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The orphan gene of SARS-CoV-2, ORF10, is the least stud-
ied gene in the virus responsible for the COVID-19 pandemic.
Recent experimentation indicated ORF10 expression moder-
ates innate immunity in vitro. However, whether ORF10 af-
fects COVID-19 in humans remained unknown. We determine
that the ORF10 sequence is identical to the Wuhan-Hu-1 ances-
tral haplotype in 95% of genomes across five variants of con-
cern (VOC). Four ORF10 variants are associated with less vir-
ulent clinical outcomes in the human host: three of these af-
fect ORF10 protein structure, one affects ORF10 RNA struc-
tural dynamics. RNA-Seq data from 2070 samples from di-
verse human cells and tissues reveals ORF10 accumulation is
conditionally discordant from that of other SARS-CoV-2 tran-
scripts. Expression of ORF10 in A549 and HEK293 cells per-
turbs immune-related gene expression networks, alters expres-
sion of the majority of mitochondrially-encoded genes of oxida-
tive respiration, and leads to large shifts in levels of 14 newly-
identified transcripts. We conclude ORF10 contributes to more
severe COVID-19 clinical outcomes in the human host.
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Introduction
As an orphan gene, the coding domain sequence (CDS)

of ORF10 occurs only in severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), Pangolin-CoV-2019, and Bat-
SL-CoV-RaTG13. The ORF10 CDS is absent from the
genomes of other coronaviruses, viruses in general, and cel-
lular organisms (1, 2).

Orphan genes (also called “ORFan” genes in viruses (3))
can arise from the de novo generation of new protein-coding
sequences in nongenic regions of a genome, as novel ORFs
within existing RNAs, or from the rapid large-scale modifica-
tion of existing CDSs (4–7). If maintained during speciation,
orphan genes can shape a phylogenetic lineage (8). This gen-

eration of new genetic elements provides a mechanism for
the disruptive evolution of an existing trait or inception of a
completely novel phenotype (5, 8–12).

Although the vast majority of viral, prokaryotic, and eu-
karyotic orphan genes are still unidentified (13), essential
roles have been elucidated for many orphan genes (5, 12–
17). Orphan genes often affect phenotypes associated with
ecological interactions, providing organisms with new oppor-
tunities for predation, parasitism, and defense (12, 17, 18),
such as paralyzing toxins of parasitic wasps (19) and jelly-
fish (20). Orphan genes enable survival in freezing waters,
and have evolved independently in numerous species (21).

Some orphan genes encode proteins that physically inter-
act with transcription factors, altering gene expression and
eliciting changes in traits that protect the host from biotic or
abiotic stresses (22, 23), modify development (24, 25), or im-
pact metabolism(23).

Initial reports suggested that ORF10 was neither tran-
scribed or translated in the human host (26, 27). As such, in
the scientific literature ORF10 was oddly belittled (ORF10 is
"most peculiar, as it does not share sequence homology with
any known protein" (28) and is "perhaps the least attractive of
SARS-CoV-2 proteins" (29)), and is still often ignored, e.g.
(30–32)

ORF10 does not appear to be necessary for SARS-CoV-
2 transmission (28). However, abundant data shows that
ORF10 can be both transcribed and translated (33–41). Fur-
thermore, biochemical characterization of cell models ex-
pressing ORF10 indicate that ORF10 protein physically in-
teracts with diverse human host proteins (1, 42–47). Targeted
studies show that expression of ORF10 in cell models alters
the cellular immune response in HEK293 cells via the mi-
tochondrial antiviral signaling protein (MAVS) and degrades
cilia in epithelial cells via the stimulation of interferon re-
sponse cGAMP interactor 1 (STING1) (43, 47). These stud-
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ies provide mechanistic insight on how ORF10 might act in
cells. They highlight the importance of a direct evaluation of
the effect of the ORF10 gene of SARS-CoV-2 in individuals
with COVID-19.

To determine whether the ORF10 gene impacts the course
of COVID-19 in the human host, we analyze SARS-CoV-
2 genomes from five variants of concern (VOC) along with
associated clinical disease data from GSAID (48, 49). Our
results reveal that deviations from the canonical ORF10 se-
quence are associated with milder COVID-19 symptoms in
humans. We globally evaluate ORF10 expression in the con-
text of that of other SARS-CoV-2 genes and human host
genes in RNA-Seq samples from diverse human tissues and
disease stages. To gain broader understanding of the molec-
ular events associated with ORF10, we identify genes and
processes that are impacted by ORF10 expression in A549
and HEK293 human cell lines. Our results shed light on the
3D structure of the ORF10 protein and its 2D RNA structure,
the evolutionary trajectory of ORF10, implicate ORF10 in
COVID-19 severity, and reveal ORF10 transcription dynam-
ics and its effects on transcription of host genes in human cell
models.

Results
SARS-CoV-2 ORF10 sequences across genomes of
five VOC.

Early in the pandemic, ORF10 was described as the
most highly conserved SARS-CoV-2 protein (50). To eval-
uate the evolution of the ORF10 sequence in the context
of other SARS-CoV-2 genes, we determined the extent of
mutations in SARS-CoV-2 genomes across the pandemic,
through the emergence of the Omicron VOC. By investi-
gating data from over three million SARS-CoV-2 genomes,
made available at Fumagalli et al. (51), we gained insight
into the SARS-CoV-2 hotspots for synonymous and non-
synonymous mutations. ORF10 has the lowest level of non-
synonymous mutations/genome/site, and one of the lowest
levels of synonymous mutations/genome/site relative to the
other SARS-CoV-2 genes (Fig. 1A). High rates of synony-
mous mutations/genome/site tend to occur in ORF3b, ORF6,
and ORF7b, while ORF3b has an impressive 0.016 non-
synonymous mutations/genome/site (Fig. 1A).

We used these same data (51) to examine the extent of
prevalent mutations in each SARS-CoV-2 gene across the
pandemic. As anticipated, the greatest frequency of preva-
lent synonymous and non-synonymous mutations accumu-
late in the Spike gene, particularly during the Omicron VOC
wave; specifically, >90% of genomes have 20 mutations in
the Spike gene (Fig. 1B - right). This result is in stark con-
trast to the lack of any prevalent mutation in ORF10 (Fig. 1B
- left). ORF1ab and N sequences significantly deviate from
those of the Wuhan-Hu-1 strain, while all other SARS-CoV-2
genes had at least one prevalent mutation in one VOC, though

ORF7a and ORF8 had reverted to the wild type Wuhan
sequence by the Omicron VOC (Fig. 1A and Supplementary
Fig. 1).

To investigate in more detail the ORF10 sequence over
time and across VOC, and ultimately to determine whether
ORF10 mutations are associated with COVID-19 severity,
we assessed 210,101 SARS-CoV-2 genomes in GSAID for
which there was associated clinical metadata (48, 49) (Sup-
plementary Table 1).

Over 95% of ORF10 sequences were identical to that
of the Wuhan-Hu-1 strain (Fig. 2D, Supplementary Table
1). The substitutions were distributed non-homogeneously
throughout ORF10 (Fig. 1C). Fewer than 0.07% of ORF10
sequences had two or more mutations (Supplementary Table
1).

Although C to T substitution bias is atypical of viruses in
general, the phenomenon has been reported for genomes of
Betacoronavirus species, including SARS-CoV-2 (52). C to
T substitution is also a characteristic of humans (53). We
examined the extent and distribution of C to T substitution
bias in the ORF10 gene across the SARS-CoV-2 VOCs. C to
T accounted for the majority of the substitutions (Fig. 1C and
Supplementary Table 1). Surprisingly, the percentage of C to
T substitutions in ORF10 differed substantially among the
VOCs, ranging from 33% of all substitutions in Delta VOC
to 89% of all substitutions in Omicron VOC. The majority
of C to T substitutions were non-synonymous for each VOC
except Omicron (Supplementary Table 1).

To compare among VOC, we randomly selected 103

genomes from each VOC: Alpha, Delta, Omicron, Beta, and
Gamma. In these 5x103 genomes, some sites (i.e. 29601,
29605, 29610, 29634, 29656) are invariant from those of the
wild type Wuhan-Hu-1 sequence. Most other sites are very
rarely mutated ( 1-20 mutations per 103 genomes) regard-
less of the VOC. Only four ORF10 mutations are present in
more than 50/103 genomes in any VOC (sites 29580, 29585,
29632, 29642) (Fig. 1C). Fewer than 0.03% of the sequenced
genomes carry deletions within the ORF10 sequence; these
deletions are clustered between positions 29574-29581; no
insertional mutations were identified (Fig. 2C, Supplemen-
tary Fig. 2, Supplementary Table 1).

