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Abstract

This paper tries to quantify the impact of government policy intervention on the death due

to COVID-19 in India. I use the Oxford COVID-19 Government Response Tracker (OxCGRT), a

longitudinal database of daily government response from Jan 28th, 2020, when the first COVID

case was diagnosed in India till December 31st, 2022. Here government responses are captured in

form of, stringency measures, containment measures, economic support measures, and the overall
government support, providing a holistic assessment of the government’s efforts in mitigating

the virus’s incidence. I quantify both the average relation and causality at the to understand

the impacts of NPIs with COVID-19 incidence in terms of deaths and infections due to COVID-

19. Short-term analysis reveals a significant relationship between various non-pharmaceutical

interventions (NPIs) and the logarithmic change in COVID-19 deaths. Higher infection rates

are strongly associated with increased deaths, with positive coefficients. Stringent measures,

containment actions, and economic support show negative coefficients, indicating that these

interventions effectively reduce deaths in the short term. The overall government support, which

aggregates all three NPIs, also demonstrates a significant negative effect on deaths, highlighting

the importance of stringent and immediate measures in controlling the death toll early in the

pandemic. In the long term, the analysis continues to emphasize the importance of infection rates

and NPIs. Long-term coefficients for infection rates and various NPIs are consistently significant

and negative, indicating that sustained interventions significantly reduce mortality over time.

Specific measures like stringency, containment, and economic support show substantial negative

impacts underscoring the long-term benefits of maintaining rigorous public health measures.

Further, causality analysis confirms that relationship among government interventions and

COVID-19 incidences were mostly bidirectional, meaning more deaths (or infections) leads to

stricter interventions that in turn further reduce deaths.
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1 Introduction

The COVID-19 pandemic posed a significant challenge to public health authorities worldwide,

prompting governments to implement various non-pharmaceutical interventions (NPIs) to mitigate

the spread of the virus. Government responses to COVID-19 represent some of the most globally

impactful events of the 21st century. The extent to which these responses, including measures like

school closures, were associated with changes in COVID-19 outcomes remains a topic of ongoing

debate. The emergence of the COVID-19 pandemic raised a multitude of questions that demanded

contributions from various fields of science and policy-making. Scientific and health experts played

a crucial role in developing vaccines and implementing infection control measures. However, the

responsibility for vaccine distribution, the implementation of restrictions, and the preservation of

livelihoods ultimately fell on one entity: the government.
In a nation like India, poised as one of the world’s fastest-growing economies

1
and on the cusp of

surpassing China in terms of population, addressing the havoc wrought by the pandemic demanded

systematic and well-coordinated actions from both state and central governments. The population

prediction or India and specific composition of its demographic groups impacts its route for mitigating

the COVID-19 challenge distinctively. As of January 27, 2023, India reported over 45 million COVID

cases, with 0.1% of these cases resulting in fatalities (over 0.5 million deaths), making India second

only to the USA in total deaths. However, India’s initial testing efforts paint a different picture.

Despite ranking second in total tests conducted globally, India was only 12th in tests conducted per

million people during the same time. Furthermore, India’s vast geographical and socio-economic

diversity compelled the imposition of both nationwide and region-specific policies. In this context,

this paper seeks to analyze the government’s response to COVID-19 in India and its various states,

with a focus on their targeted policy responses and an economic evaluation.

The spread of COVID-19 was characterized by its high infectivity, especially in countries like

India with dense populations (Shereen, Khan, Kazmi, Bashir, & Siddique, 2020). The virus’s higher

infectiousness, coupled with increased mortality rates across its variants (Wang et al., 2020), had a

profound impact on the economic, social, and psychological aspects of life. The graph in Figure-1

vividly portrays the persistence of infection, the evolution of new case trends (waves), and their

eventual decline over time. This graph also highlights the positive effect of collective efforts such

as vaccination, social distancing, and lock-downs by the government on reducing peak infection

spikes and shortening the duration of waves. While almost similar trend is followed by deaths, it

plausible to claim that deaths have declined gradually post September 2021. Nevertheless, India’s

testing efforts have been relatively modest in comparison to its vast population (Thiagarajan, 2021).

1
With a projected real GDP growth rate of 6.3%, compared to China (5%), USA (2.1%), U.K. (0.5%). For more details,

see World Economic Outlook (October 2023).
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Figure 1: New cases and deaths per million population over time from 2020 to 2023

1.1 COVID-19: The Indian COVID-19 Chronicle

The first of the novel coronavirus (COVID-19) was recorded in Wuhan, China, in December 2019.

Swift transmission of the virus ensued, affecting a significant number of people within a month.

India’s first reported case was reported in late January 2020 in the state of Kerala, with the individual

having recently returned from China. Following this, there has been a notable upswing in COVID-19

cases across various Indian states. In recognition of the gravity of the situation, the government

initiated a 21-day nationwide lockdown from March 25, 2020, to April 14, 2020. This stringent

measure aimed to mitigate the spread of COVID-19, resulting in the closure of industries, academic

institutions, markets, and public gatherings. Subsequent to the initial lockdown, three successive

lockdown phases were implemented (April 15 to May 3, 2020; May 4 to May 17, 2020; May 18 to May

31, 2020). In an effort to revive the Indian economy, two unlock phases were subsequently introduced

(June 1 to June 30, 2020, and July 1 to July 31, 2020), as shown in figure-1.

A detailed depiction of the government response in India has been pictorially presented in

Figure-6a. On March 29, 2020, the Government of India established 11 empowered groups to address

various aspects of COVID-19 management in the country. These groups were tasked with making

informed decisions on a wide range of issues, including medical emergency planning, hospital

availability, isolation and quarantine facilities, disease surveillance and testing, essential medical

equipment availability, human resource and capacity building, supply chain and logistics management,

coordination with the private sector, economic and welfare measures, information, communications,

and public awareness, technology and data management, public grievances, and strategic issues

related to lockdown. On September 10, 2020, these groups underwent restructuring to adapt to the

changing needs and evolving scenario.

3
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The Ministry of Health & Family Welfare (MoFHW) unveiled containment strategies to address

both cluster and widespread outbreaks on March 2nd and April 4th, 2020, respectively. These plans

underwent periodic updates. The containment strategies focus on disrupting the transmission chain

through (i) delineating containment and buffer zones, (ii) implementing stringent perimeter control, (iii)
conducting thorough house-to-house searches for cases and contacts, (iv) isolating and testing suspected
cases and high-risk contacts, (v) quarantining high-risk contacts, (vi) intensifying risk communication to
enhance community awareness regarding simple preventive measures and the importance of prompt
treatment seeking, and (vii) reinforcing passive surveillance for Influenza Like Illness (ILI) and Severe
Acute Respiratory Illness (SARI) in containment and buffer zones.

