending 355 

the clinic for blood sampling at 24 years old. Blood samples were centrifuged immediately 356 

to isolate plasma and stored at -80 °C. There were no freeze-thaw cycles during storage.  357 

Total n-3, n-6, DHA and LA PUFA levels and plasma GlycA levels were measured using a high-358 

throughput proton (1H) Nuclear Magnetic Resonance (NMR) metabolomics platform 359 

(Nightingale, UK)
42, 59

. We also created a n-6:n-3 ratio (total n-6 PUFAs divided by total n-3 360 

PUFAs). HsCRP was measured by automated particle-enhanced immunoturbidimetric assay 361 

(Roche UK, UK). IL-6 was measured by enzyme-linked immunosorbent assay (OLINK, UK).  362 

The samples were collected when the participansts were 24 years old. Full dtails regarding 363 

sample processing, NMR analysis, and data processing have been provided elsewhere
60-62

. 364 
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GlycA levels ranged from 0.84 to 2.25 mmol/L, and IL-6 levels ranged from 1.82 to 10.60 365 

Normalized Protein eXpression (NPX) Log2 scale. CRP had detection limits of 0.15-80mg/L 366 

and measures outside this were removed. CRP levels ranged from 0.15 to 70.05 mg/L.  367 

5.1.3 Assessment of Covariates 368 

We used maternal self-reported highest educational qualification and highest occupation of 369 

either parent (measures of social economic position (SEP)), maternal and paternal smoking 370 

pattern during pregnancy (measures of pregnancy health), participants’ sex, and 371 

participants’ smoking status and drinking status at age 24 as covariates. A detailed 372 

description of how these variables were collected/coded is provided in the supplement 373 

eMethods.  374 

5.1.4 Statistical analysis 375 

Multivariable linear regression analyses were used to examine the cross-sectional 376 

associations of PUFA levels with GlycA ,CRP and IL-6 levels at age 24y. Regression models 377 

were adjusted for potential confounders. CRP and IL-6 levels were not normally distributed 378 

and were log-transformed. To help with the interpretation of results, we z-transformed both 379 

exposure and outcome data, and so the effect estimates represent the increase in outcome 380 

in standard deviation (SD) per SD increase in exposure. Primary analyses used the whole 381 

sample, and in secondary analyses we stratified by sex.  382 

We used multiple imputation (MI) to impute missing exposure, outcome and covariate data 383 

in the eligible sample (N=2748), described in detail in the supplement eMethods.  384 

 385 

5.2 Two-sample Mendelian Randomisation Analysis 386 

5.2.1 Study design and data sources 387 
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Genome-wide significant single nucleotide polymorphisms (SNPs) (P< 5∙0 x10-8) were 388 

selected as IVs for MR analyses. The SNPs were harmonized, aligning the genetic association 389 

for exposure and outcome on the effect allele using the effect allele frequency (see 390 

eMethods for details).  Following harmonisation of the PUFA SNP instrument with the 391 

corresponding outcome data (inflammatory biomarker), palindromic SNPs were removed 392 

and the remaining SNPs underwent LD clumping. Steiger filtering was then applied, meaning 393 

SNPs were removed if they explained more variance in the outcome than in the exposure. 394 

The number of SNPs removed due to being palindromic, in linkage disequilibrium (LD) or as 395 

a result of Steiger filtering for each analysis is reported in eTable 1. There were 46-58 SNPs 396 

available to investigate the effect of PUFAs on GlycA levels, 17-39 SNPs available to 397 

investigate the effect of PUFAs on CRP levels and 11-44 SNPs available to investigate the 398 

effect of PUFAs on IL-6 levels. Harmonized SNP information for each relationship are 399 

presented in eTables 2-13. See eMethods for further details on instrument selection. 400 

5.2.2 Statistical analysis 401 

For MR, the inverse variance weighted (IVW)
63

 method was used as a primary analysis to 402 

calculate effect estimates. MR-Egger, weighted median, and weighted mode methods were 403 

used as sensitivity analyses as these methods make different assumptions about instrument 404 

validity. Findings were considered robust if results were consistent across primary and 405 

sensitivity analyses.  406 

We report F-statistics for IVs, as a measure of instrument strength. Presence of 407 

heterogeneity between the SNP effect estimates was assessed using Cochran’s Q test in the 408 