Each VOC has ORF10 mutations that dominated at dif-
ferent points during its respective epidemic (Fig. 1D,E).
C29585T punctuated the Alpha VOC epidemic. Mutations
C29625T and C29640T dominated the Beta VOC epidemics.
Viruses belonging to the Gamma VOC had high frequencies
of mutations at C29580T and C29627T. The Delta VOC wave
was mainly marked by the G29648T mutation, whereas the
C29632T mutation marked the first months of the Omicron
VOC.

We sought to understand whether any of the prevalent
ORF10 mutations were shared among the VOCs and, if so,
to assess the extent of their simultaneous circulation (Fig.
1D,E). The locations of the mutations appear non-random.
Notably, from January 2021 to August 2021, C29585T, the
principal mutation seen in Alpha, also appeared in Beta,
Delta, and Gamma. The two mutations that dominated the
Alpha VOC wave (C29614T and C29585T) emerged in the
first few months of the pandemic, and the C29614T muta-
tion also dominated the first half of the Beta VOC wave. The
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Fig. 1. Paucity, skewness, and dynamics of ORF10 mutations in SARS-CoV-2 VOCs. All gene sequences are compared to those of the Wuhan-Hu-1 reference genome
(GenBank NC_045512.2). A,B. Over three million SARS-CoV-2 genomes sampled in nasopharyngeal tissues during the pandemic (GSAID (48, 49, 51)). C,D,E. 210,101
ORF10 sequences with clinical metadata were retrieved from GSAID SARS-CoV-2 sequenced genomes (48, 49). A. ORF10 has the lowest number of nonsynonymous
mutations/genome/nt site, and one of the lowest numbers of synonymous mutations/genome/nt site relative to other SARS-CoV-2 genes. B. Comparison of numbers of
mutations in sequenced genomes for ORF10 and Spike protein of SARS-CoV-2. The ORF10 sequence has essentially remained identical across time and VOCs to the
ORF10 Wuhan-Hu1 reference sequence. All sequences are compared to those of the Wuhan-Hu-1 reference genome. C. Mutations in ORF10 genetic sequence by VOC.
Over 95% of ORF10 genes are identical in sequence to that of the Wuhan-Hu-1 strain. For comparability across VOC, the heatmap depicts data from 503 randomly selected
genomes (103 from each VOC). Salmon colored font on the x-axis represents the original Wuhan-Hu-1 genetic sequence. NT, nucleotide in sampled sequences (if no
substitution, nucleotide in X-axis will match nucleotide in NT-column); VOC, variant of concern. D. Mutations in VOC over time. Most ORF10 sequences were identical to
ORF10 of the Wuhan-Hu-1 reference strain: Alpha VOC, 96% identical; Beta VOC, 99% identical; Delta VOC, 97% identical; Gamma VOC, 98% identical; Omicron VOC,
95% identical. The most prevalent mutations for each VOC are depicted. Y-axis, proportion of mutated sequences with a given mutation. The asterisks mark mutations
that are present across all VOC. E. Co-circulation of ORF10 mutations over time. All VOC are included and the most prevalent mutations are depicted. Y-axis, proportion
of mutated sequences with a given mutation. Terminology: “site” is used to indicate a specific location in a sequence; possible mutations at a given site are: the three
possible substitutions (to a total of four nucleotides), an insertion, or a deletion; a “mutation” in a SARS-CoV-2 gene is defined as any sequence differing from the Wuhan-Hu-1
reference sequence.
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second half of the Beta VOC is dominated by C29640T and,
finally, C29625T. C29640T dominates the beginning of the
Gamma VOC wave, and C29580T was the predominant mu-
tation through the remainder of this wave. While Gamma
VOC’s C29580T and Alpha VOC’s C29614T dominated the
first months of the Delta VOC wave; subsequently, no muta-
tions were highly dominant until the emergence of Omicron.
The beginning of the Omicron VOC epidemic was dominated
by C29659T, followed by a period where few shared mu-
tations were circulating, and later (March and April 2022)
showed an increase in the circulation of Omicron VOC’s
C29666T and Alpha VOC’s C29614T (Fig. 1D,E).

A majority of non-synonymous changes in the ORF10
protein across most VOCs entailed a non-polar AA substi-
tuted to a different non-polar AA; however, in the Alpha VOC
most changes were a substitution of a nonpolar AA to a polar
AA (Fig. 2A,B). The ratio of synonymous/nonsynonymous
mutations was small in all VOC except for Omicron, in which
the number of synonymous mutations was over 2.7 times
higher than the nonsynonymous (Fig. 2C). Several non-
synonymous events were never or rarely detected among the
ORF10 sequences. For example, in no genome were the two
positively charged arginines mutated to encode a negatively
charged amino acid (AA). In only three sequences was the
negatively charged Asp altered to a positively charged AA
(histidine) (2 in Delta, 1 in Omicron VOC) (Fig. 2A,B, Sup-
plementary Table 1).

Association of ORF10 mutations with clinical disease
severity.

To test the hypothesis that ORF10 contributes to COVID-
19, we evaluated the association of the mutations with clin-
ical severity in each major strain of the five VOCs, using a
Chi-square analysis (Supplementary Table 2, Fig. 2E). Most
non-synonymous and synonymous mutations occurred only
a few times in a given strain, and thus did not have the sta-
tistical power to manifest any alterations in disease progres-
sion. However, several mutations with clinical metadata were
present in sufficient numbers in a strain to enable us to poten-
tially detect any association with clinical severity.

We grouped the clinical designation of individuals with
COVID-19 into two groups: individuals that presented with
asymptomatic or very mild to mild symptoms, and individu-
als with moderate to very severe symptoms or who died from
the disease. This grouping resulted in 181,755 individuals
with clinical data and sequenced SARS-CoV-2 genomes and
strain designations whom we were able to study (Supplemen-
tary Table 3).

Four ORF10 mutations are significantly associated with a
more positive disease outcome (p-value < 0.008) (Fig. 2E).
Three of these four ORF10 mutations are non-synonymous:
C29642T, which results in early stop codon Q29* in Omi-
cron VOC BA.1.1.1 (p-value = 2.84E-10); C29585T (P10S)
in Alpha VOC B.1.1.7 (p-value = 4.42E-32); and C29625T

(S23F) in Omicron VOC BA.1.1 (p-value = 7.64E-03).
One synonymous mutation, C29659T in Omicron BA.1 (p-
value = 1.29E-03), confers an improved outcome in COVID-

19 progression.

Several other less prevalent mutations are associated with
a more positive disease outcome (p-value < 0.05, full data in
Supplementary Table 2). Interestingly, >98% of ORF10 se-
quences of Omicron VOC BA.1.16 bore the synonymous mu-
tation C29632T. Thus, in this strain, there were insufficient
ORF10 gene sequences identical to the wild type Wuhan-
Hu1 to analyze effects on COVID-19 disease severity (Sup-
plementary Table 3).

Structural features of ORF10 protein variants associ-
ated with better clinical outcomes.

The three-dimensional (3D) structure of the 38-residue
ORF10 protein has not been experimentally determined.
Therefore, we computationally predicted the 3D structure
of the wild type ORF10 protein (Wuhan-Hu-1) and that of
the three non-synonymous ORF10 mutant variants that are
associated with improved patient outcomes (Fig. 2E), us-
ing RGN2 software (54). RGN2 implements a language
and deep learning model that outperforms AlphaFold2 and
RoseTTAFold for prediction of orphan gene protein struc-
tures.

The wild type ORF10 protein is predicted to fold into an
α-helix consisting of alternating polar and nonpolar AA with
charged side chains near the C-terminus (Fig. 3A). Mutation
S23F swaps the polar AA, Ser, for the non-polar Phe. The
amphipathic α-helix is maintained; however, the model indi-
cates that the two Args are pushed apart, while the Asp flips
direction (Fig. 3C). P10S causes Phe7 and all other AA be-
fore it to alter their direction (Fig. 3B). Electrostatic potential
distribution shows a reduction of the area in the positive patch
observed in the center of the helix for the S23F mutant, and
an increase in the overall hydrophobicity of the α-helix when
compared with wild type ORF10 (Fig. 3A and 3C).