A system of health facilities consisting of three tiers has been established to effectively handle

COVID-19 cases. This included: (i) COVID Care Centers equipped with isolation beds for mild or

pre-symptomatic cases; (ii) Dedicated COVID Health Centers (DCHCs) providing oxygen-supported

isolation beds for moderate cases; and (iii) Dedicated COVID Hospitals (DCHs) with ICU beds for

severe cases. Additionally, tertiary care hospitals affiliated with organizations such as ESIC, Defence,

Railways, paramilitary forces, and the Steel Ministry have been utilized for the management of

cases. Further, instructions for the clinical management of COVID-19 were released, consistently

revised, and widely disseminated. These guidelines encompassed various aspects, such as defining

cases, implementing infection control measures, conducting laboratory diagnoses, initiating early

supportive therapy, addressing severe cases, and managing complications. Furthermore, allowances

for investigation therapies, including Remdesivir, Convalescent plasma, and Tocilizumab, were

outlined for the treatment of severe cases under rigorous medical supervision. It is important to note

that the indices of government response, used as major policy intervention variables, represent a

combination of measures for quantification.

1.2 Related Literature

The literature studying the impact of the degree of government response is scarce both in general

and also in the case of India. In their study Mukherjee, Banerjee, Mitra, and Mukherjee (2022),

the desired needs of the hour during the pandemic. They supported the government’s stringent

measures in response to COVID-19, such as work-from-home and stringent lock-downs, while also

suggesting the need for timely interventions. As attributed earlier, India presents a compelling

landscape for the study of non-pharmaceutical interventions (NPIs) in the context of COVID-19

due to its diverse population and geographical variations. With a population exceeding 1.3 billion

people, the country’s demographic mosaic offers a unique opportunity to examine the differential

impact of interventions across various cultural and regional settings. High population density,

particularly in urban areas (Nijman, 2012), contributes to the rapid transmission of infectious diseases,

making it imperative to understand how NPIs operate in densely populated regions. Moreover,

India exhibits significant variability in healthcare infrastructure (Chaturvedi et al., 2023), economic

conditions, and socio-demographic factors, influencing the implementation and effectiveness of NPIs.

4
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The nation has implemented a range of interventions, including lock-downs and social distancing

measures, providing a rich data-set (OXCGRT in this case) for analyzing policy implementation and

compliance. Given the prevalence of infectious diseases and varying co-morbidities, examining the

interplay between pre-existing health conditions and the outcomes of COVID-19 interventions in

India contributes valuable insights to the global understanding of pandemic management. India’s

global significance further underscores its importance as a lucrative study area for researchers

exploring the impact of NPIs on COVID-19.

Herby, Jonung, and Hanke (2023) show several key studies to evaluate the impact of lockdowns

on COVID-19 mortality. Björk, Mattisson, and Ahlbom (2021) examines the impact of winter holidays

and government responses on mortality across Europe during the first wave of the pandemic,

highlighting the varying effects of different policy measures on mortality rates. Similarly, (Bjørnskov,

2021) provides a cross-country comparison of the effectiveness of lockdowns, offering an economic

perspective on the lockdown measures’ outcomes. Blanco, Emrullahu, and Soto (2020) contribute

to the discussion presenting worldwide evidence on the effectiveness of coronavirus containment

measures, which underscores the global variations in policy impacts. Bollyky et al. (2022) analyze

pandemic preparedness and its correlation with infection and fatality rates, providing a broad context

of how different countries’ preparedness levels influenced their outcomes during the pandemic.

(Bonardi, Gallea, Kalanoski, & Lalive, 2020) discuss the local and immediate impacts of lockdown

policies on the spread and severity of COVID-19, while Bongaerts, Mazzola, and Wagner (2021)

explore the mortality impact of business closures during the pandemic, emphasizing the economic

trade-offs of lockdown measures. Brauner et al. (2021) offer insights into the effectiveness of various

government interventions against COVID-19, employing robust methodologies to infer causality.

Chernozhukov, Kasahara, and Schrimpf (2021) focus on the causal impact of masks, policies, and

behavior during the early stages of the pandemic in the U.S., adding a nuanced understanding of

different mitigation strategies.

In the context of assessing the impact of NPIs in India I use the confirmed number of deaths

as a dependent variable for my analysis. Similarly, I use the degree of government response in

terms of stringency measures, containment measures, and overall government support to reduce the

infection rate in India as the independent variables. This constitutes a strongly balanced panel but

with gaps, that uses data from all the states (28) and union territories (5)
2

of India. I use daily data

on the mentioned dependent and independent variables over almost two years, spanning from 28th

January 2021
3

until 31st December 2022. I use the sub-national (OxCGRT) database on the degree

of government responses for all the indices (independent variable) and daily confirmed deaths and

infections (dependent variable) from the Ritchie, Roser, and Rosado (2020) database.

The findings from this study suggest robust evidence of effectiveness of NPIs in controlling and

curbing deaths in both short and long-term. This is found to be individually true for all the NPIs i.e.

2
Currently, as of 2022, India has 29 states and 8 Union Territories in India (Taylor & Shrimankar, 2024), however we

take only 33 states and union territories as the data pertains to these sub-national entities only.

3
The first COVID-19 case was confirmed in India; (See Andrews et al. (2020) for more).
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stringency, containment and economic support and overall government response that encapsulates

the earlier three. I find that, while NPIs are ineffective in controlling infection in the short-term, in

the long they are promptly successful. Further we find that quantile regression not only confirms

the robustness of the earlier presented findings, it also unveils the heterogeneity across quantiles.

It confirms that NPIs are initially ineffective in controlling infection however over the longer-term

they have successfully cubed it. From, causality analysis we confirm that, the relationship between

NPIs and incidences of COVID-19 are both bi-directional and significant.

The subsequent sections are organized as follows: In §2, I delve into the government response

metrics utilized for the analysis and methodology aspect of the paper. §3 presents the results and

discusses the findings of the study . §4 outlines the major policy suggestions, while §5 concludes.

2 Data and Methodology

For this paper, I use data from two sources. First, I use the India: Coronavirus Pandemic Country

Profile data (Ritchie, Roser, & Rosado, 2022) for the weekly data on COVID-19-related deaths and

infections, which are the dependent variables. Second, I also use the Oxford COVID-19 Government

Response Tracker (OxCGRT) database (Hale et al., 2021) for the independent variables that encompass

the non-pharmaceutical interventions (NPIs) by the Government of India (GoI) since the inception of

the COVID-19 pandemic in India. Table-5 summarizes the key descriptive statistics of these variables.

To address the skewness in the raw data, I have applied a logarithmic transformation to all the

variables.The table 6 represents the matrix of correlation among variables. From here, it can be

observed that the independent variables, i.e., LnSTRINGENCY, LnCONTAINMENT, LnECONOMIC,

and LnOVERALL, are highly correlated. This is because the steps taken by the government are

supply-side measures, and the analysis does not involve any demand-side measures or actions taken

by the residents on their own. Thus, the impact of each of these measures on the number of deaths

and infections cannot be claimed to be due to exclusive measures, as all three measures (which

are combined in LnOVERALL) were active during each of the waves. Assuming that there will be

overlapping impacts, we use them separately in different equations to quantify the average association

of respective NPI. I discuss further on the variables in section-2.1.

2.1 Variables and framework

The figure-2 outlines the detailed framework consisting of the dependent and independent variables

of the study, objectives, methods, and the scheme of estimation procedures used in this paper. The

COVID-19 pandemic necessitated a variety of interventions from the government. Along with

pharmaceutical interventions like vaccination, several non-pharmaceutical interventions (NPIs) were

implemented. Moreover, since the preparation, production, and disbursement of vaccines took a

considerable amount of time initially, NPIs were the significant government interventions that directly

and indirectly impacted deaths and infections due to COVID-19 in India. The NPIs included both

6
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targeted and general interventions, which at times varied across geographic and sectoral dimensions.