IVW analysis and the Rucker’s Q test in the MR-Egger analyses. We used the MR-Egger 409 

intercept and MR Pleiotropy Residual Sum and Outlier global test (MR-PRESSO) to 410 
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investigate the presence of pleiotropy. See eTable 14 for a description of MR methods and 411 

sensitivity analyses used
64

.  412 

5.2.3 MR-Lap analysis to investigate bias from sample overlap, weak instrument and 413 

Winner’s Curse 414 

The fatty acid GWAS, the CRP GWAS and GlycA GWAS were conducted using UKB data. This 415 

sample overlap may modify biases caused by the use of weak instruments and winner’s 416 

curse. To overcome this, the MR-Lap method was used to assess potential bias in observed 417 

effect estimates due to sample overlap, winner’s curse, or weak instruments
47

. Greater 418 

detail of MR-Lap method is provided in eMethods.  419 

5.2.4 Additional MR analysis focusing on specific PUFA genes 420 

MR was conducted using genetic instruments (SNPs) from within or close to (+/-500 kb) the 421 

FADS gene cluster (FADS1, FADS2 and FADS3; chromosome 11: 61Q560Q452–61Q659Q523) 422 

and ELOVL2 gene (chromosome 6: 10Q980Q992–11Q044Q624) from the DHA GWAS and the 423 

LA GWAS. SNPs were selected and harmonised using the same method as in the primary 424 

analysis and details are presented in the eMethods. The number of SNPs available for each 425 

analysis is presented in eMethods.  426 

5.2.5 MR-Clust analysis to explore heterogeneity in MR instruments  427 

SNPs can influence the outcome in distinct ways (e.g., via distinct biological mechanisms)
48

. 428 

This can lead to high levels of heterogeneity between individual SNP-outcome/SNP-429 

exposure causal estimates within an instrument. Therefore, we decided to use MR-Clust
48

 to 430 

investigate whether individual causal estimates fell into distinct clusters based on effect 431 

magnitude. We used this method when evidence of association was consistent between 432 
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cohort and MR analyses but there was strong evidence of heterogeneity in the latter. 433 

Functional annotations of the genomic loci associated with identified clusters was obtained 434 

from FUMAGWAS (https://fuma.ctglab.nl). See further details in eMethods. 435 

5.2.6 Multivariable Mendelian Randomisation analysis 436 

MVMR
65

 is an extension of MR that estimates the direct effect of each exposure on the 437 

outcome, rather than the overall total effect of the exposures (eFigure 2 of the supplement). 438 

We conducted a MVMR analysis to estimate the individual direct causal effects of total n-3 439 

and n-6 PUFAs on the biomarkers of inflammation independently of each other.  See further 440 

details in eMethods. 441 

5.3 Software 442 

Cohort analyses were performed using STATA version 17.0. All other analyses were 443 

performed in R Software version 4.1.0.  444 

 445 

 446 

 447 

 448 

 449 

 450 

 451 

 452 

 453 

 454 

 455 

 456 

 457 
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Tables 686 

 687 

Table 1: Median and interquartile range of exposure and outcome data (n = 2748) 

 Median (IQR) Range 

GlycA (mmol/L) 1.22 (1.12-1.34) 0.84-2.25 

CRP (mmol/l) 0.87 (0.39-2.29) 0.1-70.05 

IL-6 (NPX log2) 3.32 (2.96-3.85) 1.82-9.86 

DHA 0.11 (0.09-0.13) 0.04-0.32 

LA 2.31 (1.98-2.68) 0.89-4.91 

Total n-3 PUFAs 0.29 (0.24-0.34) 0.07-0.80 

Total n-6 PUFAs 2.85 (2.48-3.28) 1.23-5.82 
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Figure 1: Schematic representation of polyunsaturated fatty acid biosynthesis in mammals 

adapted from Videla 2022  
1
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Figure 2: Association between fatty acids  and inflammatory biomarkers using cohort data after adjusting estimates for household social class, 

maternal highest education qualification, maternal and paternal smoking status during pregnancy, offspring sex and age and status at 24 year 

clinic 
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Figure 3: Association between fatty acids  and inflammatory biomarkers stratified by sex using cohort data after adjusting estimates for 

household social class, maternal highest education qualification, maternal and paternal smoking status during pregnancy, offspring sex and age 

and status at 24 year clinic 



 30

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Univariable causal effect of fatty acids on Inflammation  
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Figure 5: Multivariable Mendelian randomization analysis of direct effect of Omega-3 and Omega-6 on Inflammation 