Mutations that introduce a stop codon into ORF10, yield-
ing a truncated protein, were extremely rare in any VOC. An
exception is, the C29642T(Q29*) ORF10 variant, which oc-
curs in 0.08-0.6% of Omicron, Alpha, Delta, and Gamma
VOC sequences and is associated with a less severe clini-
cal outcome. C29642T(Q29*) results in premature termina-
tion of the ORF10 protein just past the second Arg residue,
leading to a shortened amphipathic α-helix missing the neg-
atively charged Asp, leaving only positive amino acids. A
second premature termination mutant, ORF10 R20*, was
present solely in 2 sequences of the Omicron VOC (Supple-
mentary Table 2); patients with this variant allele had mild
symptoms, but sample numbers are insufficient to determine
statistical significance. Our finding extends the data of (28);
these researchers identified two patients, both with cases of
mild COVID-19, who were infected with a truncated SARS-
CoV-2 ORF10; they concluded that ORF10 is not required
for SARS-CoV-2 replication (28).
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Fig. 2. Mutations in SARS-CoV-2 ORF10 protein and their association with COVID-19 virulence. Data and metadata were retrieved from GISAID SARS-CoV-2
sequenced genomes (48, 49); 210,101 ORF10 sequences were aligned to the Wuhan-Hu-1 reference sequence. A. Non-synonymous AA changes in ORF10. Over half of
the changes in the ORF10 protein are a substitution of one non-polar AA to a different nonpolar AA (in Beta, Gamma, Delta, and Omicron VOCs) or a polar AA (in Alpha
VOC). For comparability across VOC, the heatmap depicts data from 503 randomly sampled genomes, 103 from each VOC. Salmon colored font on x-axis represents the
original Wuhan-Hu-1 AA sequence and AA properties include (NP = nonpolar, P = polar, +/- depict charge). B. Non-synonymous AA changes in ORF10 by AA property. C.
Proportions of synonymous, non-synonymous, deletion, and early termination mutations. Over two thirds of the changes in the Omicron VOC are synonymous substitutions,
whereas in other VOCs most changes were non-synonymous substitutions. Deletions and early terminations are rare. D. Non-synonymous mutations relative to all mutations
and Wuhan in each VOC. E. P-values for association of four ORF10 mutations with better clinical outcomes for patients with COVID-19. Outcomes were compared within
each given VOC strain. Chi-square test was used to compare individuals with i) asymptomatic, very-mild, or mild symptoms, to individuals ii) with moderate, very severe
symptoms or who died of this disease. These are: C29642T, which results in early stop codon Q29* in Omicron BA.1.1.1 (p-value = 2.84E-10); C29585T (P10S) in Alpha
B.1.1.7 (p-value = 4.42E-32); and C29625T (S23F) in Omicron BA.1.1 (p-value = 7.64E-03). One synonymous mutation, C29659T in Omicron BA.1 (p-value = 1.29E-03).
The x-axis normalizes the comparison.
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Fig. 3. Structural features of the ORF10 protein and three mutants associated
with reduced virulence. Structures of the protein encoded by the ORF10 wild type
Wuhan-Hu-1 strain and those encoded by the three ORF10 non-synonymous mutants
that were associated with a milder COVID-19 (see Fig. 2E) were modeled with RGN2
(54). Atomic coordinates were spatially aligned by the SSM superposition algorithm in-
cluded in the Coot software (55). Each structure was represented using a ribbon model
(side and top views) and the Van der Waals surface was colored by electrostatic poten-
tial (color scale below the surface model). A. ORF10 wild type Wuhan-Hu-1 reference
genome; B. P10S ORF10; C. S23F ORF10; and D. Q29* ORF10.

Structural features of wild type ORF10 RNA and its
clinically-relevant mutant allele.

We computationally predicted the structure and dynam-
ics of wild type ORF10 RNA. We used ScanFold, a soft-
ware developed to model significantly stable RNA sec-
ondary structures and used to develop a database for
structures of genes of several viruses, including SARS-
CoV-2 (56). We queried the ScanFold database predic-
tions at https://structurome.bb.iastate.edu/
sars-cov-2 to obtain structural predictions on SARS-
CoV-2 ORF10 (Fig. 4).

Overall, the ORF10 region is inferred to be structured,
with most nucleotides participating in base-pairing that pro-
vides ordered stability. Three stem-loops are predicted for
the region encompassing ORF10, with the first two hairpins
being larger and having more significant stability (i.e. a low
ΔG z-score). The average per nucleotide ΔG z-score of this
region is -1.19, with a minimum and maximum value of -1.96
and 0.55, respectively. Negative z-scores indicate the num-
ber of standard deviations more stable than random in a na-
tive RNA sequence, hence, ORF10 has more non-random se-
quence order and, therefore, a potential for function affected
by RNA secondary structure.

The lowest z-score nucleotides occur in the first large
stem, while the second stem contains more moderate yet pre-
dominantly negative z-score nucleotides. Both of the large
stems have stretches of continuous base pairs punctuated with

bulges, internal loops, and terminal hairpins, with the start
codon for ORF10 occurring partway in the bulge on the 5’-
end of the first stem (Fig. 4A,B).

The final, small stem, which encompasses the stop codon,
has the most positive (i.e., least significant) z-score of the
ORF10 gene. The collection of higher z-scores in this stem
indicates that the RNA structure may be less likely to play
a functional role than the upstream stem loops, and may be
transient or dynamic (Fig. 4A,B).

To determine whether the ORF10 RNA itself might have
consistent structural features, we evaluated the conservation
of the structure of the ORF10 region in diverse coronaviruses.
R-Chie arc diagrams for the two ScanFold-predicted hair-
pins are shown with conservation annotated on an alignment
of diverse coronaviruses (Fig. 4C). Both hairpins are 100%
conserved in the structure between human (SARS-CoV and
SARS-CoV-2), bat (GQ153545 and KY938558), and pan-
golin (MT040333) strains of the SARS coronaviruses. Coro-
navirus genomes of Alpha-, Delta-, and Gamma coronavirus
genera are more distantly related to SARS-CoV-2 (a Beta-
coronavirus); these share little sequence or structural similar-
ity to ORF10.

A query of SARS-CoV-2 ORF10 against all Coronaviri-
dae sequences in the ViPR database (https://www.
viprbrc.org/brc/home.spg?decorator=vipr)
for evidence of covariation, to assess concerted evolution of
paired sites that would preserve RNA structure, indicates the
first two hairpins have statistically significant covarying base
pairs (Fig. 4C). Almost all of the base pairs in the top five
alignment tracks are 100% conserved, being either identical,
consistent (single point) mutations, or compensatory (double
point) mutations that preserve structure. For example, in
the second, shorter hairpin, a CG base pair occurs as a
compensatory AU pair in bat and SARS-CoV sequences, and
as a UA pair in pangolin; a UA pair occurs as a compensatory
CG base pair in most other closely conserved sequences. In
general, structure is conserved in human, bat, and pangolin
Betacoronavirus strains, with more distant sequences/strains
unable to form stable structures with similar base pairing.
This analysis is supportive of the model structure; the high
conservation of the ORF10 RNA structure in Betacoro-
naviruses that lack an open reading frame to encode the
ORF10 protein (Fig. 4) is indicative that ORF10 RNA itself
might have a biological function in these viruses.

The synonymous ORF10 mutation, C29632T, predom-
inated the first four months of the Omicron VOC wave
(Fig.1D) and was associated with a better clinical outcome
(Supplemental Table 2). We evaluated the effect of this mu-
tation on the secondary structure of ORF10 RNA using Scan-
Fold. C29632T converted a CG base pair to a UG wobble
base pair. The mutation did not impact the modeled sec-
ondary structure according to ScanFold. Interestingly, the
local thermodynamics of the ORF10 transcript were signif-
icantly affected. The mutation caused changes in the pre-
dicted minimum free energy (MFE) structure and positional
entropy of the nucleotides around the mutations. Positional
entropy, calculated by the RNAfold program, is a measure

6 | bioRχiv Haltom et al. |

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 29, 2023. ; https://doi.org/10.1101/2023.11.27.23298847doi: medRxiv preprint 

https://structurome.bb.iastate.edu/sars-cov-2
https://structurome.bb.iastate.edu/sars-cov-2
https://www.viprbrc.org/brc/home.spg?decorator=vipr
https://www.viprbrc.org/brc/home.spg?decorator=vipr
https://doi.org/10.1101/2023.11.27.23298847
http://creativecommons.org/licenses/by/4.0/