The OxCGRT database is a novel endeavor in this regard because it captures these interventions

and forms indices under the categories of stringency index (LnSTRINGENCY), containment index

(LnCONTAINMENT), economic support index (LnECONOMIC), and overall government support

index (LnOVERALL). LnOVERALL encompasses all the interventions. We use them in separate

equations to identify the respective average association of each of the indicators. Table-4 provides

detailed sub-indices of each of the NPIs used in this paper.

OBJECTIVES

Quantifying the individual
impact of NPIs on

infections and mortality.

Quantifying the
distributional impact of

NPIs on COVID-19
infections and mortality.

NPIs influence COVID-19
mortality across different
quantiles of infections and

mortality.

Determine the causal direction
between NPIs and COVID-19

infections and mortality.

DISTRIBUTION
REGRESSION

QUANTILE
REGRESSION

CAUSALITY
ANALYSIS

CS-ARDL

METHODS

(Chernozhukov, Fern´andez-Val, &
Melly, 2020)

Juodis, Karavias,
Sarafidis, 2021

Ditjen, Jan, 2021

INDEPENDENT VARIABLES - NPIs
Stringecny (LnSTRINGENCY)

Containment (LnCONTAINMENT)
Economic Support (LnECONOMIC)

Overall Givernment Response (LnOVERALL)

DEPENDENT VARIABLES

Deaths due to COVID-19 (LnDEATHS)
Infections of COVID-19 (LnINFECTIONS)

SCHEME OF ESTIMATION PROCEDURES
Cross-Sectional
Dependence test

CS-ARDL
CAUSALITY ANALYSISPanel Cointegration

Analysis
Test for Structural

Breaks

Panel Unit Root Test

Slope Heterogeneity
Analysis

QUNATILE &
DISTRIBUTION
REGRESSION

1

2

3

4

5

6

7

Figure 2: The detailed framework of the study outlining the dependent and independent variables,

objectives, methods, and the scheme of estimation procedures used.

Hale et al. (2020) outline that governments’ responses to COVID-19 show significant variation.

For example, C1
4

(school closing) varies widely: some places shut all schools, others close universities

and primary schools at different times, and some keep schools open for children of essential workers.

These differences, influenced by local political and social contexts, make systematic comparison

challenging. Composite measures, while simplifying data, may overlook nuances. They help reduce

complexity and prevent over-interpretation of individual indicators but can miss critical details and

make assumptions about relevance. Each index (independent variable here) consists of individual

policy response indicators. OxCGRT creates a score for each indicator by subtracting half a point if

the policy is general instead of targeted, then rescales it to a 0-100 range. These scores are averaged

to form the composite indices. The figure 3 demonstrates the variation of the daily index values in

India. As visible, index values of NPIs don’t vary on a daily basis; rather, they remain the same for

4
See Table-4

7

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 20, 2024. ; https://doi.org/10.1101/2023.11.27.23299097doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.27.23299097
http://creativecommons.org/licenses/by-nd/4.0/


some time. Due to this, in our independent variables (as shown in figure 2), we take weekly averages

of the NPIs.

Stringency and containment measures (STI), as given in table-4, along with Containment mea-
sures (CNI) and Overall government support measures (GRI), have common sub-indices of school,

public transport, and workplace closure, cancellation of public events, public gathering restrictions,

stay-at-home requirements, and internal and international travel restrictions. Along with these,

CNI (LnCONTAINMENT) includes international support, information campaigns, health systems,

emergency investment in healthcare and in COVID-19 vaccines, and face coverings. However, STI

(LnSTRINGENCY) includes only international support over the common indicators mentioned ear-

lier. Meanwhile, GRI (LnOVERALL) includes all the sub-indices that constitute CNI, STI, and ESI

(LnECONOMIC). Economic Support Measures (ESI) comprise only income support and debt relief.

Figure 3: Line graphs demonstrating the trends of all NPIs from 2020 to 2022.

2.2 Econometric Model

This paper examines the average relationship between COVID-19-related deaths and infections with

non-pharmaceutical interventions (NPIs) in India. To assess the impact of NPIs efficiently, separate

identification equations are provided and estimated accordingly. Additionally, we explore how this

relationship varies across quantiles and distributions, ensuring robustness across different analytical

perspectives. Thus, I quantify both the average relation and causality at the aggregated level of

variables, and also examine the relationship across disaggregated quantiles. These analyses not only

provide insights into the average and disaggregated associations of NPIs with COVID-19 incidence,

but also enhance the robustness and reliability of our findings. For the state i at time t, Incidence of

8
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COVID-19 pandemic LnDEATHS can be expressed as the function below:

LnDEATHSit = f(LnSTRINGENCYit, LnCONTAINMENTit, LnECONOMICit, LnOV ERALLit)

(1)

Where i = 1, 2,… N indicates the sampled states, t = 1, 2, .T weeks. Variable names and definitions

are available in table-5.Eq. (1) can be rewritten as follows using the logarithmic expression of the

variables:

LnDEATHSit = α0i + α1iNPIit + ϵit (2)

For α0i is the static impact, α1i is the coefficients to be estimated, while ϵit is the residual. Similar

expressions of eq-(1) and (2) are be used with LnINFECTIONSit being the dependent variables.

Following the patter in Namahoro, Wu, and Su (2023), in the coming sub-sections we discuss about

a series of pre-testing that has been conducted as given in the scheme of estimation procedures in

figure-2, along with their identification as a pretext to discussion in results.

2.2.1 Cross section dependency test

Pesaran (2003) developed Lagrange Multiplier (LM) and CD4 cross-sectional dependence tests tailored

for large panel datasets, with subsequent refinements by Pesaran (2015) and Pesaran (2021). In

contrast, Breusch and Pagan (1980) introduced the Breusch-Pagan LM test to assess cross-sectional

dependence in smaller panel datasets. The exponent of cross-sectional dependence, proposed by

Bailey, Kapetanios, and Pesaran (2016), quantifies the strength of relationships identified by the

Pesaran and Breusch tests. A simple consistency estimate of this exponent is given by:

α = 1 +
1

2
ln

(
δ2x

ln(N)

)
− δ2

2N ln(N)
(3)

where α denotes the alpha exponent of cross-sectional dependence, δ2x is the variance of the tested

variable, and N represents the variable size. The value of α ranges between 0 and 1, reflecting the

strength of relationships. Based on these thresholds, Chudik, Pesaran, and Tosetti (2011) categorizes

cross-sectional dependence into four levels: weak (α = 0), semi-weak (0 < α < 0.5), semi-strong

(0.5 ≤ α < 1), and strong (α = 1). The results of the tests are given in table-7.

