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ABSTRACT 

Background  

Increased use of electronic health records (EHR) and patient-initiated messaging has led to 

inefficiency, staff shortages, and provider burnout. We evaluated the impact of a natural language 

processing (NLP) algorithm for message routing on communication dynamics.  

Methods  

We developed an NLP model to accurately label inbound EHR messages from patients using a pre-

trained classifier with fine-tuning based on clinician feedback. In a real-world study, the model was 

deployed to prospectively label and route messages sent to participating physicians at an integrated 

health system. A parallel control group of unrouted messages was generated for comparative analysis. 

The primary endpoints for assessing model performance were the time to first message interaction, the 

time to conversation resolution, and the total number of message interactions by staff, compared with 

the control group. Secondary endpoints were the precision, recall, F1 score (a measure of positive 

predictive value and sensitivity), and accuracy for correct message classification.  

Results  

The model prospectively labeled and routed 469 unique conversations over 14 days from the 

inbaskets of participating physicians. Compared to a control group of 402 unrouted conversations 

from the same time period, conversations in the routed group had an 83.3% reduction in the time to 

first interaction (median difference [MD], -1 hour; P<0.001), an 84.4% reduction in the time to 

conversation resolution (MD, -22.5 hours; P<0.001), and a 40% reduction in the total number of staff 

interactions after application of intervention (MD, -2.0 interactions; P<0.001). The model 

demonstrated high precision (>97.6%), recall (>95%), and F1 scores (>96.5%) for accurate prediction 

of all five message classes, with a total accuracy of 97.8%.  

Conclusions  

Real-time message routing using advanced NLP was associated with significantly reduced message 

response and resolution times.  
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INTRODUCTION 

The electronic health record (EHR) has become the primary documentation mechanism for healthcare 

data during the last decade.1 In the United States, healthcare policies such as the CMS Meaningful 

Use Program have incentivized rapid EHR adoption to enhance healthcare quality.2-4 Conversely, 

healthcare staff burnout has increased in parallel and is largely attributed to the increased time spent 

performing administrative tasks in the EHR. The EHR is cited as a primary source of physician 

burnout, affecting seven out of 10 physicians.5,6 Physicians spend twice the amount on EHR-related 

tasks such as documentation and messaging for each 1 hour spent providing direct patient care.7  

Studies have shown that patients increasingly use EHR messaging portals as an alternative to seeking 

in-person care due to the COVID-19 pandemic.8-10 In many clinical practices, these patient-initiated 

messages (PIMs) are directed first to a central pool before being directed to a target staff member to 

either act on a message or who may forward it to another user. Successive forwarding and replying 

can result in exponential growth of staff messaging interactions, with each “touch” representing a new 

cognitive load for the interactor, distraction from other tasks, or additional time spent after the 

workday. An initial PIM has been shown to generate as many as seven or more staff touches before 

final resolution.  

The increased workload from PIMs has led to calls for novel methods to enhance the routing and 

management of EHR-based messaging. Prior approaches to reduce provider burden have included 

efforts at EHR inbox redesign, team-based support, and dedicated triage teams.11-13 Deploying natural 

language processing (NLP) is an emerging approach for addressing burnout and reducing cognitive 

overload. We have recently demonstrated the feasibility of using NLP to automatically prioritize 

urgent patient messages and identify public health trends from the EHR.14 Although additional studies 

have also shown the potential of using text search and NLP to analyze and label messages 

effectively,15-19 none have explored the value of adding machine learning (ML) to automate message 

triage through intelligent rerouting.20 No previously published efforts have used high-level NLP to 

analyze and intelligently reroute patient messages. 

The present study aimed to develop and validate an ML classifier for intelligent routing of inbound 

EHR messages and measure performance in a real-world clinical setting. The objectives were to 1) 

create a gold standard classifier using manual message validation by multi-specialty physicians and 

nurses, 2) refine and validate an NLP classifier to accurately label messages based on common 

message themes (e.g., scheduling requests or refills), and 3) to evaluate the model’s ability to reduce 

the time and amount of message interactions required by staff for message resolution.  
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METHODS 

Study Design, Population, and Data Sources 

This prospective, real-world study was conducted across four outpatient locations at Emory 

Healthcare, an integrated health system in Atlanta, Georgia (Figure 1). Individual physicians were 

invited to participate and have their inbound EHR message pools included in the NLP intervention. 