Fig. 4. Secondary structure analysis of SARS-CoV-2 ORF10 RNA and its conser-
vation in Betacoronaviruses. ORF10 wild type Wuhan-Hu-1 sequence is shown. A.
Top, a representation of the SARS-CoV-2 genome with the 5- and 3-untranslated re-
gions colored in teal and the coding regions colored in gray. ORF10 is highlighted in
purple and a zoomed-in representation of the region from nucleotides 29546 to 29694
is shown. The 2D base pairing of this sequence is represented by the colored arc
diagram where green arcs represent BPs with ∆G z-scores lower than -1 and greater
than -2 and yellow arcs represent ∆G z-scores greater than -1. Below, arc diagram of
a sequence track of nucleotides; A (green), C (blue), U (red), and G (orange). Below
there is a representation of the ORF10 coding region (gray) flanked by the untrans-
lated sequence (teal). Red bars represent a per nucleotide (NT) ∆G z-score track of
the region. B. 2D representation of the ORF10 RNA structure. The per NT ∆G z-
score is overlaid on each nucleotide and the heatmap scale is annotated and shown
(top right). The ORF10 start codon is labeled and annotated in green, the stop codon
in red. Each major stem is labeled Stem I, II, or III based on the order they appear.
C. RNA structure is conserved between the SARS-CoV-2 ORF10 and other species
of Betacoronavirus. R-Chie arc diagrams for the two ScanFold predicted hairpins are
shown with conservation annotated on an alignment of human coronaviruses. Acces-
sion numbers, genera, and common names for each aligned sequence are indicated
on the left. All base pairs of ORF10 are 100% conserved among the four most closely
related Betacoronavirus genomes (green). Consistent (single point) mutations (light
blue) and compensatory (double point) mutations (dark blue) that preserve structure
are found in related Betacoronaviruses. Nucleotides that do not maintain SARS-CoV-2
ORF10 structure are denoted in orange and gaps in sequence alignments are denoted
in gray. Below the R-Chie arc diagrams are 2D representations of each hairpin, with
consistent and compensatory mutations indicated (2D representations visualized with
VARNA). Statistically significant covariation sites identified by R-Scape are annotated
with green boxes on the 2D models.

of a nucleotide’s likelihood of being in a specific conforma-
tional state. A low entropy indicates greater certainty in the
model structural arrangement of a nucleotide, while a high
entropy indicates less certainty, as alternative arrangements
have potential for formation. The MFE values for the wild
type and synonymous mutation sequences were similar, with
the C29632T mutation having MFE (-31.6 kcal/mol). The
average positional entropy for the wild type and C29632T
sequences were 0.59 and 0.78, respectively. The C29632T
mutation increased the average positional entropy of the se-
quence compared to the wild type.

The conservation of secondary structure is consistent with
a functionality for ORF10 RNA. A functionality of ORF10

RNA would entail expression of the transcript. To our knowl-
edge, expression of ORF10 RNA in any Betacoronavirus
other than SARS-CoV-2 had not been reported. We analyzed
ORF10 transcript levels in samples of intestinal organoids
that were exposed to SARS-CoV Betacoronavirus, which
does not contain an ORF10 open reading frame (57). ORF10
RNA is highly accumulated in these SARS-CoV-infected
samples, providing further evidence consistent with a role for
ORF10 RNA in Betacoronavirus pathology.

SARS-CoV-2 ORF10 transcript is dis-coordinately ac-
cumulated across tissues of COVID-19 patients and
SARS-CoV-2-infected organoids and cells.

To determine the extent of ORF10 expression, and to
gauge whether developmental, genetic, or environmental
conditions might influence the accumulation of SARS-CoV-2
ORF10 transcripts relative to other SARS-CoV-2 transcripts,
we analyzed levels of SARS-CoV-2 transcripts in raw data
from RNA-Seq data representing 2,070 diverse SARS-CoV-
2-associated human tissues and cells from 60 independent
studies downloaded from Sequence Read Archives (SRA,
https://www.ncbi.nlm.nih.gov/sra). We antic-
ipated that this analysis might also shed light on reports (e.g.,
(26, 27)) that ORF10 is not transcribed. Samples include
nasal swabs, blood cells and autopsied organs from individu-
als with COVID-19, and, in vitro SARS-CoV-2-infected hu-
man organoid models, primary, and established cell lines.

This analysis of the raw data provided a repertoire of in-
formation on SARS-CoV-2 transcript accumulation, most not
quantified previously (Fig. 5A, Supplementary Files 1,2;
Supplementary Fig. 3). SARS-CoV-2 transcripts, including
ORF10, were abundant in most of the hundreds of samples
from the viral portal of entry in human nasal tissues, and par-
ticularly abundant in individuals

with high-viral titres; in contrast, SARS-CoV-2 transcripts
were undetectable in the 1079 samples of human blood of in-
dividuals with COVID-19 (Fig. 5A, Supplementary Fig. 3).
However, few samples from heart, liver, brain, kidney, bowel,
or lymph nodes of COVID-19 autopsy patients had detectable
SARS-CoV-2 transcripts (3/42 heart samples, 4/37 liver sam-
ples, 0/9 frontal cortex samples, 1/18 mediastinal lymph node
samples, 0/30 kidney samples, and 1/4 bowel autopsy sam-
ples had detectable SARS-CoV-2 transcripts) (Supplemen-
tary Fig. 3). This indicates either that the vast majority of
patients have cleared the virus from these organs by the time
of death, or that these organs had never been infected.

In contrast, SARS-CoV-2 transcripts were found in lungs
from deceased COVID-19 infected individuals in 4/32 sam-
ples from one study but 2/3 and 32/52 from two other study’s
(Supplementary Fig. 3). That some human lungs retain viral
transcripts far into the course of COVID-19 is a possible ex-
planation of why some patients develop Post-Acute COVID-
19 Syndrome (PASC).

SARS-CoV-2 transcripts accumulated following in vitro
infection in most samples, and to particularly high lev-
els (many up to Log2(TPM) 15) in SARS-CoV-2 in vitro-
infected primary cardiomyocytes, nasopharyngeal cells,
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Fig. 5. Abundance of ORF10 and other SARS-CoV-2 transcripts across multiple conditions. A. Heat map of diverse human tissues, cells, and organoids after SARS-
CoV-2-infection. 2,070 SARS-CoV-2-associated samples from 60 independent studies were retrieved from Sequence Read Archives. To compare expression differences
among genes within each sample, raw reads were processed using pyrpipe (58) and quantified as the log2 of the transcripts per million (TPM). The TPM was then averaged
across specific conditions that had at least n of 3. Metadata summary for each sample cohort is in the x-axis; the number at the bottom indicates sample size. Complete TPM
data and metadata, as well as TPM heatmaps of single samples are in (Supplementary File 2, Supplementary Table 4, Supplementary Fig. 3). B. Functional enrichment of
co-expression clusters of human host genes in batch-corrected experimental data versus 100 iterations of randomized data. The method was modified from (59) ).
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A549 cells (epithelial, lung carcinoma), HEK293T cells (ep-
ithelial, embryonic kidney), VeroE6 cells (epithelial, mon-
key kidney), Calu3 cells (epithelial, lung adenocarcinoma),
and CaCo-2 cells (epithelial, colorectal adenocarcinoma) as
well as in human organoid lungs transplanted to mice, hu-
man airway epithelial, and fetal and pediatric gastric, and
colon and proximal intestinal organoids (Fig. 5A, Supple-
mentary Fig. 3). SARS-CoV-2 transcripts were undetectable
in in vitro-infected HK2 (proximal tubular kidney) and Wi38
diploid cells of embryonic lung) (Fig. 5A, Supplementary
Fig. 3). (The absence of SARS-CoV-2 transcripts does not
imply HK2 and Wi38 cells cannot be infected with the virus,
but simply that they were not infected under the particular
experimental conditions.)

The pattern of ORF10 accumulation differs from other
SARS-CoV-2 transcripts (Fig. 5 and Supplementary Fig.
3). Specifically, ORF10 is the most abundant SARS-CoV-
2 transcript in numerous samples from in vitro-infected in-
testinal organoid models, ACE2-A549 cells, cardiomyocytes
and macrophages. In contrast, ORF10 transcript is present
at very low levels or not detected in several nasopharyngeal
samples from humans with COVID-19, and in multiple lung-
related cells treated in vitro with SARS-CoV-2, despite other
SARS-CoV-2 transcripts being more abundant (Fig. 5 and
Supplementary Fig. 3).