2.2.2 Panel test for slope heterogeneity

Building on a standardized version of Swamy (1970)’s test, Pesaran and Yamagata (2008) introduced a

test for slope homogeneity suitable for panel data with large N and T. The standard delta test for slope

heterogeneity in large panels as suggested by Pesaran and Yamagata (2008) involves the following

statistics. The ∆ statistic and the adjusted ∆ statistic, which adjusts for small sample bias :

∆ =
√
N

(
1

N

N∑
i=1

(
t2i − k

))
and ∆adj =

√
N

(
1

N

N∑
i=1

(
t2i − k√

2k

))
(4)
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where: N is the number of cross-sectional units, k is the number of regressors,ti is the t-statistic of

the i-th cross-sectional unit. These statistics test the null hypothesis of slope homogeneity against

the alternative hypothesis of slope heterogeneity. A significant ∆ or ∆adj indicates the presence of

slope heterogeneity across the cross-sectional units. The results of slope heterogeneity estimated

using Bersvendsen and Ditzen (2021) is given in table-11.

2.2.3 Panel unit root test

For panels exhibiting clear cross-sectional dependence, Kapetanios, Pesaran, and Yamagata (2011)

introduced the CIPS test, a second-generation panel unit root test. Later, Westerlund, Hosseink-

ouchack, and Solberger (2016) derived its asymptotic properties, enhancing its robustness and making

it superior to other panel unit root tests. The CIPS test accommodates cross-sectional dependence

by incorporating weighted lag averages and differences for each panel unit, making it suitable for

this study. The test is based on the cross-sectional augmented Dickey-Fuller (CADF) test and is

formulated as follows:

∆xit = µi + βixi,t−1 + ρixt−1 +

p∑
j=0

dij∆xt−j +

p∑
j=1

τij∆xi,t−j + ϵit (5)

where xt−1 and ∆xt−j represent the cross-sectional lag averages and the first differences, with

coefficients ρi and dij , respectively. µi and βi denote the constants and drifts, while τij is the lead

factor. The CIPS statistic, calculated using CADF statistics, is given by:

CIPS statistic =
N − 1

N

N∑
i=1

CADFi (6)

However, after finding slope heterogeneity we use Herwartz, Maxand, Raters, and Walle (2018) panel

unit root test that is useful for heteroscedastic panels. The results of the panel unit root tests are

presented in Table 8.

2.2.4 Panel structural break test

I use Ditzen, Karavias, and Westerlund (2021)’s sequential test for multiple breaks at unknown

breakpoints to find possible structural breaks in our data. for which I the sequential F-statistic to test

for additional breaks:

Fk+1 =
(RSSk − RSSk+1)/(k + 1)

RSSk+1/(NT − 2k − 1)
(7)

where NT is the total number of observations. Compare Fk+1 to the critical value to determine if an

additional break is significant. The test results are presented tn in table-10.
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2.2.5 Panel test for cointegration

The error correction panel cointegration test developed by Westerlund and Edgerton (2007) was uti-

lized in this study, following the methodology outlined by Westerlund (2007). This test accommodates

both within-unit and between-unit cross-sectional dependence by incorporating error correction

terms in its computations. It examines two different null hypotheses: (1) the absence of cointegration

within individual panel units, and (2) the absence of cointegration across all panel units. For the first

null hypothesis, the group mean statistics Gτ and Gα are calculated using the estimated adjustment

term θi as follows:

Gτ =
1

N

N∑
i=1

θi
SE(θi)

and Gα =
1

N

N∑
i=1

Tθi
θi(1)

(8)

For the second null hypothesis, the group mean statistics are computed using these expressions:

Pτ =
θ̂i

SE(θ̂i)
and Pα = T θ̂i (9)

The results of Westerlund (2007)’s panel cointegration test are presented in table-9.

2.3 Panel estimators

To ensure the reliability of estimating the impact of NPIs on the incidence of COVID-19, this study

employs state-of-the-art estimators. These modern estimators effectively account for cross-sectional

dependence among variables by incorporating lagged averages to mitigate such effects. As we

clearly see from Table 8, not all variables are stationary I(1), though they follow the I(1) process

discussed in Herwartz et al. (2018) that accounts for heteroscedastic panels. Thus, the estimation

framework used is Cross-Sectional Augmented Autoregressive Distributed Lags (CS-ARDL), which

addresses this issue. Additionally, we utilize panel quantile and distribution estimators for several

reasons. Firstly, because the effectiveness of NPIs may differ significantly for lower and higher

quantiles of these outcomes, capturing potential disparities in response efficacy. Secondly, given the

potential for heterogeneity in the distribution of COVID-19 data, quantile and distribution regressions

provide a more comprehensive analysis compared to standard regression techniques. Lastly, these

methods help validate the stability and consistency of our main regression results, offering a deeper

understanding of how policy measures impact COVID-19 outcomes across different scenarios and

population segments. Therefore, we present CS-ARDL and quantile & distribution regressions as

individual estimators, as well as robustness checks for each other.
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2.4 Panel cross-sectional augmented autoregressive distributed lags (CS-
ARDL)

Chudik and Pesaran (2015) built a CS-ARDL estimator, which directly estimates long- and short-run

regression coefficients between explanatory variables and variables of interest.

yit = αi +

py∑
l=1

δilyit−1 +

px∑
l=0

βilxit−l +
PT∑
l=0

σilzit−l + uit (10)

where i = 1, 2, . . . , N , and zt =
1
N

∑N
i=1 zit = (yt, xt)

′
, αi and uit are fixed effects and residuals,

respectively. The model coefficients are computed using the following expression:

θ̂CS-ARDL =

∑px
l=0 β̂il

1−
∑py

l=1 δ̂il
(11)

2.4.1 Panel test for causalities

Dumitrescu and Hurlin (2012) introduced a causality test designed to ascertain the direction of

causation between variables. This test is particularly suitable for extensive datasets and is known

for producing reliable and robust outcomes even in the presence of cross-sectional dependence

among variables, as highlighted by Fahimi, Saint Akadiri, Seraj, and Akadiri (2018). The causality

test examines three main hypotheses: (1) Feedback or bidirectional causation, (2) Unidirectional

causation, moving conservatively or growth-wise from one variable to another, and (3) The neutral

hypothesis.

The mathematical representation of the test is given by:

yi,t = αi +
K∑
k=1

δkiyi,t−k +
K∑
k=1

βkixi,t−k + ϵit (14) (12)

where y and x represent the variables under examination, α denotes the static impact, δ and β are

autoregressive and reversion coefficients, respectively, and K denotes the optimal lag selected for all

cross-sectional components.

The Wald statistic, critical for testing Granger non-causality across cross-sectional components,

is computed as:

Wi,T = θ̂′iR
′
[
θ̂2iR− (Z ′

iZi)
−1R′

]−1

Rθ̂i (15) (13)

2.4.2 Panel quantile and distribution regression

Panel quantile regression introduced by Koenker and Bassett Jr (1978) is the method of preference

when we are interested in the effect of a policy on the distribution of an outcome. However, this

panel quantile estimator estimates the τ -th conditional quantile Qτ (yit|xit) of the dependent variable
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yit given panel-specific independent variables xit. The model formulates this quantile as:

Qτ (yit|xit) = x′
itβτ

where βτ represents quantile-specific coefficients. Minimum Distance Estimation (MDE) suggested

by Melly and Pons (n.d.) is employed to handle heterogeneity across panels and estimate these

coefficients robustly. Figure-7 shows the graph of quantiles for each variable of the model to verify

its heterogeneous behaviour concerning a normal distribution.