All messages from adult patients (aged ≥18 years) for each participating physician were accessed 

from the EHR (PowerChart EHR, Oracle Cerner, Kansas City, MO) and included in the intervention 

group. An observational cohort drawn randomly from unrouted messages from the same time period 

was generated for comparative analysis. The study was deemed exempt from human subjects research 

by the Emory University Institutional Review Board and received a waiver of informed consent based 

on the no more than minimal risk to patients. 

Model Development and Validation 

We trained an NLP model using the Bidirectional Encoder Representations from Transformers 

(BERT) language representation model.21 The model's primary objective was to correctly label 

inbound messages and route them to the appropriate staff based on the predicted message 

classification. To develop the model, we randomly sampled a retrospective corpus of 40,000 EHR 

messages from adult patients that were expertly labeled by a team of study clinicians (four physicians; 

one nurse) into one of five message classes: “urgent”, “clinician”, “refill”, “schedule”, or “form”. We 

then randomly divided the labeled dataset into training (90%) and testing (10%) cohorts which were 

used to fine-tune the pre-trained BERT model. For post-training validation, the study clinicians 

reviewed the model’s classification accuracy using a sequestered set of 500 model-naive messages.  

Study Intervention and Model Deployment 

To evaluate real-world performance, the fully trained and validated model was prospectively deployed 

to EHR messaging pools for all participating physicians to monitor and route all incoming messages 

from adult patients. The model was designed to operate silently within the EHR backend to minimize 

added workflow steps for staff and enable model evaluation under real-world conditions. Prospective 

model performance was measured and reported separately for each class using a correlation heat map 

and confusion matrix (Figure 3). The precision, recall, F1 score, and accuracy were also calculated 

for each class to determine the model's ability to correctly classify instances of each class, its 

sensitivity to the instances of the class, the harmonic mean of precision and recall, and the overall 

correctness of the model, respectively.  

To maintain patient safety, several safeguards were implemented into the model. Specifically, only 

the messaging pools for participating physicians actively monitored by the model as part of the study 

were incorporated as potential routing destinations. Moreover, if the model's confidence in a 
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message’s classification was low, the model would revert to a default status and the message was 

forwarded to a default nurse triage pool.  

Model Evaluation and Statistical Analyses 

To evaluate model performance, we compared the real-world effects of the model in the routed (i.e., 

intervention) message group with the unrouted control group. The primary endpoints of interest were: 

1) the time from patient message origination to initial message interaction by a member of the 

healthcare staff, 2) the time from patient message origination to query resolution, and 3) the total 

number of message interactions by healthcare staff. Secondary outcome measures included the 

precision, recall, F1 scores, and accuracy of message labeling by the model between the two groups.  

We used system-generated identifiers to group individual messages into larger distinct conversations 

between patients and staff. Message interactions were defined as any reads, forwards, and replies 

performed by healthcare staff. Missing data were managed by calculating the percentage of missing 

observations for each of the primary outcomes and, based on the observation that the overall amount 

was low (<10% for each group), we performed pairwise deletions of any missing observations to 

ensure consistency and minimize potential bias. Outliers were identified and removed from both 

datasets using the Z-score (using a threshold of 3) and IQR (using a multiplier of 1.5) methods.  

Based on a two-tailed alpha of 0.05, we estimated that for a relatively small effect size (Cohen’s d = 

0.2), a sample size of 393 unique conversations per group would provide 80% power to reject the null 

hypothesis of no difference in the primary outcomes between the two groups. For a medium effect 

size (d = 0.5), a sample size of approximately 64 conversations per group would be sufficient. For a 

large effect size (d = 0.8), only about 26 conversations per group would be needed. 

Comparative analyses were performed using Wilcoxon rank sum tests for non-normally distributed 

data. Scatter and box plots were used to assess homogeneity of variances, symmetry, and normality. 

Categorical data were summarized as numbers and percentages, and continuous data were 

summarized as means with standard deviations (SD) or medians with interquartile ranges (IQR), as 

appropriate. All tests were performed using Python (v3.11.5).  