We assessed expression of the human host genes in 3208
RNA-Seq samples, including control samples. We quantified
expression of the canonical GenCode-annotated coding and
non-coding genes and the highly-expressed evidence based
(EB) genes (60). Mining a massive amount of RNA-Seq ex-
pression data can shed insights into host gene functions and
processes integral to COVID-19 disease. To optimize bio-
logical signal in the data, and reduce noise associated with
multiple batches, we gauged the effectiveness of 12 meth-
ods/parameters for data processing by creating a large pair-
wise co-expression matrix for raw counts and batch corrected
counts, partitioning the matrix by Markov Chain Clustering
(MCL) (61) and

calculating the average of the best adjusted p-values for
each cluster’s Go-terms (59). For each approach, we com-
pared the cluster enrichment of the experimental data to that
of randomized data by creating clusters of the same sizes but
randomly shuffling the genes throughout the clusters for 100
iterations (See Methods) (59). Clusters of the greatest bi-
ological coherence, and with the greatest number of genes
in clusters, were obtained from Combat-Seq-batch-corrected
data followed by a pairwise Pearson’s correlation matrix (cut-
off of 0.8) (Fig. 5B) so we chose these data for further study.
The MCL clusters represent functions that are altered under
the experimental conditions represented in the data, covering
experiments centered on SARS-CoV-2 infections across cell
and tissue types. Individual MCL coexpression clusters are
enriched in immune-related processes such as "positive regu-
lation of interleukin-1 beta production", “lymphocyte differ-
entiation”, “monocyte differentiation”, or "defense response
to virus"; mitochondrial processes such as “autophagy of mi-
tochondrion”, “aerobic respiration”, "establishment of mito-

chondrial localization", "inner mitochondrial membrane or-
ganization", "mitochondrial gene expression”, or "mitochon-
drial translation"; and more (Supplemental Table 5).

Expression of ORF10 in A549 and HEK293 cells is as-
sociated with multi-pronged changes in gene expres-
sion.

Expression of ORF10 has been shown to induce mi-
tophagy resulting in the degradation of the mitochondrial an-
tiviral signaling protein (MAVS), antagonizing an innate im-
mune response (62, 63). However, no one had yet looked
into the effect of ORF10 expression on the expression of
host transcripts. To gain insight into the overall changes
in gene expression induced by ORF10, we used a non-
targeted approach, generating doxycycline-inducible A549
and HEK293-T cell lines driving ORF10 expression. Be-
cause doxycycline itself can alter gene expression (64), we
used doxycycline-inducible cell lines driving GFP as control.
We selected for cells with no or minimal ORF10 baseline ex-
pression but robust induction following doxycycline.

RNA was isolated from A549 and HEK293-T cells (4
samples per condition) that were treated with doxycycline for
5 days. ORF10 RNA and protein accumulation were signifi-
cantly increased after addition of doxycycline to the medium.
Cell viability was not impacted by ORF10 expression. We
quantified the levels of human transcripts in the cell sam-
ples, including all those currently annotated in GenCode and
79,203 novel Evidence-Based (EB) human transcripts, many
of which have been determined to be orphan genes (60). We
determined those genes that were DE associated with ORF10
expression, using a adj p-value cutoff of <= 0.05.

Genes associated with pathways of mitochondrial dys-
function and immune pathways are affected (Fig. 6A,
Supplementary Table 6). ORF10 expression robustly de-
creases the expression of key genes involved in mito-
chondrial oxidative phosphorylation (OXPHOS). The 160
OXPHOS-complex protein subunits are mostly encoded by
nuclear DNA, with 13 encoded by the mitochondrial genome
(mtDNA); nuclear- and mitochondrially-encoded ribosome
proteins, 12S rRNAs, 16S rRNAs and 22 tRNAs are neces-
sary for mitochondrial protein synthesis, and hence OXPHOS
(66).

Expression of ORF10 in both cell lines results in a per-
turbation of expression of the majority of mitochondrially-
encoded genes, and induces a variety of cell-line-specific re-
sponses. In A549-cells, ORF10 decreases expression of 12S
MT-RNR2 and 16S MT-RNR1 and mitochondrially-encoded
genes required for the electron transport chain: complex I
subunits MT-ND1, MT-ND4, MT-ND4L, MT-ND5; complex
III subunit MT-CYB; complex IV subunits MT-CO1, MT-
CO2, MT-CO3; and complex IV subunit MT-ATP6. In 293T-
cells, expression of ORF10 results in a robust decrease in the
expression of the nuclear-encoded mitochondrial ribosomal
proteins MRPL4, MRPS34, MRPL41 and complex I subunits
NDUB7 and NDUFS7, along with an increase in expression
of additional nine mitochondrially-encoded OXPHOS genes
(Fig. 6A). These alterations would disrupt mitochondrial
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Fig. 6. ORF10 expression induces mitochondrial and immune dysfunction. ORF10 expression was induced in A549 and 293T cells. Levels of human host GenCode-
annotated and novel EB genes were quantified. Differentially expressed (DE) genes were considered as p-adj <0.05. Data for all genes is in Supplementary Table 5. A.
Heatmap depicting Log2 fold change (L2FC) of DE mitochondrial and immune genes. CAT, functional category. Fourteen human orphans and other novel transcripts (EB)
are DE across cell types. Phylostratal designation reflects the era of gene origin. ncRNA, non-coding RNA. B. Functional enrichment analysis of the 200 DE genes with the
greatest L2FC. ToppGene (65) was used to determine GO and HP enrichment. ).

function by decreasing OXPHOS and mitochondrial mem-
brane potential (∆Ψm), and lead to elevated mitochondrial
reactive species (mROS) production. ∆Ψm reduction and
mROS increase can trigger mitophagy by the host to main-
tain mitochondrial homeostasis (67, 68).

These data indicated that ORF10 expression induces mi-
tochondrial dysfunction to trigger mitophagy and the degra-
dation of MAVS to abate the immune response. Consistent
with this concept, despite the absence of an immunoregula-
tory stimulator we observed a downward trend of innate im-
mune genes in ORF10-expressing A549-cells and 293T cells.
Down-regulated genes in A549-cells expressing ORF10 in-
clude IFIT1, IFIT3, MALL, and PCBP2; in 293T-cells ex-
pressing ORF10, MIF, JUND, PIM3, DDIT4, SIVA1 are
downregulated.

To expand identification of human orphan genes that are
expressed only under specific conditions, we analyzed RNA-

Seq raw data from over 30,000 samples of diverse human
cells, tissues and diseases, including cancers and COVID-19,
and identified 79,203 previously-unannotated human tran-
scripts having a high mean expression level under one or
more biological conditions (60). Most transcripts contain
ORFS predicted to encode human orphan proteins.

ORF10 expression in A549 and 293T cells results in dif-
ferential expression of only tens of these 79,203 recently
identified transcripts (Supplemental Table 6, adj p-value
<0.05). ORF10 expression induces up-regulation of 19 tran-
scripts and down-regulation of three in A549 cells (Sup-
plementary Fig. 5), and the up-regulation of 13 transcripts
and down-regulation of 28 transcripts in 293T cells (Supple-
mentary Fig. 4). Interestingly, 14 of these differentially-
expressed transcripts are shared between 293T and A549
cells; three of these are orphan genes- present in Homo
sapiens only- and one is restricted to homininae (present
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in African apes and humans) (Fig. 6A). Many are up-
or down-regulated by more than 10-fold. Five, such as
EB.chr5G23114, are detectably expressed only under one
condition or the other. Eight of the DE genes shared across
both cell types are expressed in the same direction; the others
are up-regulated in one cell line and down-regulated in the
other (Fig. 6A). A similar difference in direction of expres-
sion of EB genes between cell or tissue types has been noted
for functionally-annotated genes including genes involved in
mitochondrial and/or immune processes (Fig. 6A and (69)).
These transcripts provide priority targets for future research
into the ORF10 mechanism of action.