3 Results and discussion

3.1 Pretesting results

The pretesting results follow the scheme of estimation procedures depicted in Figure 2. (1) Findings

from tests for cross-sectional dependence (Pesaran, 2021; Breusch & Pagan, 1980), as presented in

Table 7, indicate that no null hypothesis of cross-sectional independence is rejected across different

significance levels. Results from the cross-sectional dependence exponent test (Bailey et al., 2016)

show that α ≈ 1, indicating significant cross-sectional dependence, detailed in the last column of

Table 7. Therefore, the results suggest the presence of cross-sectional dependence among variables.

(2) Results from the slope heterogeneity test (Pesaran & Yamagata, 2008; Blomquist & Westerlund,

2013; Bersvendsen & Ditzen, 2021), detailed in Table 11, reveal statistically significant adjusted delta

statistics for all three estimators, confirming the presence of slope heterogeneity. (3) Results from the

CIPS panel unit root test (Pesaran, 2007), as presented in Table 8, reject the null hypothesis of panel

unit root at levels with constant-trend for all variables except for LnECONOMIC. This hypothesis is

also rejected at first difference with a trend for all variables. However, the unit root test by Herwartz

et al. (2018), more suitable for heteroscedastic panels, shows that all variables are stationary at first

differences, as shown in column 3 of Table 8. These findings imply first-order cointegration of all

variables according to Herwartz et al. (2018), while Pesaran (2007) identifies variables as both I(0)

and I(1). Therefore, Westerlund and Edgerton (2007) cointegration tests are appropriate to detect

long-run relationships among variables, confirming CS-ARDL as the suitable estimation method.

(4) Results from the structural breaks analysis are provided in Table 10. The test statistic values

are below Bai & Perron’s critical values for structural break tests (Ditzen, 2021) at all significance

levels, indicating no detected breaks in the data. (5) Cointegration findings by Westerlund and

Edgerton (2007), presented in Table 9, reject the null hypothesis of no cointegration across the

panel units, suggesting the presence of cointegration among all variables. These findings support

long-term causal relationships among LnDEATHS, LnINFECTIONS, LnOVERALL, LnSTRINGENCY,

LnCONTAINMENT, and LnECONOMIC across the 33 states and union territories of India from 2020

to 2022.
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3.2 Estimator Results

3.2.1 CS-ARDL Results

Findings related to short-term and long-term relationships between LnDEATHS and NPIs, as well as

between LnINFECTIONS and NPIs, estimated from the CS-ARDL model are presented in Table 1 and

Table 2, respectively.

In the short-term analysis in table-1, the coefficients indicate a significant relationship between

variousNPIs and the logarithmic change in COVID-19 related deaths (d.LnDEATHS). For the overall

government response (Column 1), the infection rate (LnINFECTIONS) has a significant positive

coefficient of 0.680 (p<0.01), indicating that higher infection rates are associated with increased

deaths. Similarly, the coefficients for infection rates in columns 2, 3, and 4 (0.686, 0.681, and 0.659

respectively, all p<0.01) show a consistent positive impact. This finding is obvious as infections and

deaths are highly expected to move together (see Malki et al. (2020)) in the short-term; however in the

longer-term with pharmaceutical and non-pharmaceutical interventions in place this relation may

get reversed. The stringent measures (Column 2), containment measures (Column 3), and economic

support measures (Column 4) have negative coefficients (-0.331, -0.428, and -0.221, all p<0.001),

suggesting that stricter measures effectively reduce the number of deaths in the short term. These

results highlight the crucial role of immediate and stringent government interventions in controlling

the death toll during the pandemic’s early stages, which further confirmed by the -0.435 (p<0.001)

coefficient of overall government support that combines the impact of all the three NPIs.

In the long-term analysis in table-1, the results continue to emphasize the importance of infection

rates and NPIs. The coefficients for the infection rates (Lr LnINFECTIONS) remain highly significant

and negative across all columns (-0.995, -0.996, -0.992, and -1.002, all p<0.001), indicating that the

infection rates have a profound negative association with deaths over a prolonged period. This is

primarily due to studies such as Stein et al. (2023), which have identified a significant reduction in

the risk of COVID-19 infection among individuals with a previous SARS-CoV-2 infection compared

to those without prior infection. Consequently, as more people get infected over time, the long-term

susceptibility to further infections and deaths decreases. The coefficients for overall government

response (Lr LnOVERALL) and specific measures like economic support (Lr LnECONOMIC), contain-

ment (Lr LnCONTAINMENT), and stringency (Lr LnSTRINGENCY) also show significant negative

values (-0.535, -0.361, -0.527, and -0.440, respectively, all p<0.01). These results suggest that contin-

uous and consistent application of NPIs significantly mitigates the mortality rate in the long run.

These findings underscore the long-term benefits of maintaining rigorous public health measures

and support systems to manage and reduce the impact of the pandemic effectively.

The interpretation of COVID-19 infection analyses requires careful consideration due to several

factors. While infections are confirmed through testing, their reliability as an indicator of COVID-19

incidence is compromised by issues such as misreporting and variability in symptom presentation.

This makes infections a less dependable metric compared to deaths. Moreover, short-term analyses

focusing on infections often yield non-significant results. This is primarily because pharmaceutical
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Table 1: Results from CS-ARDL analysis with Deaths due to COVID-19 as dependent variables

d.LnDEATHS Overall Stringency Containment Economic Support

(1) (2) (3) (4)

Short-term

LnINFECTIONS 0.680** (0.210) 0.686** (0.203) 0.681* (0.212) 0.659*** (0.198)

L.LnINFECTIONS 0.00457 (0.0580) 0.00363 (0.0647) 0.00766 (0.0574) -0.00150 (0.0683)

LnOVERALL -0.435*** (0.0499)

LnECONOMIC -0.221*** (0.0386)

LnCONTAINMENT -0.428*** (0.0489)

LnSTRINGENCY -0.331*** (0.0365)

Constant 0.817** (0.195) 0.801* (0.198) 0.806* (0.195) 0.491** (0.129)

Long-term

Lr LnINFECTIONS -0.995** (0.0580) -0.996* (0.0647) -0.992* (0.0574) -1.002** (0.0683)

Lr LnOVERALL -0.535*** (0.0821)

Lr LnECONOMIC -0.361** (0.122)

Lr LnCONTAINMENT -0.527*** (0.0794)

Lr LnSTRINGENCY -0.440*** (0.0768)

Lr CONSTANT 0.923** (0.0656) 0.956* (0.0888) 0.912* (0.0640) 0.608** (0.0740)

N 4950 4950 4950 4950
R2 0.520 0.526 0.528 0.516

Adj. R2 0.490 0.495 0.498 0.485

Standard errors in parentheses — * p<0.05, ** p<0.01, *** p¡0.001

interventions, particularly vaccinations, have a profound impact on infection rates, overshadowing

the immediate effectiveness of non-pharmaceutical interventions (NPIs) like social distancing and

mask mandates (Tenforde et al., 2021; Peters, Raymer, Pal, & Ambardekar, 2022). Additionally, the

possibility of individuals being repeatedly infected further undermines the short-term efficacy of NPIs

in controlling transmission. Despite these limitations associated with COVID-19 infections, focusing

exclusively on deaths does not adequately capture the full impact of the pandemic. Infections have

had far-reaching consequences, profoundly affecting physical health and social well-being globally.