 

RESULTS 

Patient Population and Message Characteristics 

The model prospectively identified and routed a total of 469 unique conversations from adult patients 

between September 16 and 31, 2022. An observational cohort of 402 unrouted conversations was 

generated in parallel from the same period. Baseline characteristics of the patient population and 
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message characteristics for both groups of messages are shown in Table 1. The median (IQR) age for 

the intervention group was 64.2 (18.3) years, and 63% were female.  

Primary Outcomes 

A comparative analysis of the interaction metrics between the intervention and control groups is 

summarized in Table 2. Overall, healthcare staff in the intervention group exhibited a 40% reduction 

in the median number of total message interactions, with significant reductions in both the time to first 

interaction (82.8%) and the time to conversation completion (84.4%), compared to the control group. 

Healthcare staff in the intervention group had a median (IQR) time to first interaction of 0.2 (3.6) 

hours and a time to conversation completion of 4.2 (21.6) hours, compared to 1.2 (13.3) and 26.7 

(76.4) hours, respectively, compared to the control group (median difference [MD] in time to first 

interaction, -1.0 hours; P<0.001; time to conversation completion, -22.5 hours; P<0.001). The median 

(IQR) number of message interactions per conversation was also significantly lower in the 

intervention group at 3.0 (3.0) compared to 5.0 (5.0) total interactions in the control group (MD -2.0; 

P<0.001). Figure 2 illustrates the distributions in the primary outcomes between the intervention and 

control groups.  

Secondary Outcomes and Model Classification Performance 

The model achieved consistently high performance for accurately predicting message classes 

compared to expert labeling by study clinicians (Table 3). The highest performance was seen for the 

‘Schedule’ and ‘Refill’ classes with F1 scores of 98.1% and 99.0% and accuracies of 99.4% and 

99.7%, respectively, with a total model accuracy of 97.8%. In Figure 3, the model demonstrated a 

high degree of accuracy using a correlation heatmap for analysis, with most instances correctly 

classified, as evident by the predominant values along the diagonal. The instances of misclassification 

were minimal, consistent with a high degree of discriminatory ability between different classes. There 

were no instances where the model defaulted back to a default mode due to low confidence in 

classifying an individual message.  

 

DISCUSSION 

Real-time message classification using a novel NLP model with intelligent rerouting was associated 

with significantly shorter message response and resolution times, as well as significant reductions in 

overall message burden for healthcare staff, when compared to a cohort of unrouted messages from 

the same period. On a sensitivity analysis, the effects of implementing the NLP remained consistent 

across most staff roles except for non-physician practitioners who exhibited a non-significant trend 

toward improvement with implementation of NLP message routing, which is potentially explained by 

their lower number of messages at baseline. The model also demonstrated high accuracy for correctly 
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predicting each message class when compared to expert reviewers, with overall accuracy for message 

classification exceeding 97%.  

In this study, we applied a deep learning NLP model to prospectively classify and route patient 

messages in real time. We used an open-source large language model (BERT) which offered several 

advantages over other available large language models. As a bi-directional transformer model, BERT 

was designed to simultaneously read text in both directions (i.e., it considered both the left and right 

context when making predictions) which makes it better suited for sentiment analysis and natural 

language understanding tasks. Compared to “uni-directional” models such as Generative Pre-trained 

Transformers (GPT), bi-directional models provide enhanced contextual interpretation with a lower 

risk of model “hallucination” – a phenomenon when an AI model generates incorrect predictions but 

presents these as fact – since they are simply placing the messages into predetermined categories. 

Additional benefits of BERT include increased computational efficiency from a reduced reliance on 

power-intensive graphical processing units to train and deploy NLP models into practice – resulting in 

potential cost savings.  

Our findings are unique in implementing an advanced NLP classifier to the real-world messaging data 

from the EHR at multiple locations in a large healthcare system. Specific strengths of our study 

include the real-world setting and pragmatic trial design which yielded a robust sample size with 

adequate power to detect even small sample sizes, the consistency of the findings on the stratified 

analyses based on provider specialty, and the use of physician informaticists (Dr. Anderson) who 

understood both the clinical context as well as the implication on the model accuracy which facilitated 

creation of a labeling heuristic which allowed for classification with minimal error.   