Discussion
Orphan genes constitute nearly one-third of all ORFs in

many viral genomes(70); one Yaravirus genome is almost ex-
clusively composed of orphan genes (71). In contrast, ORF10
is the only orphan gene yet identified in the genome of SARS-
CoV-2; it comprises about 0.4% of the genome. ORF10 se-
quence has maintained high fidelity despite 7.5E+18 gen-
erations of reproduction of SARS-CoV-2 (based on each in-
fected person carrying 10 billion virions during peak infec-
tion (72) and 650,000,000 infected humans worldwide), and
on the relatively high mutation rates in RNA coronaviruses
including SARS-CoV-2 (estimated as 1.3 × 106 per-base
per-infection cycle (73)). Thus, although SARS-CoV-2 can
be transmitted without ORF10 and SARS-CoV-2 replicates
without a full-length ORF10 (28), fewer than 5% of genomes
have even a single mutation in ORF10 relative to the origi-
nal Wuhan-Hu1reference strain, and no sequence deviations
from the Wuhan-Hu-1 ORF10 sequence have persisted over
time. In contrast to ORF10, ORF1a, ORF1b, ORF3a, E, M
ORF6, ORF8, N and S genes have diverged significantly in
NT and AA sequence; this is most evident with the recent
emergence of the Omicron VOC, which has 50 new perva-
sive mutations, 32 in the spike protein (74, 75).

Novel proteins encoded by orphan genes provide new ele-
ments that enable innovative remodeling of evolution(5, 12–
14, 76, 77). Many proteins encoded by orphan genes of cel-
lular organisms and virus, including ORF10, are promiscu-
ous, binding to a range of host cell molecules (1, 18, 42–
46, 78, 79), thus potentially having a range of functions.
Viral orphan genes characterized to date promote transmis-
sion, replication, and/or reproduction. Interactions among
de novo orphan gene proteins of phages and those of their
pseudomonad hosts create a cellular environment that is opti-
mized for reproduction, thus enabling the virus to evade bac-
terial host defense systems(18). Other viral orphan gene pro-
teins bind or influence transcriptional factors in human hosts
(78), for example acting as (non-canonical) histones (79).

That only SARS-CoV-2, Pangolin-CoV-2019, and Bat-
SL-CoV-RaTG13 viruses have a full-length ORF10 open
reading frame is indicative of ORF10 having emerged de
novo in that lineage’s common ancestor. Consistent with the
de novo emergence of ORF10 as a protein-coding gene, the
ORF10 AA sequence is highly positively selected in SARS-
CoV-2, pangolin, and bat, whereas the truncated ORF10 open

reading present in other SARS-CoV lineages is neutrally
evolving (80).

Neither conservation of sequence nor a demonstration of
ORF10 cellular action provide direct evidence as to whether
the ORF10 gene is physiologically significant in human dis-
ease. We anticipated that combining genomic data and
disease severity metadata from individuals with COVID-19
might reveal whether ORF10 is physiologically significant.
By evaluating the clinical outcomes associated with muta-
tions in the ORF10 gene obtained from hundreds of thou-
sands of SARS-CoV-2-infected individuals, we show that de-
viations from the canonical ORF10 sequence are associated
with reduced COVID-19 severity in humans. These results
indicate that ORF10 function is vital for viral efficacy.

Whether ORF10 might function directly as RNA had not
been experimentally addressed, however several lines of ev-
idence support this concept. The phylogenetic conservation
of sequence and structure in ORF10 RNA is consistent with
a direct function for the RNA. The observed covariation in
each stable hairpin of ORF 10, arising from compensatory
base changes among the SARS-CoV-2 and other virulent Be-
tacoronavirus, including bat, pangolin and SARS-CoV, is a
validation of model structure. Also, the high percentage of C
to T mutations among the mutant ORF10 sequences is indica-
tive of a constraint associated with RNA (or DNA) secondary
structure.

Structural aspects of the RNA are also consistent with a
function for ORF10 RNA. The secondary structure of ORF10
RNA contains low (i.e., negative)ΔG z-score regions, repre-
senting sequences with a non-random nucleotide order whose
nucleotides base pair to form structures with much greater
stability than would be expected based on nucleotide com-
position. Sequences with low ΔG z-scores are likely se-
lected for, thus maintaining a certain nucleotide sequence or-
der for structure/function. While the average per NT ΔG z-
score for the ORF10 region (-1.19) is over a full standard
deviation lower than randomized sequences (of identical nu-
cleotide composition), it is not more stable than the overall
average ΔG z-score of the entire SARS-CoV-2 genome (-
1.49). Indeed, low average genome z-scores appear to be a
feature of the Coronaviridae family, especially when com-
pared to other riboviruses (81). For example, the HIV and
ZIKA genomes have average genome z-scores of -0.5 (82).
Given the large size of the SARS-CoV-2 genome, pressures
for compact folding and packing of the RNA to fit in the viral
capsid favors the genome forming a high degree of structure.
In addition, several RNA structures within the SARS-CoV-2
genome have been shown to perform regulatory functions, in
particular, the 5’ UTR and the frameshift stimulatory element
(83).

Our finding that ORF10 transcript is highly expressed in
host cells infected with SARS-CoV Betacoronavirus, which
lacks the ORF10 CDS, is consistent with the transcript it-
self being functional. Potentially, ORF10 RNA might inter-
act with regulatory molecules or chromatin to modulate host
functions such as transcript stability, localization, or transla-
tional efficiency. The latter is perhaps more likely, consider-
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ing the presence of the hairpin structures at the 3’ region of
SARS-CoV-1, which does not contain an open reading frame.

Perhaps the strongest evidence that ORF10 functions as
RNA is the milder COVID-10 symptoms associated with in-
dividuals infected with SARS-CoV-2 with RNA NT mutation
C29659T.

The large gap we observed in the expected location of the
ORF10 Stem 1 loop of seasonal Betacoronavirus and Alpha-
coronavirus genomes HCoV-OC43, HCoV-HKU1, HCoV-
229E, and HCoV-NL65 might relate to a loss of the function
of ORF10 RNA in these human seasonal coronaviruses. Con-
sidering our findings that genetic disruptions in ORF10 RNA
led to milder COVID-19 symptomatology, this absence of a
full ORF10 RNA in human seasonal coronaviruses is con-
sistent with the milder disease that may be induced by these
viruses(84).

Because RNAs can form both stable, rigid structures and
unstable, dynamic structures; a single RNA transcript can
contain different structural landscapes. As with proteins, the
stability and dynamics of a functional RNA motif are often
carefully balanced for precise regulatory function. Disrup-
tions in stability or dynamics can significantly impact the
function of the motif. The clinically relevant synonymous
mutations in ORF10 alter the positional entropy of the region,
and this could be a factor in their effect on patient outcomes.
These mutations may also affect sequence-specific binding
sites for unknown trans-acting factors, and disruption of these
potential binding sites could lead to a loss of interaction. The
precise roles of the unusually ordered, stable and conserved
ORF10 RNA structure, and how the mutation associated with
reduced clinical symptoms may affect this function, is a sig-
nificant target for further experimental analyses.

Successful infection and replication requires viruses to be
able to attenuate innate antiviral responses (85). A charac-
teristic feature of COVID-19 is its dysregulated immune re-
sponse, with impaired type I and III IFN expression and an
overwhelming inflammatory cytokine storm. RLRs, MDA5,
MAVS, and cGAS–STING signaling pathways are responsi-
ble for sensing viral infection and inducing interferon (IFN)
production to combat invading viruses. Consistent with this
viral requirement to block host-mediated innate immune ac-
tivation, ORF10 expression in A549 cells has been shown to
impair cGAS–STING and MAVS signaling, thereby antago-
nizing innate antiviral immunity and promoting viral persis-
tence and replication (47). Mechanistically, ORF10 protein
interacted directly with STING, inhibiting STING–TBK1 as-
sociation, STING oligomerization, and trafficking of STING
to the Golgi (47). Our meta-analysis of RNA-Seq data shows
coexpression of ORF10 transcript level with that of STING1
across multiple conditions, also consistent with a role of
ORF10 in the induction of STING1 transcription or increased
STING1 RNA stability.

ORF10 expression in hACE2-HELA cells (43) induced
many of the gene expression changes we see in A549
cells. ORF10 abated elevation of levels of the SARS-CoV-
2-induced ISG15 and OAS1 mRNAs and proteins, and de-
creased levels of IRF3, MAVS, TBK1, RIG-I and MDA5 pro-

teins (43). Mechanistically, ORF10 binds and activates Nip3-
like protein X (BNIPL1/NIX), inducing mitophagy, and lead-
ing to MAVS degradation, blockade of IFN responses, and
promotion of viral replication(43, 47). Other viruses, includ-
ing HCV (86, 87), HBV (88, 89), HPIV3 (90) and HHV-8
(90), also have been shown to trigger mitophagy, promote
persistent infection and attenuate innate immune responses.