Therefore, while acknowledging the challenges in interpreting infection data, it remains crucial to

consider both infections and deaths to comprehensively assess the public health impact of COVID-19.

In the short-term analysis of the impact of various government measures on the logarithmic

change in infections (d.LnINFECTIONS), the coefficients for all categories—overall government

response, stringency measures, containment measures, and economic support measures—are statisti-

cally insignificant. Specifically, the coefficients for overall response (0.00261), stringency (0.00986),

containment (0.00420), and economic support (0.000870) all fail to reach statistical significance, sug-

gesting that these measures do not have an immediate effect on the infection rates in the short-run.

This insignificance in the short term could be attributed to several factors as discussed in the previous

paragraph. For one, there may be a delay between the implementation of policy measures and

their observable effects on infection rates. Additionally, short-term infection rates can be influenced

by various external factors, including public compliance and adherence fatigue (Petherick et al.,

2021), variations in testing rates, and reporting delays, which may dilute the immediate impact of

governmental interventions in the short-term.
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In contrast, the long-term analysis reveals highly significant negative coefficients for all NPIs,

underscoring their effectiveness in controlling infections over a sustained period. The coefficients

for the overall government response (lr LnOVERALL) and specific measures like stringency (lr -

LnSTRINGENCY), containment (lr LnCONTAINMENT), and economic support (lr LnECONOMIC)

are all close to -1 (-0.997, -0.990, -0.996, and -0.999, respectively, all p<0.001). These results indicate

that sustained implementation of these measures significantly reduces infection rates in the long run.

These findings highlight the critical importance of maintaining robust public health measures over

time to effectively curb the spread of the virus, as immediate effects may not always be apparent, but

the long-term benefits are substantial and measurable.

Table 2: Results from CS-ARDL analysis with infections of COVID-19 as dependent variables

Dependent Variable
d.LnINFECTIONS

Overall Stringency Containment Economic Support

(5) (6) (7) (8)
Short Run

LnOVERALL 0.00261 (0.0330)

LnECONOMIC 0.000870 (0.0143)

LnCONTAINMENT 0.00420 (0.0338)

LnSTRINGENCY 0.00986 (0.0240)

CONSTANT 0.0102 (0.126) -0.00534 (0.119) 0.00588 (0.134) 0.0110 (0.0789)

Long Run

lr LnOVERALL -0.997*** (0.0330)

lr LnSTRINGENCY -0.990*** (0.0240)

lr LnCONTAINMENT -0.996*** (0.0338)

lr LnECONOMIC -0.999*** (0.0143)

lr CONSTANT 0.0106** (0.000339) -0.00549* (0.000127) 0.00612* (0.000210) 0.0111** (0.000142)

N 4983 4983 4983 4983
R2 0.919 0.930 0.921 0.912

Adj. R2 0.915 0.927 0.917 0.908

Standard errors in parentheses — * p<0.05, ** p<0.01, *** p¡0.001

3.2.2 Causalities results

The dependent variables, deaths and infections due to COVID-19, may exhibit a bi-directional

relationship with intervention measures (NPIs), implying that these measures both influence deaths,

infection and are influenced by deaths. The table-3 presents the results from the JKS non-causality

test (Juodis, Karavias, Sarafidis, 2021) to examine the bidirectional relationships between various

government response measures, infection rates, and death rates during the COVID-19 pandemic.

The Wald statistics and coefficients for each causal relationship provide insight into the direction

and nature of these effects. The overall government response exhibits a significant negative causal

effect on death rates (Wald Stat: 220.68, Coefficient: -0.926, p<0.001), indicating that stronger overall

government interventions lead to a reduction in death rates. Conversely, there is a significant

positive causal effect of death rates on overall government response (Wald Stat: 132.26, Coefficient:

0.0324, p<0.001), suggesting that higher death rates prompt an increase in government interventions.
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Stringency measures have a significant negative impact on death rates (Wald Stat: 210.80, Coefficient:

-0.0326, p<0.001), implying that stringent policies effectively reduce death rates. However, the

feedback from death rates to stringency measures is positive and significant (Wald Stat: 487.37,

Coefficient: 0.0642, p<0.001), indicating that increasing death rates result in stricter policies.

Table 3: JKS Non-causality test (Juodis, Karavias, Sarafidis, 2021)

Causation HPJ Wald Stat Coefficient Lags Nature Causation HPJ Wald Stat Coefficient Lags

Overall → Deaths 220.68 -0.926** 1 ↔ Deaths → Overall 132.26 0.0324** 1

Stringency → Deaths 210.80 -.0326** 1 ↔ Deaths → Stringency 487.37 0.0642** 1

Containment → Deaths 285.66 -1.08** 1 ↔ Deaths → Containment 61.0983 0.022** 1

Economic → Deaths 212.56 -0.775** 1 ↔ Deaths → Economic 620.63 0.12** 1

Overall → Infections 35.24 -0.48** 1 ↔ Infections → Overall 778.98 0.0689** 1

Stringency → Infections 360.58 -0.0018 1 → Infections → Stringency 302.45 0.13*** 1

Containment → Infections 49.47 -0.-.586** 1 ↔ Infections → Containment 495.99 0.0544** 1

Economic → Infections 44.31 -0.277** 1 ↔ Infections → Economic 390.56 0 .249** 1

Infections → Deaths 170.65 1.89** 1 ↔ Deaths → Infections 747.95 -1.803** 1

Containment measures significantly reduce death rates (Wald Stat: 285.66, Coefficient: -1.08,

p<0.001), while rising death rates significantly increase containment measures (Wald Stat: 61.0983,

Coefficient: 0.022, p<0.001). This bidirectional causality underscores the reactive nature of contain-

ment measures to death rates. Economic support measures show a strong negative causal effect

on death rates (Wald Stat: 212.56, Coefficient: -0.775, p<0.001). Conversely, higher death rates

significantly increase economic support measures (Wald Stat: 620.63, Coefficient: 0.12, p<0.001),

highlighting the importance of economic interventions in response to rising death rates. Government

responses also affect infection rates. The overall government response has a negative causal effect

on infections (Wald Stat: 35.24, Coefficient: -0.48, p<0.001), while infections positively impact the

overall response (Wald Stat: 778.98, Coefficient: 0.0689, p<0.001). Stringency measures, although

having an insignificant effect on infections (Wald Stat: 360.58, Coefficient: -0.0018), are significantly

influenced by infection rates (Wald Stat: 302.45, Coefficient: 0.13, p<0.001). Containment measures

reduce infections (Wald Stat: 49.47, Coefficient: -0.586, p<0.001), and infections lead to increased

containment (Wald Stat: 495.99, Coefficient: 0.0544, p<0.001). Economic support measures also

reduce infections (Wald Stat: 44.31, Coefficient: -0.277, p<0.001), with infections significantly increas-

ing economic support measures (Wald Stat: 390.56, Coefficient: 0.249, p<0.001). There is a strong

negative causal effect of infections on deaths (Wald Stat: 170.65, Coefficient: 1.89, p<0.001), while

deaths also negatively impact infections (Wald Stat: 747.95, Coefficient: -1.803, p<0.001).