Limitations of this study include the absence of a randomized comparator group. Although we 

attempted to reduce the risk of bias with a comparator group through random sampling (but drawn 

from the same time period and matched for provider specialty) and the patient characteristics between 

the treatment and control groups appear similar in key demographic factors, this does not guarantee 

the removal of residual confounding. The study was also limited to volunteer physicians and staff at a 

single healthcare institution in Atlanta, GA, which could affect generalizability.  

Conclusions 

In this real-world feasibility study, implementation of an NLP classifier in the EHR for intelligent 

message rerouting led to decreased message response times and reduced the overall messaging burden 

among healthcare staff, as compared to unrouted messages from the same period. These findings have 

the potential to significantly enhance operational efficiency within healthcare organizations and 

reduce administrative burden and EHR-related burnout among healthcare workers. Further validation 

and prospective randomized trials are needed to better understand the effects on patient outcomes and 

quality of care, specifically any reductions in medical errors that may result.  
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FIGURES LEGENDS 

Figure 1. Data extraction, model development, and intervention flowchart  

Figure 2. Distributions of the time to first message interaction (A), time to conversation completion 

(B), and total message interactions (C) between the intervention (blue) and control (red) groups.  

Figure 3. Correlation Heatmap of Model Performance for Accurate Message Classification. A 

confusion matrix, represented as a heatmap, illustrating the number of correct and incorrect 

predictions made by the model for each class. Each row of the matrix represents the true class based 

on expert clinician labeling, while each column represents the predicted class generated by the model. 

The diagonal elements represent the number of correct predictions for each class, while the off-

diagonal elements in purple indicate instances where the model misclassified. A combination of high 

values in the diagonal elements and low values in the off-diagonal elements signifies more accurate 

predictions. 
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TABLES 

Table 1. Characteristics of the Patient Population and Conversations 

Characteristic 

Intervention  
Group  

(N=445)  

Control  
Group 

 (N=391) 

 Median (IQR) or N (%) 

Patient Demographics   

Age, years 64 (18) 63 (21) 

Age range, years 22—98 19—97 

Female 291 (63) 254 (63) 

Race or ethnicity   

White 306 (66) 255 (63) 

Black 115 (25) 104 (26) 

Asian 22 (5) 24 (6) 

Other1 20 (4) 19 (5) 

   

Conversations   

Total Number of Completed Conversations2 469 402 

Messages Per Conversation 3 (3) 5 (5) 

Conversation Labels   

Urgent 45 (10) 62 (15) 

Clinician 261 (56) 229 (57) 

Refill 54 (12) 19 (5) 

Schedule 63 (13) 62 (15) 

Form 45 (10) 31 (8) 

1. Includes American Indian/Alaska Native, Native Hawaiian/Pacific Islander, multiple, or those 
declining to answer. 

2. Represents the total number of unique conversations  
  

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 27, 2023. ; https://doi.org/10.1101/2023.11.27.23298910doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.27.23298910


Table 2. Comparison of Prospective Model Performance After Deployment 

Outcome  

Intervention 
Group 

(N=469)1 

Control 
Group 

 (N=402)1 
Median  

Difference 
RRR  
(%) P Value 

Time to first message 
interaction (median 
[IQR]) – hours  

0.2 [3.6] 1.2 [13.3] -1.0 83.3 <0.001 

Time to conversation 
completion (median 
[IQR]) – hours 

4.2 [21.6] 
26.7 

[76.4] 
-22.5 84.3 <0.001 

Number of total 
message interactions 
(median [IQR]) 

3.0 [3.0] 5.0 [5.0] -2.0 40.0 <0.001 

1. Represents the number of total unique conversations. 
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Table 3. Model Performance by Message Class 

Class Precision Recall F1 Score Accuracy 

Urgent 98.1% 95.0% 96.5% 98.7% 

Clinician 97.6% 98.1% 97.9% 98.5% 

Refill 98.0% 100.0% 99.0% 99.7% 

Schedule 99.2% 96.9% 98.1% 99.4% 

Form 96.9% 99.6% 98.2% 99.5% 
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