In a different cellular context, epithelial cells, ORF10 ex-
pression impaired cilia function and caused lung damage
when expressed in rodent models (91). Specifically, ORF10
interacts with the ZYG11B subunit of CUL2ZYG11B pro-
tease (42, 92, 93), thereby increasing the overall E3 ligase
activity, and triggering proteasome-mediated degradation of
intraflagellar transport (IFT) complex B protein, IFT46 (92).
Exposure of primary human nasal epithelial cells (HNECs)
or the respiratory tract of hACE2-expressing mice to ORF10
results in ciliar-dysfunction, including in HNECs a rapid loss
of the ciliary layer via ORF10-induced IFT46 degradation
(92). These findings indicate potential functions of ORF10
in COVID-19. First, ORF10 impairs the cGAS–STING and
MAVS signaling to antagonize innate antiviral immunity and
promote viral persistence and replication (43, 47). Second,
ORF10 interaction with the CUL2ZYG11B complex triggers
the proteasome-mediated degradation of IFT46, resulting in
ciliary dysfunction (92). Our pathway enrichment analysis
indicates that ORF10 expression induces dysregulation of or-
phan genes and OXPHOS genes and is associated with air-
way obstruction and DNA damage response, providing new
insight into how ORF10 can cause damage.

In line with ORF10 impairment of the cGAS–STING and
MAVS signaling (43, 47), we hypothesize that the ORF10
sequence is conserved in part because it provides a selec-
tive advantage to viral replication by antagonizing innate an-
tiviral immunity to promote viral persistence and replication.
Consistent with this concept, silencing ORF10 via siRNA-
infected Hela-hACE2 cells decreased levels of MAVS protein
and viral replication (43).

ORF10 might impact COVID-19 severity by increased vi-
ral replication (43), viral persistence, and/or ciliary damage
via IFT46 degradation. This could explain why mutations
that affect the sequence of ORF10 protein resulted in de-
creased COVID-19 severity, and reflect the importance of this
novel orphan gene to the fitness and deadliness of SARS-
CoV-2.

Our meta-analysis quantified SARS-CoV-2 transcript ac-
cumulation across raw reads of RNA-Seq data from thou-
sands of samples; in many of these studies SARS-CoV-2 tran-
scripts had never been quantified. Our results are generally
consistent with previous reports of SARS-CoV-2 levels de-
termined by plaque-forming assays and RNA-Seq studies an-
alyzed independently (69). For example, SARS-CoV-2 tran-
scripts were not detected in autopsied kidney, heart, liver or
lymph nodes of individuals who died from COVID-19, but
were found at a low level in autopsied lungs of these individ-
uals (69).

A striking finding of our meta-analysis is the disjunctive
accumulation of ORF-10 RNA in relation to other SARS-
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CoV-2 transcripts. Notably, ORF10 transcripts are highly
accumulated in intestine organoid models, whereas other
SARS-CoV-2 transcripts are lower or not detected, however,
a cohort of the nasopharyngeal samples have only negligi-
ble ORF10 but high levels of other SARS-CoV-2 transcripts.
This phenomenon might be due to differences in ORF10
RNA stability, potentially associated with its unique stem-
loop structure that might impact degradation in some cel-
lular contexts. The biological significance to the host is a
subject for future investigation. Thus, the ORF10 transcript
may have a similar accumulation early in infection relative
to the other transcripts, but could predominate in post-acute
infected tissues due to increased stability. Consequently, in-
creased ORF10 transcripts could aid the virus in evading an
innate immune response for an extended period, resulting in
increased viral persistence. This prolonged elevation of the
ORF10 transcript could also contribute to long COVID. The
biological significance to the host is a subject for future in-
vestigation.

The sometimes inconsistent literature on the role of
ORF10 emphasizes the importance of carefully interpret-
ing the effect of viral genes in the context of viral load,
time, and tissue/cell type. For example, it was reported
that the ORF10–Cullin-2–ZYG11B complex is not involved
in SARS-CoV-2 infection of cultured HEK293T cells (44).
However, the detailed study of (92) showed that ORF10 in-
creased CUL2ZYG11B E3 ligase activity via a physical in-
teraction with substrate adapter subunit, ZYG11B, and con-
sequently altered the distribution of IFT46 in cilia, resulting
in massive cilia dysfunction. The discrepancy between these
results was shown to result from a difference in ORF10 ex-
pression levels (92). In another example, because ORF10 was
not expressed in some cells or tissues infected with SARS-
CoV-2, it was reported not to be expressed in the human
host (26, 27); since, there have been reports of its expression
(Our metaanalysis of SARS-CoV-2-infected tissues and cells
shows ORF10 transcripts in multiple cell and tissue types,
but though ORF10 is typically. In a third example, tempo-
ral changes in rates of expression of ORF10 provide a pos-
sible explanation of discrepancies in experimental findings
related to ORF10 effect on SARS-CoV-2 replication. Vero
6 cells inoculated with SARS-CoV-2 mutant strains contain-
ing truncated ORF10 produced thousands-of-fold fewer in-
fectious particles than a control SARS-CoV-2 strain at 24
hours post-inoculation, indicating an impact of ORF10 on vi-
ral reproduction, whereas, by 48 hours post-inoculation, the
levels of infectious particles were similar (28). The expres-
sion of ORF10 or other SARS-CoV-2 transcripts during the
time course of this experiment was not reported.

Taken together, our current results, experimental demon-
strations of orphan genes of both viruses and cellular organ-
isms that provide new eco-environmental opportunities (5),
and the molecular characterization in cell models of ORF10’s
immune-related activity(43), and STING (47), lead us to sur-
mise that emergence of the novel protein-coding orphan gene
ORF10 may have played a role in enabling the SARS-CoV-2
virus to perpetrate the pandemic that has killed seven million

humans.
Orphan genes have been implicated in viral evolution

(94–96), however, little concerted effort has been made to
track their appearance and their potential associations with
emergent diseases. Our findings emphasize the centrality of
ORF10 to COVID-19. That ORF10 was mostly disregarded
for years, despite the focus of the biomedical community on
the pandemic, illustrates a correctable deficit in scientific ap-
proach. Routinely including both host and pathogen orphan
genes in biological studies is crucial to understanding recent
evolutionary trends. We advocate that mechanisms be set in
place to monitor orphan genes as they arise in pathogenic
viruses.

Methods
Expression of ORF10.

ORF10 was cloned into pLVX-EF1alpha-IRES-
Purovector, swapped into a TRE construct, and used to
generate lentivirus. A549 and HEK293-T cells were
grown for four days and then transduced and selected with
puromycin to generate doxycycline-inducible cell lines.
Clones were generated and allowed to grow out and samples
were then tested for baseline ORF10 expression and then
ORF10 induction with doxycycline. Cell lines that had
no to minimal ORF10 expression at baseline and then had
robust induction were used for downstream assays. RNA
was isolated from A549 and HEK293-T cells that were
either treated with or without doxycycline for 5 days. RNA
(RIN>7.5) was used for library preparation and RNAseq was
performed with NovaSeq. Cell viability was not impacted by
ORF10 expression.

Compilation and processing of COVID-19 RNA-Seq
datasets for pan-tissue analysis .

Bulk RNA-Seq data were downloaded from SRA
via pyrpipe (58), and the corresponding sample meta-
data were obtained from the SRA using https://
github.com/jahaltom/GetMetaSRA. Using pyr-
pipe, samples were trimmed for quality and adapters
and mapped using Salmon (97) to the human transcrip-
tome (GencodeV36), SARS-COV-2(ASM985889v3) tran-
scriptome, and human evidence based (EB) gene transcripts
including novel alt-spliced, intronic, and intergenic genes
(ref-Singh et. al 2023bioarchives) following the pipeline in
https://github.com/jahaltom/COVID-19-Quantification. To
increase mapping accuracy, the human genome along with
viral decoys and spike-ins from the Genomic Data Commons
(GRCh38.d1.vd1) were used as decoys for Salmon. Samples
were aggregated into groups based on covid-status, tissue,
treatment/other variables, study, time post infection, and in
vivo/in vitro status. TPM were averaged for groups with a
sample size of at least 3. The log2 of the averaged TPM was
used for the heatmap.
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Gene clustering and GO analysis.

Pairwise Spearman and Pearson matrices at 3 coeffi-
cient cutoffs (0.8, 0.85, and 0.9) were created from raw
counts (Supplemental File 1) and from ComBatSeq batch-
corrected counts using study as "batch" (Supplemental Table
4) . The subsequent correlation matrices were grouped by
Markov Chain Clustering (MCL) (61), filtered for clusters
with ten or more annotated genes, and Go-terms (Biologi-
cal Process)(98) were calculated for each cluster. For each
method, Go-Terms were calculated for identical numbers of
clusters and clusters of identical sizes, but with randomized
gene assignments for 100 iterations (59). Randomization was
done in python.