3.2.3 Quantile regression results

Quantile regression results for LnDEATHS as the dependent variable are presented in Tables 3 to 5,

while results for LnINFECTIONS are found in Tables 6 to 8 in the supplementary materials. Summary

statistics of the variable quantiles are provided in Table 2. Additionally, Figure 4 and figure 5 display

the quantile plots corresponding to these regressions with LnDEATHS and LnINFECTIONS as the

dependent variables, respectively.

The quantile regression results reveal significant insights into how different policy measures
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impact COVID-19 related deaths across various quantiles. Across all quantiles (Q1 to Q10), the

logarithm of infections (LnINFECTIONS) consistently shows a strong positive relationship with the

logarithm of deaths (LnDEATHS), indicating that higher infection rates are strongly associated with

higher death rates confirming the findings in table-1. The coefficients for LnINFECTIONS gradually

decrease from Q1 (0.973) to Q10 (0.756), suggesting a slightly diminishing effect of infections on deaths

as the severity of the death rate increases, which can be mainly due to the fact that pharmaceutical

interventions come into play. The overall government response (LnOVERALL) has a significant

negative impact on death rates across all quantiles, with the strength of this negative relationship

diminishing slightly from Q1 (-1.428) to Q10 (-0.280). This indicates that comprehensive government

responses are effective in reducing death rates, especially in lower quantiles where the death rates

are not extremely high. Similarly, stringent measures (LnSTRINGENCY), containment measures

(LnCONTAINMENT), and economic support measures (LnECONOMIC) all show a consistent negative

relationship with death rates, suggesting that these interventions are crucial in mitigating the impact

of the pandemic. The coefficients for these measures also generally decrease in absolute value across

higher quantiles, implying that their effectiveness in reducing death rates is more pronounced at

lower death rates.
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Figure 4: Quantile regression plots of NPIs in reducing deaths due to COVID-19.

The quantile regression analysis reveals significant relationships between COVID-19 infection

rates (‘d.LnINFECTIONS‘) and various governmental response measures across different quantiles.

For instance, in the lowest quantile (Q1), an increase in the overall government response index
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(‘LnOVERALL‘) by 1 unit is associated with an average increase in ‘d.LnINFECTIONS‘ by 1.447 (SE =

0.0881). Similarly, stricter stringency measures (‘LnSTRINGENCY‘) show a significant effect across

quantiles, such as a coefficient of 1.119 (SE = 0.0918) in Q1. Containment measures (‘LnCONTAIN-

MENT‘) also exhibit notable impacts, with coefficients like 1.434 (SE = 0.0905) in Q1, indicating their

positive association with infection rates. Economic support measures (‘LnECONOMIC‘) display

consistent positive coefficients across all quantiles, such as 0.967 (SE = 0.0687) in Q1, suggesting that

higher economic support correlates with increased infection rates. These findings underscore the fact

that is established in table-2 that in the short-term NPIs are largely ineffective in controlling infection.

However, as also seen in figure-5 after Q2 for economic support, and stringency and after Q4 for

containment and overall government response, NPIs start to become more effective. It is important

to note that, as over time more and more NPIs come into place the NPI index scores increase, so

higher quantiles necessarily indicate a later time period and vice versa.
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Figure 5: Quantile regression plots of NPIs in reducing infections of COVID-19.

4 Policy Implications & Limitations of the study

The results from the previous section highlight several key policy suggestions that can effectively

guide responses to pandemics or endemics, especially when pharmaceutical interventions are delayed

and innovation has a gestation period. Given global inequalities that obstruct the reach of timely

pharmaceutical interventions (Sparke & Levy, 2022; Hakobyan, Rawlings, & Yao, 2022; Bayati,

Noroozi, Ghanbari-Jahromi, & Jalali, 2022), it is crucial to implement appropriate non-pharmaceutical
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interventions (NPIs) to control the incidence of such pandemics. The policy suggestions are as

follows:

1. In the short term, all NPIs show a significant and negative association with COVID-19 incidences

of deaths and infections, indicating their effectiveness in controlling the endemic. Additionally,

in densely populated countries like India, policies of containment and stringency have been

observed to be particularly effective. Particularly, as given the vaccine gestation period stringent

measures are most effective as demonstrated in quantile regression where higher stringency

values have demonstrated better effect. Moreover as reinstated in the causality analysis, more

infection and deaths lead to further stringent and stricter NPIs that intern further reduce the

COVID-19 incidence.

2. Taking death into consideration, overall NPI impact is impressive, however the economic

support signals further emphasis. Though studies like Varshney, Kumar, Mishra, Rashid, and

Joshi (2021) find that, government transfer packages during the pandemic were significant in

alleviating credit constraints and played a role in furthering agricultural investments, there

has been several doubts casted over the financial aids data used in these studies. Moreover the

fact that India didn’t have a robust direct transfer plan during the COVID-19, when considered

with the scant spending by the government when compared to other nations, caste further

doubt about what could have been the impact of economic support had there been support

considerably. This warrants for significant economic support push in such situations in India.

3. Several factors like political trust (Ji, Jiang, & Zhang, 2024) also influence the impact of govern-

ment response to COVID-19 as they impact the effective implementation of NPIs, which are

often rumoured to be ineffective in the absence of pharmaceutical interventions. Moreover, the

fact that interventions like economic support also help in making the economy bouncing back

easily by means of gained consumer confidence (Gholipour, Tajaddini, & Farzanegan, 2023),

which indicates towards multifaceted benefits of NPIs during the pandemic situations.

4. The major insight that emerges from the causality analysis is that NPIs have been observed

to be informed with the changes warrant in the health landscape during the pandemic. The

fact that the causal direction from NPIs to COVID-19 incidence are negative and vice versa,

suggests that higher deaths have led to stricter interventions and stricter interventions have

further resulted in curbing deaths and infections.

5. Crucial interpretation of quantile regression suggests two major implications. First, not all

levels of NPIs are equally effective conditioned on several other factors, thus monitoring of

interventions in places is duly warranted and flexibility in tightening and relaxing interventions

as the need may arise is the key to better management of pandemics. Second, considering

human movement to an extent inevitable for survival, the long-term effect is delayed though

effective at last. However, it is further confirmed that, deaths are controlled using NPIs more

effectively than infections.
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6. The fact that this study confirms long-run effectiveness of NPIs in curbing both infections and

deaths due to COVID-19 the major implication presents NPIs as unavoidable interventions

during pandemic irrespective of the pharmaceutical interventions like vaccines. Certainly,

their effectiveness in the long-run is entangled with that of the vaccines, yet it is established

by the quantile regression that, in controlling infections the NPIs were initially ineffective

however, they have proven to be effective in the long-run. Conversely, they are even better in

controlling deaths.

Though the study confirms several intuitive validations of NPIs during pandemic and contests

against the role of them compared to pharmaceutical interventions, this study does have several

limitations. First, while it established robust associations, it does not establish any causal relationships

that isolates the influence of other important covariates. Thus, the observed correlations between

NPIs and COVID-19 incidences cannot be interpreted as definitive evidence of causation. Second, the

study is constrained by its inability to control for all variables that impact COVID-19 incidence. There

are numerous human-related, governmental, social, biological, and environmental factors at play,

making it challenging to account for all of them in a single analysis. This limitation means that some

confounding factors may influence the results. Third, a significant drawback is the study’s inability to

isolate the influence of vaccines on controlling deaths and infections. The rollout of vaccines during

the study period adds another layer of complexity, as it is difficult to disentangle the effects of NPIs

from those of vaccination efforts.