RNA structure predictions.

Data used in analysis that had been previously generated
using ScanFold (82) was retrieved and downloaded from the
RNAStructuromeDB database https://structurome.
bb.iastate.edu/sars-cov-2. Data not already in
the RNAStructuromeDB was analyzed by ScanFold and
added to it. The Integrative Genomics Viewer (IGV (99))
was used to visualize data tracks, including the arc diagram
(base pair) track and the per nucleotide (NT) ΔG z-score
track, and used for generation of some figure elements in
Fig. 4A. For the 2D structural model in Fig. 4B, -1 z-
score base pairs and lower (as modeled by ScanFold) for
the ORF10 region were constrained to be paired and the
entire region was refold using RNAfold to fill in less sig-
nificant base pairs and/or potential longer-range interactions
missed by ScanFold. The resulting model was visualized
and annotated using the VARNA visualization tool (100).
The per NT z-score data overlaid on the Fig. 4B model
can be accessed via the FinalZavg.wig file from the down-
loaded SARS-CoV-2 results. Covariation analysis was pre-
viously performed on all ScanFold predicted motifs which
contained at least one -1 G z-score base pair (81). Covari-
ation analyses were completed using the cm-builder (101)
pipeline which utilizes Infernal (102) for initial sequence
alignment and then R-scape (103) to determine whether co-
variation is statistically significant. In this study, a more de-
tailed analysis of ORF10 was performed using data avail-
able for download from https://structurome.bb.
iastate.edu/sars-cov-2. Alignment (stockholm)
files for the first and second hairpins of ORF10 (Motif 523
and 524 in Dataset 3 of (81), respectively) were used to gen-
erate conservation plots (using R-chie (104)) from select viral
sequences: SARS-CoV-2, SARS-CoV-1, bat, and pangolin.
ScanFold and RNAFold were used to assess how synony-
mous mutations in ORF10 that affected clinical outcomes
disrupted the secondary structure of ORF10 mRNA. Using
RNAFold, we calculated the positional entropy, a measure of
how likely a nucleotide is to be in a particular configuration,
for the wild type sequence and each sequence with a clini-
cally relevant synonymous mutation.

3D protein structure predictions.

Amino acid sequences for SARS-CoV-2 mutations were
obtained by computational translation from the nucleotide se-
quence. The AA sequences were input to RGN2 (reference)
for 3D protein structure prediction. The resulting pdb files
were viewed using iCn3D https://www.ncbi.nlm.
nih.gov/Structure/icn3d/full.html, which al-
lowed for an interactive exploration of each predicted protein
structure, including hydrophobic/philic nature and charge
distribution and solvent accessibility. Protein disorder was
predicted using IUPred2A (105). Emboss (106) was used to
calculate the isoelectric points. Custom python script was
written to compute CDS length, GC%, Codon Usage (CU)
and Relative Synonymous Codon Usage (RSCU). Atomic co-
ordinates were aligned by the SSM superposition algorithm
in Coot (55), including representation as a ribbon model and
Van der Waals surface.

Identifying ORF10 mutations from genetic sequences
of SARS-CoV-2 Variants of Concern.

All available sequences with associated clinical data
belonging to Pango lineages B.1.1.7/Alpha variant of
concern (VOC), B.1.351/Beta VOC, P.1/Gamma VOC,
B.1.617.2.X/Delta VOC, and B.1.1.529.X/Omicron VOC
were downloaded from GISAID database https://www.
gisaid.org/ (48, 49) on October 1, 2021, except Omi-
cron VOC sequences, which were downloaded on May
4, 2022. This included 210,101 SARS-CoV-2 ORF10
sequences for which there was associated clinical meta-
data (33,142 Alpha VOC, 3,533 Beta VOC, 6,599 Gamma
VOC, 38,259 Delta VOC, and 128,568 Omicron VOC). The
downloads were performed selecting the following GISAID
EpiCoV options: i) complete, ii) low coverage excluded,
and iii) with patient status. The lineage-specific sequence
datasets were aligned using Nextalign CLI integrated in
Nextcladec (107) with Wuhan-Hu-1 (NCBI Reference Se-
quence: NC_045512.2) as the reference sequence. The
aligned lineage-specific datasets were trimmed to the ORF10
gene, selecting nucleotide positions 29558-29671. ORF10
lineage-specific alignments were analyzed using Nextclade
(107), which allowed identification of substitution, deletions,
and insertions in this gene. For comparisons of mutations
across VOC, 103 genomes were sampled randomly from each
of the five VOCs. To account for there being only 3,533 Beta
and 6,599 Gamma sequences, each VOCs sequences were
tripled, then the 103 genomes were sampled randomly using
numpy (108).

We have also used the data made available at (51) encom-
passing the mutational patterns of 3.5 million SARS-CoV-2
sequences covering the Alpha, Beta, Gamma/Lambda, Delta,
and Omicron VOI and VOC waves. We have investigated
the rate of synonymous (S) and non-synonymous (NS) muta-
tions per genome per site for each gene and identified where
in the viral genome of the variants most of these mutations
occurred with cumulative frequencies higher than 30%, 50%,
and 90%.
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COVID-19 severity analysis as related to ORF10 se-
quence.

Associations of mutations in SARS-CoV-2 ORF10
and clinical severity (Asymptomatic/Very-Mild/Mild vs
Moderate/Very-Severe/Dead) were evaluated by Chi-square
test using Python’s scipy.stats chi2 contingency (109). The
data set was first filtered by limiting the 210,101 ORF10 se-
quences to the samples with clear metadata on clinical sever-
ity resulting in 181,755 ORF10 sequences for the Chi-square
test.

Supplementary Data
Supplementary data and files are available at

https://drive.google.com/drive/folders/
1IbcQGG20aR_znRKYxDmP147YAkQmZ9kq?usp=
sharing Evidence-based novel human gene metadata is at
https://github.com/urmi-21/Human_orphan_
genes and is available for visualization on UCSC gene
browser (Nassar LR, Barber GP, Benet-Pagès A, Casper J,
Clawson H, Diekhans M, Fischer C, Gonzalez JN, Hinrichs
AS, Lee BT, Lee CM, Muthuraman P, Nguy B, Pereira T,
Nejad P, Perez G, Raney BJ, Schmelter D, Speir ML, Wick
BD, Zweig AS, Haussler D, Kuhn RM, Haeussler M, Kent
WJ. The UCSC Genome Browser database: 2023 update.
Nucleic Acids Res. 2022 Nov 24;. PMID: 36420891)
as a https://genome.ucsc.edu/s/jahaltom/
Orphan%20Genes.
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105. Bálint Mészáros, Gábor Erdős, and Zsuzsanna Dosztányi. Iupred2a: context-dependent
prediction of protein disorder as a function of redox state and protein binding. Nucleic
acids research, 46(W1):W329–W337, 2018.

106. Peter Rice, Ian Longden, and Alan Bleasby. Emboss: the european molecular biology
open software suite, 2000.

107. Ivan Aksamentov, Cornelius Roemer, Emma B. Hodcroft, and Richard A. Neher.
Nextclade: clade assignment, mutation calling and quality control for viral genomes. Jour-
nal of Open Source Software, 6(67):3773, 2021. doi: 10.21105/joss.03773.

108. Charles R Harris, K Jarrod Millman, Stéfan J van der Walt, Ralf Gommers, Pauli Virta-
nen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J Smith,
Robert Kern, Matti Picus, Stephan Hoyer, Marten H van Kerkwijk, Matthew Brett, Allan Hal-
dane, Jaime Fernández Del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant,
Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and
Travis E Oliphant. Array programming with NumPy. Nature, 585(7825):357–362, Septem-
ber 2020.

109. Sk Sarif Hassan, Diksha Attrish, Shinjini Ghosh, Pabitra Pal Choudhury, Vladimir N Uver-
sky, Alaa AA Aljabali, Kenneth Lundstrom, Bruce D Uhal, Nima Rezaei, Murat Seyran,
et al. Notable sequence homology of the orf10 protein introspects the architecture of sars-
cov-2. International Journal of Biological Macromolecules, 181:801–809, 2021.

Haltom et al. | bioRχiv | 17

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 29, 2023. ; https://doi.org/10.1101/2023.11.27.23298847doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.27.23298847
http://creativecommons.org/licenses/by/4.0/