5 Conclusion

In summary, this paper highlights the significant impact of non-pharmaceutical interventions (NPIs)

on controlling COVID-19 deaths and infections. Our analysis reveals that NPIs, such as containment

and stringency measures, have been effective, particularly in densely populated regions like India.

The findings underscore the importance of implementing comprehensive NPIs to manage pandemics,

especially in the absence of timely pharmaceutical solutions. Furthermore, the paper emphasizes

the multifaceted benefits of NPIs, including their role in boosting consumer confidence and aiding

economic recovery. Overall, the research provides valuable insights for policymakers and public

health officials in crafting effective strategies for current and future pandemics.
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A Appendix

A.1 OxCGRT indices and variables of the study

Table 4: OxCGRT sub-indices and index variables of the study

OxCGRT Indicators

Targeted/general

OxCGRT Indices

ID Name Type GRI CNI STI ESI

C1 School closing Ordinal Geographic C1 x x x

C2 Workplace closing Ordinal Geographic C2 x x x

C3 Cancel public events Ordinal Geographic C3 x x x

C4 Restrictions on gathering size Ordinal Geographic C4 x x x

C5 Close public transport Ordinal Geographic C5 x x x

C6 Stay-at-home requirements Ordinal Geographic C6 x x x

C7 Restrictions on internal movement Ordinal Geographic C7 x x x

C8 Restrictions on international travel Ordinal No C8 x x x

Economic response E1 x x

E1 Income support Ordinal Sectoral E2 x x

E2 Debt/contract relief for households Ordinal No E3

E3 Fiscal measures Numerical No E4

E4 Giving international support Numerical No H1 x x x

Health systems H2 x x

H1 Public information campaign Ordinal Geographic H3 x x

H2 Testing policy Ordinal No H4

H3 Contact tracing Ordinal No H5

H4 Emergency investment in health care Numerical No H6 x x

H5 Investment in COVID-19 vaccines Numerical No H7 x x

H6 Facial coverings Ordinal Geographic H8 x x

H7 Vaccination policy Ordinal Funding

H8 Protection of elderly people Ordinal Geographic k 16 14 9 2
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A.2 Diagnostic Test Results

Table 5: Descriptive statistics of Variables

Variable Full Form Observation Mean Median Std. dev. Min Max Skewness Kurtosis
LnSTRINGENCY Stringency Index (STI) 5,148 3.549 3.930 0.968 0.100 4.605 -1.368 5.084

LnCONTAINMENT Containment Index (CNI) 5,148 3.799 4.068 0.859 -0.265 4.563 -2.891 12.008

LnECONOMIC Economic Support Index (ESI) 5,148 3.121 3.912 1.605 0.100 4.605 -1.221 2.750

LnOVERALL Overall Government Support Index (GRI) 5,148 3.764 4.066 0.875 -0.403 4.513 -2.770 11.238

LnDEATHS Cumulative number of COVID-19 related
deaths per million population

5,148 8.858 10.514 4.201 -3.323 14.280 -1.145 3.020

LnINFECTIONS Cumulative number of Number of COVID-
19 infections per million population

5,148 12.989 14.977 5.047 -2.388 18.469 -1.568 4.348

Table 6: The Matrix of correlation

LnSTRINGENCY LnCONTAINMENT LnECONOMIC LnOVERALL LnDEATHS LnINFECTIONS
LnSTRINGENCY 1

LnCONTAINMENT 0.9634 1

LnECONOMIC 0.2618 0.4072 1

LnOVERALL -0.0274 0.1073 0.9214 1

LnDEATHS 0.2782 0.4213 0.9976 0.9157 1

LnINFECTIONS -0.0467 0.0752 0.7238 0.7693 0.6824 1
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Table 7: Cross - Sectional Dependence Results

Variable BPLM PLM PCD α

LnSTRINGENCY 41743.141** 196.791* 271.13** 1.00098

LnCONTAINMENT 42921.748** 184.673* 279.73** 1.0009

LnECONOMIC 44841.876** 171.918* 263.98** 1.000919

LnOVERALL 42763.034** 182.985* 280.67** 1.00091

LnDEATHS 18351.199** 99.624* 279.44** 1.0009

LnINFECTIONS 19485.788** 114.406* 284.36** 1.000

Alpha is a cross-sectional dependence exponent estimate that tests the level of identified cross-sectional dependence in the variable. With this test, if α ≈ 1
implies strong cross-sectional dependence. BPLM: Breusch Pagan Lagrange Multiplier, PLM: Pesaran Lagrange Multiplier, PCD: Pesaran CD.

Table 8: Results from panel unit root analysis

Variable at Level CIPS - Pesaran (2007) Herwartz et al. (2018)
LnSTRINGENCY -2.807*** 1.6869

LnCONTAINMENT -2.967*** 1.3531

LnECONOMIC -1.729 1.5807

LnOVERALL -2.947*** 1.1112

LnDEATHS -2.355*** 1.5807

LnINFECTIONS -3.063*** 2.0150

Variable at 1st Difference with Trend CIPS - Pesaran (2007) Herwartz et al. (2018)
LnSTRINGENCY -6.055** -2.3741**

LnCONTAINMENT -6.166** -1.8344*

LnECONOMIC -6.393** -1.5667*

LnOVERALL -6.124** -1.7357**

LnDEATHS -5.034** -2.9020**

LnINFECTIONS -5.500** -2.9890**
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Table 9: Panel Cointegration results

Statistic Value Z-value P-value
Gt -4.950*** -13.888 0.00

Ga -87.907*** -50.825 0.00

Pt -17.404*** -3.490 0.00

Pa -56.851*** -31.391 0.00

Table 10: Sequential test for multiple breaks at unknown breakpoints (Ditzen, Karavias & Westerlund. 2021)

Bai & Perron Critical Values

Test Statistic 1% Critical Value 5% Critical Value 10% Critical Value

F(10) 4.01 12.29 8.58 7.04

F(21) 2.33 13.89 10.13 8.51

F(32) 0.78 14.8 11.14 9.41

F(43) 0.26 15.28 11.83 10.04

F(54) 0.43 15.76 12.25 10.58

Detected number of breaks: - - -

Table 11: Tests’ results from slope heterogeneity analysis

Test Statistic Pesaran and Yamagata (2008) Blomquist and Westerlund (2013) Bersvendsen and Ditzen (2021)

Delta 8.43*** 6.67*** 3.602***

Adj. Delta 8.627*** 6.826*** 3.719***
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B Figures

Outbreak of COVID-19 in Wuhan, China
(December 2019)

First case in India reported in Kerala
(late January 2020). Government Response 
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Figure 6: The framework of Indian management of COVID-19 pandemic

(a) This figure depicts the different work-action measures taken as a government response since the first

COVID case in India in January 2020. It shows, along with a phased implemented (and withdrawn) lockdown,

there were containment strategies in place. For better functioning, 11 empowered groups were formed and

further restructured to implement pharmaceutical and non-pharmaceutical guidelines.
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Figure 7: Quantile distribution plots of all variables.
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